JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands--farmland suboptimal for food crops--could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks--primarily annual grain crops--on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services.
Related JoVE Video
Cascading trait-mediated interactions induced by ant pheromones.
Ecol Evol
Show Abstract
Hide Abstract
Trait-mediated indirect interactions (TMII) can be as important as density-mediated indirect interactions. Here, we provide evidence for a novel trait-mediated cascade (where one TMII affects another TMII) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles - the first TMII. However, parasitic phorid flies reduce ant foraging activity by 50% - the second TMII, providing a window of opportunity for female beetles to oviposit in high-quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade.
Related JoVE Video
Ecological complexity in a coffee agroecosystem: spatial heterogeneity, population persistence and biological control.
PLoS ONE
Show Abstract
Hide Abstract
Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself.
Related JoVE Video
Mutualisms and population regulation: mechanism matters.
PLoS ONE
Show Abstract
Hide Abstract
For both applied and theoretical ecological science, the mutualism between ants and their hemipteran partners is iconic. In this well-studied interaction, ants are assumed to provide hemipterans protection from natural enemies in exchange for nutritive honeydew. Despite decades of research and the potential importance in pest control, the precise mechanism producing this mutualism remains contested. By analyzing maximum likelihood parameter estimates of a hemipteran population model, we show that the mechanism of the mutualism is direct, via improved hemipteran growth rates, as opposed to the frequently assumed indirect mechanism, via harassment of the specialist parasites and predators of the hemipterans. Broadly, this study demonstrates that the management of mutualism-based ecosystem services requires a mechanistic understanding of mutualistic interactions. A consequence of this finding is the counter intuitive demonstration that preserving ant participation in the ant-hemipteran mutualism may be the best way of insuring pest control.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.