JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Organic cation transporter/solute carrier family 22a is involved in drug transfer into milk in mice.
J Pharm Sci
PUBLISHED: 08-29-2014
Show Abstract
Hide Abstract
Drug transfer into milk is a general concern during lactation. So far, breast cancer resistance protein (Bcrp) is the only transporter known to be involved in this process, whereas participation of other transporters remains unclear. We investigated the importance of organic cation transporter (Oct) in drug transfer into milk in mice. The mammary glands of lactating versus nonlactating FVB strain mice revealed elevated mRNA levels of Oct1 and Bcrp, whereas Oct2 and Oct3 mRNA levels were decreased. Specific uptake of cimetidine, acyclovir, metformin, and terbutaline was observed in human embryonic kidney 293 cells transfected with murine Oct1 or Oct2. The milk-to-plasma concentration ratio (M/P) values of cimetidine and acyclovir were significantly decreased in Bcrp knockout and Oct1/2 double-knockout (DKO) mice compared with control FVB mice, whereas the M/P values of terbutaline and metformin were significantly decreased in Oct1/2 DKO mice alone. These are the first to suggest that Oct1 might be involved in secretory transfer of substrate drugs into milk.
Related JoVE Video
Utility of cerebrospinal fluid drug concentration as a surrogate for unbound brain concentration in nonhuman primates.
Drug Metab. Pharmacokinet.
PUBLISHED: 05-06-2014
Show Abstract
Hide Abstract
In central nervous system drug discovery, cerebrospinal fluid (CSF) drug concentration (CCSF) has been widely used as a surrogate for unbound brain concentrations (Cu,brain). However, previous rodent studies demonstrated that when drugs undergo active efflux by transporters, such as P-glycoprotein (P-gp), at the blood-brain barrier, the CCSF overestimates the corresponding Cu,brain. To investigate the utility of CCSF as a surrogate for interstitial fluid (ISF) concentration (CISF) in nonhuman primates, this study simultaneously determined the CCSF and CISF of 12 compounds, including P-gp substrates, under steady-state conditions in cynomolgus monkeys using intracerebral microdialysis coupled with cisternal CSF sampling. Unbound plasma concentrations of non- or weak P-gp substrates were within 2.2-fold of the CISF or CCSF, whereas typical P-gp substrates (risperidone, verapamil, desloratadine, and quinidine) showed ISF-to-plasma unbound (Kp,uu,ISF) and CSF-to-plasma unbound concentration ratios (Kp,uu,CSF) that were appreciably lower than unity. Although the Kp,uu,CSF of quinidine, verapamil, and desloratadine showed a trend of overestimating the Kp,uu,ISF, Kp,uu,CSF showed a good agreement with Kp,uu,ISF within 3-fold variations for all compounds examined. Cu,brain of some basic compounds, as determined using brain homogenates, overestimated the CISF and CCSF. Therefore, CCSF could be used as a surrogate for CISF in nonhuman primates.
Related JoVE Video
Inhibitory effects of p-aminohippurate and probenecid on the renal clearance of adefovir and benzylpenicillin as probe drugs for organic anion transporter (OAT) 1 and OAT3 in humans.
Eur J Pharm Sci
PUBLISHED: 04-06-2014
Show Abstract
Hide Abstract
Probe substrates for, and inhibitors of, specific transporters are desired to evaluate quantitatively the in vivo functions of transporters in humans. Based on published data, adefovir and benzylpenicillin were selected as organic anion transporter (OAT) 1- and OAT3-selective probe substrates, respectively. In human kidney slices, probenecid potently inhibited the uptake of both adefovir and benzylpenicillin with inhibition constant (Ki) values of 18.6±5.1 and 12.6±4.2?M, respectively, whereas p-aminohippurate (PAH) preferentially inhibited adefovir uptake. A clinical drug-interaction study involving healthy subjects was performed to investigate the dose-dependent inhibition potencies of probenecid and PAH on the renal clearance of the probe substrates. Adefovir or benzylpenicillin was coadministered with different oral doses of probenecid (500, 750, or 1500mg) or intravenous PAH infusion rates (70, 120, or 210mg/min/person) to the same subject using a crossover design. The renal clearance of adefovir was reduced by 45% and 46% in the subjects treated with the maximum dose of probenecid and PAH, respectively, which was in accordance with the results of in vitro inhibition study. On the other hand, renal clearance of benzylpenicillin was reduced by 78% in the subjects treated with the maximum dose of probenecid (1500mg), which could be explained by its in vitro Ki values. However, PAH unexpectedly increased the renal clearance of benzylpenicillin by 47%. These results suggest that adefovir and benzylpenicillin can be used as probe drugs for OAT1 and OAT3, respectively, and that PAH can be used to investigate the role of OAT1 in the urinary excretion of drugs in humans, whereas it may modulate other transport processes in the kidney.
