JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Endothelial apoptosis in pulmonary hypertension is controlled by a microRNA/programmed cell death 4/caspase-3 axis.
Hypertension
PUBLISHED: 04-14-2014
Show Abstract
Hide Abstract
Pulmonary endothelial cell apoptosis is a transient, yet defining pathogenic event integral to the onset of many pulmonary vascular diseases such as pulmonary hypertension (PH). However, there is a paucity of information concerning the molecular pathway(s) that control pulmonary arterial endothelial cell apoptosis. Here, we introduce a molecular axis that when functionally active seems to induce pulmonary arterial endothelial cell apoptosis in vitro and PH in vivo. In response to apoptotic stimuli, human pulmonary arterial endothelial cells exhibited robust induction of a programmed cell death 4 (PDCD4)/caspase-3/apoptotic pathway that was reversible by direct PDCD4 silencing. Indirectly, this pathway was also repressed by delivery of a microRNA-21 mimic. In vivo, genetic deletion of microRNA-21 in mice (miR-21(-/-) mice) resulted in functional activation of the PDCD4/caspase-3 axis in the pulmonary tissues, leading to the onset of progressive PH. Conversely, microRNA-21-overexpressing mice (CAG-microRNA-21 mice) exhibited reduced PDCD4 expression in pulmonary tissues and were partially resistant to PH in response to chronic hypoxia plus SU 5416 injury. Furthermore, direct PDCD4 knockout in mice (PDCD4(-/-) mice) potently blocked pulmonary caspase-3 activation and the development of chronic hypoxia plus SU 5416 PH, confirming its importance in disease onset. Broadly, these findings support the existence of a microRNA-21-responsive PDCD4/caspase-3 pathway in the pulmonary tissues that when active serves to promote endothelial apoptosis in vitro and PH in vivo.
Related JoVE Video
A regulatory domain spanning the repeat sequence RE1 from herpes simplex virus type 1 has cell specific differential functions in trigeminal neurons and fibroblasts.
FEBS Lett.
PUBLISHED: 06-17-2009
Show Abstract
Hide Abstract
In this report we demonstrate that the herpes simplex virus type 1 reiteration element 1 (RE1) (nt: 117158-117353) in concert with its flanking sequences is both a cell specific and stimulus inducible regulatory domain. This region of the virus genome and specifically the RE1 supports differential reporter gene expression in both baby hamster kidney cells and disassociated rat trigeminal ganglia and is present within a region that is implicated in regulating latency of the virus in neuronal cells. Further we demonstrate that this locus is a transcriptional regulatory domain and a target for the transcription factor CCCTC binding protein.
Related JoVE Video
A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples.
Circ. Res.
Show Abstract
Hide Abstract
Despite improved understanding of the underlying genetics, pulmonary arterial hypertension (PAH) remains a severe disease. Extensive remodeling of small pulmonary arteries, including proliferation of pulmonary artery smooth muscle cells (PASMCs), characterizes PAH. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to play a role in vascular remodeling. Objective: We assessed the role of miR-145 in PAH.
Related JoVE Video
CTCF and Sp1 interact with the Murine gammaherpesvirus 68 internal repeat elements.
Virus Genes
Show Abstract
Hide Abstract
Herpesviruses maintain a dynamic balance between latency and productive infection. This is a complex process regulated by viral and cellular factors. We have developed a Murine gammaherpesvirus 68 (MHV-68) model system in which to study mechanisms underlying balance between latency and lytic infection. We have generated an epithelial cell line that carries MHV-68 in a tightly latent form by using a bacterial artificial chromosome clone of the virus genome with a mutation in the MHV-68 major lytic R transactivator gene. Complementation of this defect in trans by transfection with a plasmid encoding R transactivator initiated and restored the productive cycle. This cell line model was used to investigate transcription factor occupancy (CCCTC binding factor [CTCF] and Sp1) of the two internal repeat elements in the viral genome during latency and reactivation using chromatin immunoprecipitation. Our results show that CTCF can bind to the 40-bp and the 100-bp repeat sequences during latency, whereas binding is reduced upon reactivation. In contrast, Sp1 only bound to the 100-bp repeat after reactivation. Our results indicate that the large internal repeat sequences in MHV-68 have different functions. We hypothesise that the 40-bp repeat may be involved in regulation of gene expression during the maintenance of latency, while the 100-bp repeat domain may be involved in regulation of the lytic cycle.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.