JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Effect of pH and recombinant barley (Hordeum vulgare L.) endoprotease B2 on degradation of proteins in soaked barley.
J. Agric. Food Chem.
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
Nonfermented soaking of barley feedstuff has been established as an in vitro procedure prior to the feeding of pigs as it can increase protein digestibility. In the current study, two feed cultivars of barley (Finlissa and Zephyr) were soaked in vitro either nonbuffered or buffered at pH 3.6 and 4.3. Solubilized and degraded proteins evaluated by biuret, SDS-PAGE, and differential proteomics revealed that pH 4.3 had the greatest impact on both solubilization and degradation. In order to boost proteolysis, the recombinant barley endoprotease B2 (rec-HvEP-B2) was included after 8 h using the pH 4.3 regime. Proteolysis evaluated by SDS-PAGE and differential proteomics confirmed a powerful effect of adding rec-HvEP-B2 to the soaked barley, regardless of the genotype. Our study addresses the use of rec-HvEP-B2 as an effective feed enzyme protease. HvEP-B2 has the potential to increase the digestibility of protein in the pig, either supplied as recombinant additive or as possible new selection criterion in barley breeding.
Related JoVE Video
Distinct neurological disorders with ATP1A3 mutations.
Lancet Neurol
PUBLISHED: 04-18-2014
Show Abstract
Hide Abstract
Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the ?3 subunit of Na(+)/K(+)-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological diseases to the same gene, however, ATP1A3 mutations are, with one exception, disease-specific. Although the exact mechanism of how these mutations lead to disease is still unknown, much knowledge has been gained about functional consequences of ATP1A3 mutations using a range of in-vitro and animal model systems, and the role of Na(+)/K(+)-ATPases in the brain. Researchers and clinicians are attempting to further characterise neurological manifestations associated with mutations in ATP1A3, and to build on the existing molecular knowledge to understand how specific mutations can lead to different diseases.
Related JoVE Video
Molecular mechanism of Na(+),K(+)-ATPase malfunction in mutations characteristic of adrenal hypertension.
Biochemistry
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
Mutations within ion-transporting proteins may severely affect their ability to traffic ions properly and thus perturb the delicate balance of ion gradients. Somatic gain-of-function mutations of the Na(+),K(+)-ATPase ?1-subunit have been found in aldosterone-producing adenomas that are among the causes of hypertension. We used molecular dynamics simulations to investigate the structural consequences of these mutations, namely, Leu97 substitution by Arg (L97R), Val325 substitution by Gly (V325G), deletion of residues 93-97 (Del93-97), and deletion-substitution of residues 953-956 by Ser (EETA956S), which shows inward leak currents under physiological conditions. The first three mutations affect the structural context of the key ion-binding residue Glu327 at binding site II, which leads to the loss of the ability to bind ions correctly and to occlude the pump. The mutated residue in L97R is more hydrated, which ultimately leads to the observed proton leak. V325G mimics the structural behavior of L97R; however, it does not promote the hydration of surrounding residues. In Del93-97, a broader opening is observed because of the rearrangement of the kinked transmembrane helix 1, M1, which may explain the sodium leak measured with the mutant. The last mutant, EETA956S, opens an additional water pathway near the C-terminus, affecting the III sodium-specific binding site. The results are in excellent agreement with recent electrophysiology measurements and suggest how three mutations prevent the occlusion of the Na(+),K(+)-ATPase, with the possibility of transforming the pump into a passive ion channel, whereas the fourth mutation provides insight into the sodium binding in the E1 state.
Related JoVE Video
Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state.
Science
PUBLISHED: 09-19-2013
Show Abstract
Hide Abstract
The Na(+), K(+)-adenosine triphosphatase (ATPase) maintains the electrochemical gradients of Na(+) and K(+) across the plasma membrane--a prerequisite for electrical excitability and secondary transport. Hitherto, structural information has been limited to K(+)-bound or ouabain-blocked forms. We present the crystal structure of a Na(+)-bound Na(+), K(+)-ATPase as determined at 4.3 Å resolution. Compared with the K(+)-bound form, large conformational changes are observed in the ? subunit whereas the ? and ? subunit structures are maintained. The locations of the three Na(+) sites are indicated with the unique site III at the recently suggested IIIb, as further supported by electrophysiological studies on leak currents. Extracellular release of the third Na(+) from IIIb through IIIa, followed by exchange of Na(+) for K(+) at sites I and II, is suggested.