Related JoVE Video
Intractable itch relieved by 4-phenylbutyrate therapy in patients with progressive familial intrahepatic cholestasis type 1.
Orphanet J Rare Dis
PUBLISHED: 03-31-2014
Show Abstract
Hide Abstract
Progressive familial intrahepatic cholestasis type 1 (PFIC1), an inherited liver disease caused by mutations in ATP8B1, progresses to severe cholestasis with a sustained intractable itch. Currently, no effective therapy has been established for PFIC1. Decreased function of the bile salt export pump (BSEP) in hepatocytes is suggested to be responsible for the severe cholestasis observed in PFIC1. We found a previously unidentified pharmacological effect of 4-phenylbutyrate (4PB) that increases the expression and function of BSEP. Here, we tested 4PB therapy in three patients with PFIC1.
Related JoVE Video
Effects of one-time apple juice ingestion on the pharmacokinetics of fexofenadine enantiomers.
Eur. J. Clin. Pharmacol.
PUBLISHED: 03-18-2014
Show Abstract
Hide Abstract
We examined the effect of a single apple juice intake on the pharmacokinetics of fexofenadine enantiomers in healthy Japanese subjects.
Related JoVE Video
Quantitative investigation of the brain-to-cerebrospinal fluid unbound drug concentration ratio under steady-state conditions in rats using a pharmacokinetic model and scaling factors for active efflux transporters.
Drug Metab. Dispos.
PUBLISHED: 03-18-2014
Show Abstract
Hide Abstract
A pharmacokinetic model was constructed to explain the difference in brain- and cerebrospinal fluid (CSF)-to-plasma and brain-to-CSF unbound drug concentration ratios (Kp,uu,brain, Kp,uu,CSF, and Kp,uu,CSF/brain, respectively) of drugs under steady-state conditions in rats. The passive permeability across the blood-brain barrier (BBB), PS1, was predicted by two methods using log(D/molecular weight(0.5)) for PS1(1) or the partition coefficient in octanol/water at pH 7.4 (LogD), topologic van der Waals polar surface area, and van der Waals surface area of the basic atoms for PS1(2). The coefficients of each parameter were determined using previously reported in situ rat BBB permeability. Active transport of drugs by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) measured in P-gp- and Bcrp-overexpressing cells was extrapolated to in vivo by introducing scaling factors. Brain- and CSF-to-plasma unbound concentration ratios (Kp,uu,brain and Kp,uu,CSF, respectively) of 19 compounds, including P-gp and Bcrp substrates (daidzein, dantrolene, flavopiridol, genistein, loperamide, quinidine, and verapamil), were simultaneously fitted to the equations in a three-compartment model comprising blood, brain, and CSF compartments. The calculated Kp,uu,brain and Kp,uu,CSF of 17 compounds were within a factor of three of experimental values. Kp,uu,CSF values of genistein and loperamide were outliers of the prediction, and Kp,uu,brain of dantrolene also became an outlier when PS1(2) was used. Kp,uu,CSF/brain of the 19 compounds was within a factor of three of experimental values. In conclusion, the Kp,uu,CSF/brain of drugs, including P-gp and Bcrp substrates, could be successfully explained by a kinetic model using scaling factors combined with in vitro evaluation of P-gp and Bcrp activities.
Related JoVE Video
Improved liver function and relieved pruritus after 4-phenylbutyrate therapy in a patient with progressive familial intrahepatic cholestasis type 2.
J. Pediatr.
PUBLISHED: 02-13-2014
Show Abstract
Hide Abstract
To examine the effects of 4-phenylbutyrate (4PB) therapy in a patient with progressive familial intrahepatic cholestasis type 2. A homozygous c.3692G>A (p.R1231Q) mutation was identified in ABCB11. In vitro studies showed that this mutation decreased the cell-surface expression of bile salt export pump (BSEP), but not its transport activity, and that 4PB treatment partially restored the decreased expression of BSEP. Therapy with 4PB had no beneficial effect for 1 month at 200 mg/kg/day and the next month at 350 mg/kg/day but partially restored BSEP expression at the canalicular membrane and significantly improved liver tests and pruritus at a dosage of 500 mg/kg/day. We conclude that 4PB therapy would have a therapeutic effect in patients with progressive familial intrahepatic cholestasis type 2 who retain transport activity of BSEP per se.
Related JoVE Video
6?-Hydroxycortisol is an endogenous probe for evaluation of drug-drug interactions involving a multispecific renal organic anion transporter, OAT3/SLC22A8, in healthy subjects.
Drug Metab. Dispos.
PUBLISHED: 01-31-2014
Show Abstract
Hide Abstract
6?-Hydroxycortisol (6?-OHF) is a substrate of the organic anion transporter 3 (OAT3) and the multidrug and toxin extrusion proteins MATE1 and MATE-2K in the corresponding cDNA-transfected cells. This study aimed to examine the contribution of OAT3 and MATEs to the urinary excretion of 6?-OHF in humans using the appropriate in vivo inhibitors, probenecid and pyrimethamine, for OAT3 and MATEs, respectively. Oat3(-/-) mice showed significantly reduced renal clearance of 6?-OHF (CL(renal, 6?-OHF)) compared with wild-type mice (18.1 ± 1.5 versus 7.60 ± 1.8 ml/min/kg). 6?-OHF uptake by human kidney slices was inhibited significantly by probenecid to 20-45% of the control values and partly by 1-methyl-4-phenylpyridinium. 6?-OHF plasma concentration and the amount of 6?-OHF excreted into the urine (X(6?-OHF)) were measured in healthy subjects enrolled in drug-drug interaction studies of benzylpenicillin alone or with probenecid (study 1), adefovir alone or with probenecid (study 2), and metformin alone or with pyrimethamine (study 3). Probenecid treatment caused a 57 and 76% increase in the area under the plasma concentration-time curve for 6?-OHF (AUC(6?-OHF)) in studies 1 and 2, respectively, but did not affect X(6?-OHF). Consequently, CL(renal, 6?-OHF) (milliliters per minute) decreased significantly from 231 ± 11 to 135 ± 9 and from 225 ± 26 to 141 ± 12 after probenecid administration in studies 1 and 2, respectively. By contrast, neither AUC(6?-OHF) nor CL(renal, 6?-OHF) was significantly altered by pyrimethamine administration. Taken together, these data suggest that OAT3 plays a significant role in the urinary excretion of 6?-OHF, and that 6?-OHF can be used to investigate the perpetrators of the pharmacokinetic drug interactions involving OAT3 in humans.
Related JoVE Video
Evaluation of the potency of telaprevir and its metabolites as inhibitors of renal organic cation transporters, a potential mechanism for the elevation of serum creatinine.
Drug Metab. Pharmacokinet.
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
Telaprevir-based triple therapy is a highly effective treatment for chronic hepatitis C. However, adverse reactions include reversible and dose-dependent elevation of serum creatinine levels. We speculated that this effect reflects inhibition of the renal organic cation transporters hOCT2, hMATE1, and hMATE2-K by telaprevir or its metabolites (VRT-127394 and VRT-0922061). Telaprevir, VRT-127394, and VRT-0922061 showed negligible or weak effects on hOCT2 at concentrations of ?20 µM, but inhibited hMATE1 by 35, 38, and 53% and hMATE2-K by 47, 45, and 61% at 100 µM, respectively. Telaprevir or its metabolites (10 µM) did not affect basal-to-apical transport of MPP(+) across monolayers of hOCT2-hMATE1 double-transfected MDCKII cells, whereas pyrimethamine, a potent inhibitor of hMATE1, markedly inhibited MPP(+) transport. Taken together, inhibition of hOCT2, hMATE1, and hMATE2-K is unlikely to be clinically relevant because unbound plasma concentrations of telaprevir and its metabolites reach only 2 µM following oral administration of a dose of 750 mg telaprevir. Hence, elevated serum creatinine during telaprevir therapy may not be related to direct inhibition of renal organic cation transporters.
Related JoVE Video
Evaluation of [(11)C]oseltamivir uptake into the brain during immune activation by systemic polyinosine-polycytidylic acid injection: a quantitative PET study using juvenile monkey models of viral infection.
EJNMMI Res
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Abnormal behaviors of young patients after taking the anti-influenza agent oseltamivir (Tamiflu®, F. Hoffmann-La Roche, Ltd., Basel, Switzerland) have been suspected as neuropsychiatric adverse events (NPAEs). Immune response to viral infection is suspected to cause elevation of drug concentration in the brain of adolescents. In the present study, the effect of innate immune activation on the brain uptake of [(11)C]oseltamivir was quantitatively evaluated in juvenile monkeys.
Related JoVE Video
Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP.
Biochem. Biophys. Res. Commun.
PUBLISHED: 11-24-2013
Show Abstract
Hide Abstract
Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood-borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection.
Related JoVE Video
Elucidating the molecular mechanism for the intracellular trafficking and fate of block copolymer micelles and their components.