Related JoVE Video
Quantification of excretions of dry matter, nitrogen, phosphorus and carbon in growing pigs fed regional diets.
J Anim Sci Biotechnol
PUBLISHED: 07-04-2013
Show Abstract
Hide Abstract
Modern pig production contributes to many environmental problems that relate to manure, especially in areas with highly intensive production systems and in regions like Asia where the regulative control is not effective. Therefore, the objective of this study was to use three different pig diets varying in dietary protein, fibre and fat as representative for Danish (DK), Thai (TH) and Vietnamese (VN) pig production to develop and evaluate different approaches to predict/calculate excretion from growing pigs in comparison with the experimentally determined values.Nine female growing pigs were used in a digestibility and balance experiment. Excretion of dry matter (DM), nitrogen (N), phosphorus (P) and carbon (C) of the experimental diets were determined.Due to the highest dietary fibre content, VN had the lowest digestibility of N, P and C (73, 49, and 73%, respectively) compared with the DK and TH pig diets. From the known diet composition using standard table values on chemical and nutrient digestibly, high accuracy (bias) and low variation was found and the results could be used for prediction on chemical composition and excretion in faeces and urine in growing pigs. Using recent published equations from Vu et al. (Anim Feed Sci Technol 151:97-110, 2009) to predict excretion in faeces and urine, the variation in prediction was in the same range. Calculation based on standard values regarding nutrient retention in the pig body as used in the Danish manure normative system (DMNS) showed likewise to be quite useful for quantifying the total excretion of N and P.Overall, the results demonstrate that simple models that require cheap and normally available information on dietary nutrients can give useful information on nutrient excretion in growing pigs.
Related JoVE Video
Sodium/Potassium homeostasis in the cell.
Met Ions Life Sci
PUBLISHED: 04-19-2013
Show Abstract
Hide Abstract
All animals are characterized by steep gradients of Na(+) and K(+) across the plasma membrane, and in spite of their highly similar chemical properties, the ions can be distinguished by numerous channels and transporters. The gradients are generated by the Na(+),K(+)-ATPase, or sodium pump, which pumps out Na(+) and takes up K(+) at the expense of the chemical energy from ATP. Because the membrane is more permeable to K(+) than to Na(+), the uneven ion distribution causes a transmembrane voltage difference, and this membrane potential forms the basis for the action potential and for much of the neuronal signaling in general. The potential energy stored in the concentration gradients is also used to drive a large number of the secondary transporters responsible for transmembrane carriage of solutes ranging from sugars, amino acids, and neurotransmitters to inorganic ions such as chloride, inorganic phosphate, and bicarbonate. Furthermore, Na(+) and K(+) themselves are important enzymatic cofactors that typically lower the energy barrier of substrate binding.In this chapter, we describe the roles of Na(+) and K(+) in the animal cell with emphasis on the creation and usage of the steep gradients across the membrane. More than 50 years of Na(+),K(+)-ATPase research has revealed many details of the molecular machinery and offered insights into how the pump is regulated by post-translational modifications and specific drugs.
Related JoVE Video
Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension.
Nat. Genet.
PUBLISHED: 03-04-2013
Show Abstract
Hide Abstract
At least 5% of individuals with hypertension have adrenal aldosterone-producing adenomas (APAs). Gain-of-function mutations in KCNJ5 and apparent loss-of-function mutations in ATP1A1 and ATP2A3 were reported to occur in APAs. We find that KCNJ5 mutations are common in APAs resembling cortisol-secreting cells of the adrenal zona fasciculata but are absent in a subset of APAs resembling the aldosterone-secreting cells of the adrenal zona glomerulosa. We performed exome sequencing of ten zona glomerulosa-like APAs and identified nine with somatic mutations in either ATP1A1, encoding the Na(+)/K(+) ATPase ?1 subunit, or CACNA1D, encoding Cav1.3. The ATP1A1 mutations all caused inward leak currents under physiological conditions, and the CACNA1D mutations induced a shift of voltage-dependent gating to more negative voltages, suppressed inactivation or increased currents. Many APAs with these mutations were <1 cm in diameter and had been overlooked on conventional adrenal imaging. Recognition of the distinct genotype and phenotype for this subset of APAs could facilitate diagnosis.
Related JoVE Video
Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase.