Biomaterials
PUBLISHED: 10-17-2013
Show Abstract
Hide Abstract
Block copolymer micelles have shown promise for the intracellular delivery of chemotherapeutic agents, proteins, and nucleic acids. Understanding the mechanism of their intracellular trafficking and fate, including the extracellular efflux of the polymers, will help improve their efficacy and minimize their safety risks. In this Leading Opinion paper, we discuss the molecular mechanism of block copolymer micelle trafficking, from intracellular uptake to extracellular efflux, on the basis of studies with HeLa cells. By using FRET (fluorescence resonance energy transfer) with confocal microscopy, we found that, following their intracellular transport via endocytosis, the micelles dissociated into their polymeric components in late endosomes and/or lysosomes. Furthermore, we confirmed that the intrinsic proteins NPC1 and ORP2 are involved in the intermembrane transfer of polymers from the endosome to the plasma membrane via the ER (endoplasmic reticulum) by using knockdown experiments with siRNAs. After the polymers were transported to the plasma membrane with the aid of ORP2, they were extruded into the cell medium via ABC transporter, ABCB1. Experiments with ABCB1-expressing vesicles indicated that the polymer itself, and not the fluorescent compounds, was recognized by the transporter. These findings, and the analysis of related mechanisms, provide valuable information that should help minimize the potential risks associated with the intracellular accumulation of block copolymer micelles and to improve their therapeutic efficacy.
Related JoVE Video
The synthesis and biodistribution of [(11)C]metformin as a PET probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1) in vivo.
Bioorg. Med. Chem.
PUBLISHED: 09-05-2013
Show Abstract
Hide Abstract
In order to develop a new positron emission tomography (PET) probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1), (11)C-labelled metformin was synthesized and then evaluated as a PET probe. [(11)C]Metformin ([(11)C]4) was synthesized in three steps, from [(11)C]methyl iodide. Evaluation by small animal PET of [(11)C]4 showed that there was increased concentrations of [(11)C]4 in the livers of mice pre-treated with pyrimethamine, a potential inhibitor of MATEs, inhibiting the hepatobiliary excretion of metformin. Radiometabolite analysis showed that [(11)C]4 was not degraded in vivo during the PET scan. Biodistribution studies were undertaken and the organ distributions were extrapolated into a standard human model. In conclusion, [(11)C]4 may be useful as a PET probe to non-invasively study the in vivo function of hepatobiliary transport and drug-drug interactions, mediated by MATE1 in future clinical investigations.
Related JoVE Video
Evaluation of Oatp and Mrp2 activities in hepatobiliary excretion using newly developed positron emission tomography tracer [11C]dehydropravastatin in rats.
J. Pharmacol. Exp. Ther.
PUBLISHED: 08-07-2013
Show Abstract
Hide Abstract
We developed a pravastatin derivative, sodium (3R,5R)-3,5-dihydroxy-7-((1S,2S,6S,8S)-6-hydroxy-2-methyl-8-((1-[(11)C]-(E)-2-methyl-but-2-enoyl)oxy)-1,2,6,7,8,8a-hexahydronaphthalen-1-yl)heptanoate ([(11)C]DPV), as a positron emission tomography (PET) probe for noninvasive measurement of hepatobiliary transport, and conducted pharmacokinetic analysis in rats as a feasibility study for future clinical study. Transport activities of DPV in freshly isolated rat hepatocytes and rodent multidrug resistance-associated protein 2 (rMrp2; human, MRP2)-expressing membrane vesicles were similar to those of pravastatin. Rifampicin diminished the uptake of DPV and pravastatin by the hepatocytes, with similar inhibition potency. [(11)C]DPV underwent biotransformation to produce at least two metabolites in rat, but metabolism of [(11)C]DPV occurred negligibly in human hepatocytes during a 90-minute incubation. After intravenous injection, [(11)C]DPV was mainly distributed to the liver and kidneys, where the tissue uptake clearances (CLuptake,liver and CLuptake,kidney) were blood-flow-limited (73.6 ± 4.8 and 24.6 ± 0.6 ml/min per kilogram, respectively). Systemic elimination of [(11)C]DPV was delayed in rifampicin-treated rat and an Mrp2-deficient mutant rat, Eisai hyperbilirubinemic mutant rat (EHBR). Rifampicin treatment decreased both CLuptake,liver and CLuptake,kidney of [(11)C]DPV by 30% (P < 0.05), whereas these parameters were unchanged in EHBR. Meanwhile, the canalicular efflux clearance (CLint,bile) of [(11)C]DPV, which was 12.2 ± 1.5 ml/min per kilogram in the control rat, decreased by 60% and 89% in rifampicin-treated rat and EHBR (P < 0.05), respectively. These results indicate that [(11)C]DPV is taken up into the liver by organic anion-transporting polypeptides (rodent, Oatps; human, OATP) and excreted into bile by Mrp2 in rat, and that rifampicin may inhibit Mrp2 as well as Oatps, and consequently increase systemic exposure of [(11)C]DPV. PET using [(11)C]DPV is feasible for studies prior to the future clinical investigation of OATP and MRP2 functionality, especially for personalized medicine.
Related JoVE Video
Substrate-dependent inhibition of organic anion transporting polypeptide 1B1: comparative analysis with prototypical probe substrates estradiol-17?-glucuronide, estrone-3-sulfate, and sulfobromophthalein.
Drug Metab. Dispos.
PUBLISHED: 08-06-2013
Show Abstract
Hide Abstract
Organic anion transporting polypeptide (OATP) 1B1 plays an important role in the hepatic uptake of many drugs, and the evaluation of OATP1B1-mediated drug-drug interactions (DDIs) is emphasized in the latest DDI (draft) guidance documents from U.S. and E.U. regulatory agencies. It has been suggested that some OATP1B1 inhibitors show a discrepancy in their inhibitory potential, depending on the substrates used in the cell-based assay. In this study, inhibitory effects of 14 compounds on the OATP1B1-mediated uptake of the prototypical substrates [³H]estradiol-17?-glucuronide (E?G), [³H]estrone-3-sulfate (E?S), and [³H]sulfobromophthalein (BSP) were studied in OATP1B1-transfected cells. Inhibitory potencies of tested compounds varied depending on the substrates. Ritonavir, gemfibrozil, and erythromycin caused remarkable substrate-dependent inhibition with up to 117-, 14-, and 13-fold difference in their IC?? values, respectively. Also, the clinically relevant OATP inhibitors rifampin and cyclosporin A exhibited up to 12- and 6-fold variation in their IC?? values, respectively. Regardless of the inhibitors tested, the most potent OATP1B1 inhibition was observed when [³H]E?G was used as a substrate. Mutual inhibition studies of OATP1B1 indicated that E?G and E?S competitively inhibited each other, whereas BSP noncompetitively inhibited E?G uptake. In addition, BSP inhibited E?S in a competitive manner, but E?S caused an atypical kinetics on BSP uptake. This study showed substrate-dependent inhibition of OATP1B1 and demonstrated that E?G was the most sensitive in vitro OATP1B1 probe substrate among three substrates tested. This will give us an insight into the assessment of clinically relevant OATP1B1-mediated DDI in vitro with minimum potential of false-negative prediction.
Related JoVE Video
Investigation of the role of transporters on the hepatic elimination of an LAT1 selective inhibitor JPH203.
J Pharm Sci
PUBLISHED: 04-22-2013
Show Abstract
Hide Abstract
JPH203 has been developed as an anticancer drug that inhibits L-type amino acid transporter 1-mediated essential amino acid uptake into tumor cells. This study sought to elucidate which drug transporters may be involved in JPH203 hepatic elimination, and to estimate human hepatic clearance. In Sprague-Dawley rats, JPH203 total body clearance approached blood flow rate. JPH203 biotransformation via phase II metabolism produces N-acetyl-JPH203 (NAc-JPH203). NAc-JPH203 accumulates in the bile, and NAc-JPH203 canalicular efflux was significantly decreased in Mrp2-deficient mutant rats (Eisai hyperbilirubinemic rats). JPH203 and NAc-JPH203 are organic anion transporters [organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, and OAT3] substrates. In human cryopreserved hepatocytes, JPH203 uptake was saturable and inhibited by rifampicin, a prototypical OATP inhibitor. JPH203 metabolic clearance was larger than influx clearance and eventually passive clearance; JPH203 uptake appears to be the rate-determining process in overall hepatic elimination. Furthermore, unlike rats, the human hepatic clearance was predicted to be intrinsic clearance rate limited. These results suggest that the hepatic uptake transporters are determinant factors to determine JPH203 systemic exposure.
Related JoVE Video
Investigation of the effect of active efflux at the blood-brain barrier on the distribution of nonsteroidal aromatase inhibitors in the central nervous system.
J Pharm Sci
PUBLISHED: 04-21-2013
Show Abstract
Hide Abstract
The brain distribution of nonsteroidal aromatase inhibitors was investigated in mice to understand their interactions with brain aromatase. The brain-to-plasma ratio (Kp,brain , mL/g brain) of anastrozole was 0.0299 ± 0.0068, which was lower than that of letrozole (0.383 ± 0.048) and vorozole (0.185 ± 0.031) despite their similar physicochemical properties. The brain-to-plasma unbound concentration ratio of anastrozole, measured using microdialysis, was 0.118 ± 0.037 mL/g brain. In situ mouse brain perfusion also demonstrated that the uptake clearance [mL/(min·g brain)] of anastrozole by the brain (0.108 ± 0.018) was lower than that for letrozole and vorozole (0.422 ± 0.068 and 0.910 ± 0.152, respectively). Anastrozole and vorozole were transported by P-glycoprotein (P-gp) in vitro, whereas none of the compounds were transported by breast cancer resistance protein (BCRP). The Kp,brain of anastrozole and vorozole were increased by 12- and 3.3-fold, respectively, in Mdr1a/b/Bcrp(-/-) mice. IC50 (nM) of anastrozole and letrozole against human aromatase was 12.9 ± 0.7 and 3.59 ± 0.75, respectively. Taken together, these results suggest that active efflux mediated by P-gp at the blood-brain barrier limits the effect of anastrozole in the central nervous system, whereas vorozole and letrozole easily traverse the barrier.