J. Biol. Chem.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) is a transmembrane ion transporter belonging to the P(II)-type ATPase family. It performs the vital task of re-sequestering cytoplasmic Ca(2+) to the sarco/endoplasmic reticulum store, thereby also terminating Ca(2+)-induced signaling such as in muscle contraction. This minireview focuses on the transport pathways of Ca(2+) and H(+) ions across the lipid bilayer through SERCA. The ion-binding sites of SERCA are accessible from either the cytoplasm or the sarco/endoplasmic reticulum lumen, and the Ca(2+) entry and exit channels are both formed mainly by rearrangements of four N-terminal transmembrane ?-helices. Recent improvements in the resolution of the crystal structures of rabbit SERCA1a have revealed a hydrated pathway in the C-terminal transmembrane region leading from the ion-binding sites to the cytosol. A comparison of different SERCA conformations reveals that this C-terminal pathway is exclusive to Ca(2+)-free E2 states, suggesting that it may play a functional role in proton release from the ion-binding sites. This is in agreement with molecular dynamics simulations and mutational studies and is in striking analogy to a similar pathway recently described for the related sodium pump. We therefore suggest a model for the ion exchange mechanism in P(II)-ATPases including not one, but two cytoplasmic pathways working in concert.
Related JoVE Video
The pumps that fuel a sperms journey.
Biochem. Soc. Trans.
PUBLISHED: 05-24-2011
Show Abstract
Hide Abstract
The sole purpose of a sperm cell is to carry genetic information from a male to a female egg. In order to accomplish this quest, the sperm cell must travel a long distance through a constantly changing environment. The success of this journey depends on membrane proteins that are uniquely expressed in sperm cells. One of these proteins is the ?4 isoform of the sodium pump. This pump is optimized to cope with the ionic environment characteristic of the female reproductive tract, and its activity may be tightly coupled with secondary transporters that maintain cytoplasmic pH. Pharmacological inhibition of ?4 is sufficient to inhibit sperm motility, and significant differences around the inhibitor-binding site compared with the ubiquitous ?1 isoform, make ?4 a feasible target in rational drug development.
Related JoVE Video
In and out of the cation pumps: P-type ATPase structure revisited.
Curr. Opin. Struct. Biol.
PUBLISHED: 05-20-2010
Show Abstract
Hide Abstract
Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated. The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now be compared directly. Mechanisms for ion gating, charge neutralization and backflow prevention are starting to emerge from comparative structural analysis; and in combination with functional studies of mutated pumps this provides a framework for speculating on how the ions are bound and released as well as on how specificity is achieved.
Related JoVE Video
Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase.
FEBS Lett.
PUBLISHED: 04-09-2010
Show Abstract
Hide Abstract
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na(+),K(+)- and H(+),K(+)-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.
Related JoVE Video
Neurological disease mutations compromise a C-terminal ion pathway in the Na(+)/K(+)-ATPase.
Nature
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
The Na(+)/K(+)-ATPase pumps three sodium ions out of and two potassium ions into the cell for each ATP molecule that is split, thereby generating the chemical and electrical gradients across the plasma membrane that are essential in, for example, signalling, secondary transport and volume regulation in animal cells. Crystal structures of the potassium-bound form of the pump revealed an intimate docking of the alpha-subunit carboxy terminus at the transmembrane domain. Here we show that this element is a key regulator of a previously unrecognized ion pathway. Current models of P-type ATPases operate with a single ion conduit through the pump, but our data suggest an additional pathway in the Na(+)/K(+)-ATPase between the ion-binding sites and the cytoplasm. The C-terminal pathway allows a cytoplasmic proton to enter and stabilize site III when empty in the potassium-bound state, and when potassium is released the proton will also return to the cytoplasm, thus allowing an overall asymmetric stoichiometry of the transported ions. The C terminus controls the gate to the pathway. Its structure is crucial for pump function, as demonstrated by at least eight mutations in the region that cause severe neurological diseases. This novel model for ion transport by the Na(+)/K(+)-ATPase is established by electrophysiological studies of C-terminal mutations in familial hemiplegic migraine 2 (FHM2) and is further substantiated by molecular dynamics simulations. A similar ion regulation is likely to apply to the H(+)/K(+)-ATPase and the Ca(2+)-ATPase.
Related JoVE Video
Emissions of sulfur-containing odorants, ammonia, and methane from pig slurry: effects of dietary methionine and benzoic acid.