Related JoVE Video
Involvement of carnitine/organic cation transporter OCTN1/SLC22A4 in gastrointestinal absorption of metformin.
J Pharm Sci
PUBLISHED: 04-16-2013
Show Abstract
Hide Abstract
Metformin is a widely used oral anti-diabetic, but the molecular mechanism(s) of its gastrointestinal membrane permeation remains unclear. Here, we examined the role of carnitine/organic cation transporter OCTN1/SLC22A4, which is localized on apical membranes of small intestine in mice and humans, in metformin absorption. The maximum plasma concentration (Cmax ) after oral administration of metformin (50 mg/kg) in octn1 gene knockout mice (octn1 (-/-) ) was higher than that in wild-type mice, with only a minimal difference in terminal half-life, but Cmax in octn1(-/-) mice given a higher dose (175 mg/kg) was lower than that in wild-type mice. Systemic elimination of metformin after intravenous administration was similar in the two strains, suggesting the possible involvement of OCTN1 in the gastrointestinal absorption. OCTN1-mediated uptake of metformin was observed in human embryonic kidney 293 cells transfected with mouse OCTN1 gene, but much lower than the uptake of the typical substrate [(3) H]ergothioneine (ERGO). In particular, the distribution volume for OCTN1-mediated uptake increased markedly and then tended to decrease as the metformin concentration was increased. Efflux of metformin preloaded in intestinal epithelial cell line Caco-2 was inhibited by ERGO. Overall, the present findings suggest that OCTN1 transports metformin and may be involved in its oral absorption in small intestine.
Related JoVE Video
Relationship between the urinary excretion mechanisms of drugs and their physicochemical properties.
J Pharm Sci
PUBLISHED: 03-24-2013
Show Abstract
Hide Abstract
The purpose of this study was to clarify the relationship between the physicochemical properties of drugs and their urinary excretion mechanisms. Three hundred twenty-five drugs were classified into the reabsorption, intermediate, and secretion types based on their ratio of renal clearance to protein-unbound fraction glomerular filtration rate. Fifty percent of ionized and neutral drugs were the secretion and reabsorption types, respectively. The mean molecular weight of the neutral drugs was slightly smaller than those of the ionized drugs (296 vs. 330-368 g/mol). The reabsorption-type anionic drugs were characterized by their low molecular weights (mean value 269 g/mol) and the logarithmic measure of the acid dissociation constants (pKa s) greater than 4.5, whereas the secretion-type anionic drugs all had pKa s below 4.5. Cationic drugs with pKa s lower than 8.0 tended to be the reabsorption type. Some cationic drugs were classified as the secretion type, despite their high molecular weights (734-811 g/mol) and high log P values (3.1-5.3). The organic anion transporter (OAT)1 and OAT3 substrates were all secretion-type drugs. The same trend was observed for the substrates of organic cation transporter 2, multidrug and toxin extrusion, multidrug resistance-associated protein 4, and multidrug resistance 1/breast cancer resistance protein, but substantial fractions of the substrates were categorized as the intermediate or reabsorption types (9%-38%). This work provides a clue to the renal elimination mechanism of new chemical entities during drug development.
Related JoVE Video
Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins.
Pharm. Res.
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
Multidrug and toxin extrusion proteins (MATEs) are multispecific organic cation transporters mediating the efflux of various cationic drugs into the urine. The present study aimed at identifying endogenous compounds in human plasma and urine specimens as biomarkers to evaluate drug interactions involving MATEs in the kidney without administration of their exogenous probe drugs.
Related JoVE Video
Epigenetic regulation of organic anion transporting polypeptide 1B3 in cancer cell lines.
Pharm. Res.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
The expression of a multispecific organic anion transporter, OATP1B3/SLCO1B3, is associated with clinical prognosis and survival of cancer cells. The aims of present study were to investigate the involvement of epigenetic regulation in mRNA expression of a cancer-type variant of OATP1B3 (Ct-OATP1B3) in cancer cell lines.
Related JoVE Video
Mechanisms of pharmacokinetic enhancement between ritonavir and saquinavir; micro/small dosing tests using midazolam (CYP3A4), fexofenadine (p-glycoprotein), and pravastatin (OATP1B1) as probe drugs.
J Clin Pharmacol
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
We investigated the mechanisms of ritonavir-mediated enhancement effect on the pharmacokinetics of saquinavir using in vivo probes for CYP3A4 (midazolam), p-glycoprotein (fexofenadine), and OATP1B1 (pravastatin) following oral micro/small dosing. A cocktail of the drugs (2?mg of saquinavir, 100?µg of each probe) was administered to eight healthy volunteers (phase 1), and then coadministered with 20?mg (phase 2) and 100?mg (phase 3) of ritonavir. Plasma concentrations of the drugs were measured by validated LC-MS/MS methods. The mean plasma AUC0-24 (pg?hour/mL) of saquinavir at phases 1, 2, and 3 was 101, 2?540, and 23?900 (P?
Related JoVE Video
Drugs interacting with organic anion transporter-1 affect uptake of Tc-99m-mercaptoacetyl-triglycine (MAG3) in the human kidney: therapeutic drug interaction in Tc-99m-MAG3 diagnosis of renal function and possible application of Tc-99m-MAG3 for drug devel
Nucl. Med. Biol.
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
Renal uptake of Tc-99m-MG3 involves organic anion transporter (OAT). Treatment with drugs showing OAT affinity might interfere with renal uptake of Tc-99m-MAG3, leading to misinterpretation in Tc-99m-MAG3. This study was conducted to discuss a possible drug interference with Tc-99m-MAG3 diagnosis on OAT sites.
Related JoVE Video
Evaluation of breast cancer resistance protein function in hepatobiliary and renal excretion using PET with 11C-SC-62807.
J. Nucl. Med.
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
A quantitative PET imaging method was used to assess the in vivo kinetics of hepatobiliary and renal excretion of the breast cancer resistance protein (Bcrp) substrate (11)C-SC-62807 in mice.
Related JoVE Video
Regulation of tissue-specific expression of renal organic anion transporters by hepatocyte nuclear factor 1 ?/? and DNA methylation.
J. Pharmacol. Exp. Ther.
PUBLISHED: 12-07-2011
Show Abstract
Hide Abstract
We have reported previously that the kidney- and liver-specific expression of transporters in mice involves the coordinated regulation by hepatocyte nuclear factor 1 (HNF1) and DNA methylation. The present study was aimed at investigating the role of this cascade in the transcriptional regulation of renal organic anion transporters (OATs) yet to be characterized in human and mouse. Luciferase assays and electrophoretic mobility-shift assays demonstrated that HNF1?/? enhances the promoter activity of OAT4/SLC22A11 via binding to the HNF1 motif located near the transcriptional start site (TSS). DNA methylation profiles of human OAT1, OAT3, OAT4, and urate transporter 1 (URAT1) were determined in human liver and kidney cortex by bisulfite sequencing. Most of the CpG dinucleotides around the TSSs of OAT1 and OAT3 were highly methylated in the liver compared with kidney cortex, being consistent with their tissue specificity, whereas the difference in the DNA methylation status was less remarkable between the two tissues for OAT4 and URAT1. Mouse Oat1 gene also contained CpG dinucleotides hypomethylated in the kidney and hypermethylated in the liver downstream its TSS, whereas two of the seven CpG dinucleotides around the TSS of mouse Oat3 were significantly methylated in the liver compared with the kidney. Taken together, these findings underscored the central role of HNF1?/? in the transcriptional regulation of OATs and highlighted DNA methylation-dependent gene silencing as one of the mechanisms underlying the tissue-specific transactivation by this master regulator.
Related JoVE Video
Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney.
J. Pharmacol. Exp. Ther.
PUBLISHED: 11-09-2011
Show Abstract
Hide Abstract
Cimetidine, an H? receptor antagonist, has been used to investigate the tubular secretion of organic cations in human kidney. We report a systematic comprehensive analysis of the inhibition potency of cimetidine for the influx and efflux transporters of organic cations [human organic cation transporter 1 (hOCT1) and hOCT2 and human multidrug and toxin extrusion 1 (hMATE1) and hMATE2-K, respectively]. Inhibition constants (K(i)) of cimetidine were determined by using five substrates [tetraethylammonium (TEA), metformin, 1-methyl-4-phenylpyridinium, 4-(4-(dimethylamino)styryl)-N-methylpyridinium, and m-iodobenzylguanidine]. They were 95 to 146 ?M for hOCT2, providing at most 10% inhibition based on its clinically reported plasma unbound concentrations (3.6-7.8 ?M). In contrast, cimetidine is a potent inhibitor of MATE1 and MATE2-K with K(i) values (?M) of 1.1 to 3.8 and 2.1 to 6.9, respectively. The same tendency was observed for mouse Oct1 (mOct1), mOct2, and mouse Mate1. Cimetidine showed a negligible effect on the uptake of metformin by mouse kidney slices at 20 ?M. Cimetidine was administered to mice by a constant infusion to achieve a plasma unbound concentration of 21.6 ?M to examine its effect on the renal disposition of Mate1 probes (metformin, TEA, and cephalexin) in vivo. The kidney- and liver-to-plasma ratios of metformin both were increased 2.4-fold by cimetidine, whereas the renal clearance was not changed. Cimetidine also increased the kidney-to-plasma ratio of TEA and cephalexin 8.0- and 3.3-fold compared with a control and decreased the renal clearance from 49 to 23 and 11 to 6.6 ml/min/kg, respectively. These results suggest that the inhibition of MATEs, but not OCT2, is a likely mechanism underlying the drug-drug interactions with cimetidine in renal elimination.