J. Environ. Qual.
PUBLISHED: 01-01-2010
Show Abstract
Hide Abstract
Supplementation of benzoic acid to pig diets reduces the pH of urine and may thereby affect emissions of ammonia and other gases from slurry, including sulfur-containing compounds that are expected to play a role in odor emission. Over a period of 112 d, we investigated hydrogen sulfide (H(2)S), methanethiol (MT), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), and dimethyl trisulfide (DMTS), as well as ammonia and methane emissions from stored pig slurry. The slurry was derived from a feeding experiment with four pig diets in a factorial design with 2% (w/w) benzoic acid and 1% (w/w) methionine supplementation as treatments. Benzoic acid reduced slurry pH by 1 to 1.5 units and ammonia emissions by 60 to 70% for up to 2 mo of storage, and a considerable, but transitory reduction of methane emissions was also observed after 4 to 5 wk. All five volatile sulfur (S) compounds were identified in gas emitted from the slurry of the control treatment, which came from pigs fed according to Danish recommendations for amino acids and minerals. The emission patterns of volatile S compounds suggested an intense cycling between pools of organic S in the slurries, with urinary sulfate as the main source. Diet supplementation with methionine significantly increased all S emissions. Diet supplementation with benzoic acid reduced emissions of H(2)S and DMTS compared with the control slurry and moderately increased the concentrations of MT. Sulfur gas emissions were influenced by a strong interaction between methionine and benzoic acid treatments, which caused a significant increase in emissions of especially MT, but also of DMDS. In conclusion, addition of 2% benzoic acid to pig diets effectively reduced ammonia volatilization, but interactions with dietary S may increase odor problems.
Related JoVE Video
Enhanced yellow fluorescent protein photoconversion to a cyan fluorescent protein-like species is sensitive to thermal and diffusion conditions.
J Biomed Opt
PUBLISHED: 07-02-2009
Show Abstract
Hide Abstract
Ongoing research efforts into fluorescent proteins continuously generates new mutation variants, some of which can become photoactivated or photoconverted to a red-shifted color upon intense UV or blue light illumination. We report a built-in propensity for enhanced yellow fluorescent protein (EYFP) to undergo irreversible photoconversion into a cyan fluorescent protein (CFP)-like species upon green-light illumination. The photoconversion is thermally activated, happens mainly in fixed, nonsealed cell samples, and may result in a very bright and relatively photostable CFP-like species. The photoconversion efficiency depends on the sample diffusivity and is much increased in dehydrated, oxygenated samples. Given the large variations in conversion efficiency observed among samples as well as within a sample, photoconversion cannot be appropriately accounted for in the analysis of acceptor photobleaching fluorescence resonance energy transfer (pbFRET) images and should rather be completely avoided. Thus, samples should always be checked and discarded if photoconversion is observed.
Related JoVE Video
The structure of the Na+,K+-ATPase and mapping of isoform differences and disease-related mutations.
Philos. Trans. R. Soc. Lond., B, Biol. Sci.
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
The Na+,K+-ATPase transforms the energy of ATP to the maintenance of steep electrochemical gradients for sodium and potassium across the plasma membrane. This activity is tissue specific, in particular due to variations in the expressions of the alpha subunit isoforms one through four. Several mutations in alpha2 and 3 have been identified that link the specific function of the Na+,K+-ATPase to the pathophysiology of neurological diseases such as rapid-onset dystonia parkinsonism and familial hemiplegic migraine type 2. We show a mapping of the isoform differences and the disease-related mutations on the recently determined crystal structure of the pig renal Na+,K+-ATPase and a structural comparison to Ca2+-ATPase. Furthermore, we present new experimental data that address the role of a stretch of three conserved arginines near the C-terminus of the alpha subunit (Arg1003-Arg1005).
Related JoVE Video
Similar growth plate morphology in stapling and tension band plating hemiepiphysiodesis: a porcine experimental histomorphometric study.
J. Orthop. Res.
Show Abstract
Hide Abstract
The tension band plating technique for hemiepiphysiodesis is new and advocated because it is believed to reduce the risk of premature closure of the growth plate compared to stapling. The benefit of the tension band plating technique has not yet been proven in experimental or randomized clinical studies. Ten weeks old domestic pigs in two randomized, paired studies were used. Right proximal tibia was randomized to medial epiphysiodesis by either stapling or tension band plating. Left side received the opposite treatment. Study A (n = 10): 9 weeks treatment. Study B (n = 8): implant removal after 9 weeks of treatment and 5 weeks of housing. Fractions of the chondrocyte layers were determined using quantitative histomorphometry. Mean heights of the growth plates were measured. No significant changes were observed between histomorphometric parameters in neither study A or B. Areas with disorganized cartilage tissue were abundant in 13/16 samples from study B and observed after both treatment with tension band plating and staples. Chondrocyte zone fractions did not differ between tension band plating and staple treatment in this randomized, paired animal study. The growth plate responded to release of hemiepiphysiodesis with abundant disorganized cartilage tissue in both groups. The histological response to hemiepiphysiodesis by tension band plating and staples appear to be similar.
Related JoVE Video
The C-terminal cavity of the Na,K-ATPase analyzed by docking and electrophysiology.
Mol. Membr. Biol.
Show Abstract
Hide Abstract
The Na,K-ATPase is essential to all animals, since it maintains the electrochemical gradients that energize the plasma membrane. Naturally occurring inhibitors of the pump from plants have been used pharmaceutically in cardiac treatment for centuries. The inhibitors block the pump by binding on its extracellular side and thereby locking it. To explore the possibilities for designing an alternative way of targeting the pump function, we have examined the structural requirements for binding to a pocket that accommodates the two C-terminal residues, YY, in the crystal structures of the pump. To cover the sample space of two residues, we first performed docking studies with the 400 possible dipeptides. For validation of the in silico predictions, pumps with 13 dipeptide sequences replacing the C-terminal YY were expressed in Xenopus laevis oocytes and examined with electrophysiology. Our data show a significant correlation between the docking scores from two different methods and the experimentally determined sodium affinities, which strengthens the previous hypothesis that sodium binding is coupled to docking of the C-terminus. From the dipeptides that dock the best and better than wild-type YY, it may therefore be possible to develop specific drugs targeting a previously unexplored binding pocket in the sodium pump.
Related JoVE Video
Bioavailability of trace elements in beans and zinc-biofortified wheat in pigs.
Biol Trace Elem Res
Show Abstract
Hide Abstract
The objectives of this experiment were to study bioavailability of trace elements in beans and wheat containing different levels of zinc and to study how the water solubility of trace elements was related to the bioavailability in pigs. Three wheat and two bean types were used: wheat of Danish origin as a control (CtrlW), two Turkish wheat types low (LZnW) and high (HZnW) in zinc, a common bean (Com), and a faba bean (Faba). Two diets were composed by combining 81 % CtrlW and 19 % Com or Faba beans. Solubility was measured as the trace element concentration in the supernatant of feedstuffs, and diets incubated in distilled water at pH 4 and 38°C for 3 h. The bioavailability of zinc and copper of the three wheat types and the two bean-containing diets were evaluated in the pigs by collection of urine and feces for 7 days. The solubility of zinc was 34-63 %, copper 18-42 %, and iron 3-11 %. The zinc apparent digestibility in pigs was similar in the three wheat groups (11-14 %), but was significantly higher in the CtrlW+Faba group (23 %) and negative in the CtrlW+Com group (-30 %). The apparent digestibility of copper was higher in the HZnW (27 %) and CtrlW+Faba (33 %) groups than in the CtrlW (17 %) and LZnW (18 %) groups. The apparent copper digestibility of the CtrlW+Com diet was negative (-7 %). The solubility and digestibility results did not reflect the concentration in feedstuffs. The in vitro results of water solubility showed no relationship to the results of trace mineral bioavailability in pigs.
Related JoVE Video
Protein kinase A (PKA) phosphorylation of Na+/K+-ATPase opens intracellular C-terminal water pathway leading to third Na+-binding site in molecular dynamics simulations.
J. Biol. Chem.
Show Abstract
Hide Abstract
Phosphorylation is one of the major mechanisms for posttranscriptional modification of proteins. The addition of a compact, negatively charged moiety to a protein can significantly change its function and localization by affecting its structure and interaction network. We have used all-atom Molecular Dynamics simulations to investigate the structural consequences of phosphorylating the Na(+)/K(+)-ATPase (NKA) residue Ser(936), which is the best characterized phosphorylation site in NKA, targeted in vivo by protein kinase A (PKA). The Molecular Dynamics simulations suggest that Ser(936) phosphorylation opens a C-terminal hydrated pathway leading to Asp(926), a transmembrane residue proposed to form part of the third sodium ion-binding site. Simulations of a S936E mutant form, for which only subtle effects are observed when expressed in Xenopus oocytes and studied with electrophysiology, does not mimic the effects of Ser(936) phosphorylation. The results establish a structural association of Ser(936) with the C terminus of NKA and indicate that phosphorylation of Ser(936) can modulate pumping activity by changing the accessibility to the ion-binding site.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.