Related JoVE Video
Hepatic uptake in the dog: comparison of uptake in hepatocytes and human embryonic kidney cells expressing dog organic anion-transporting polypeptide 1B4.
Drug Metab. Dispos.
PUBLISHED: 09-22-2011
Show Abstract
Hide Abstract
Although the dog is frequently used in pharmacological, pharmacokinetic, and drug safety studies, little is known about canine drug transporters. Dog organic anion-transporting polypeptide (Oatp1b4) has recently been cloned (Comp Biochem Physiol C Toxicol Pharmacol 151:393-399, 2010), but the contribution of Oatp1b4 to hepatic uptake has yet to be clarified. This study compares the transport characteristics of dog Oatp1b4 with those of human OATP1B1/1B3 and demonstrates the importance of Oatp1b4 in the uptake of anionic compounds in dog hepatocytes. Oatp1b4 is the predominant Oatp in dog liver with expression levels double and 30 times those of Oatp2b1 and Oatp1a2, respectively. Uptake of a range of typical OATP substrates by Oatp1b4-expressing HEK293 cells was compared with that in fresh dog hepatocytes. All compounds tested were transported by Oatp1b4 and uptake intrinsic clearance (CL(int, uptake)) in dog hepatocytes in sodium-free buffer was correlated significantly with CL(int, uptake) in Oatp1b4-expressing cells. Dog in vivo clearance for five substrates was predicted more accurately from CL(int, uptake) than from metabolic intrinsic clearance (CL(int, met)), indicating that uptake governs the overall in vivo hepatic clearance of these anionic compounds in dog. The substrate specificities of dog Oatp1b4 appear to be similar to those of human OATP1B1/OATP1B3, whereas the relative uptake clearance of substrates for Oatp1b4 correlate better with OATP1B3 than with the more abundant hepatic analog OATP1B1.
Related JoVE Video
Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a
J. Pharmacol. Exp. Ther.
PUBLISHED: 09-20-2011
Show Abstract
Hide Abstract
This study investigated the impact of the active efflux mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) at the blood-brain barrier (BBB) on the predictability of the unbound brain concentration (C(u,brain)) by the concentration in the cerebrospinal fluid (CSF) (C(u,CSF)) in rats. C(u,brain) is obtained as the product of the total brain concentration and unbound fraction in the brain (f(u,brain)) determined in vitro in brain slices. Twenty-five compounds, including P-gp and/or Bcrp substrates, were given a constant intravenous infusion, and their plasma, brain, and CSF concentrations were determined. P-gp and/or Bcrp substrates, such as verapamil, loperamide, flavopiridol, genistein, quinidine, dantrolene, daidzein, cimetidine, and pefloxacin, showed a higher CSF-to-brain unbound concentration ratio (K(p,uu,CSF/brain)) compared with non-P-gp and non-Bcrp substrates. K(p,uu,CSF/brain) values of P-gp-specific (quinidine and verapamil) and Bcrp-specific (daidzein and genistein) substrates were significantly decreased in Mdr1a/1b(-/-) and Bcrp(-/-) mice, respectively. Furthermore, consistent with the contribution of P-gp and Bcrp to the net efflux at the BBB, K(p,uu,CSF/brain) values of the common substrates (flavopiridol and erlotinib) were markedly decreased in Mdr1a/1b(-/-)/Bcrp(-/-) mice, but only moderately or weakly in Mdr1a/1b(-/-) mice and negligibly in Bcrp(-/-) mice. In conclusion, predictability of C(u,brain) by C(u,CSF) decreases along with the net transport activities by P-gp and Bcrp at the BBB. C(u,CSF) of non-P-gp and non-Bcrp substrates can be a reliable surrogate of C(u,brain) for lipophilic compounds.
Related JoVE Video
Metabolism and pharmacokinetic studies of JPH203, an L-amino acid transporter 1 (LAT1) selective compound.
Drug Metab. Pharmacokinet.
PUBLISHED: 09-13-2011
Show Abstract
Hide Abstract
Many primary human tumors and tumor cell lines highly express human L-type amino acid transporter 1 (hLAT1); cancerous cells in vivo are strongly linked to LAT1 expression. Synthetic chemistry and in vitro screening efforts have afforded a variety of novel and highly hLAT1 selective compounds, such as JPH203 1. In a recent report, we demonstrated that 1 has potent in vitro and in vivo activity. JPH203 was intravenously administered to produce significant growth inhibition against HT-29 tumors transplanted in nude mice. The current work develops a robust LC/MS-MS method to monitor 1 and its major Phase II metabolite N-acetyl-JPH203 2 from biological samples. We have conducted in vitro and in vivo experiments and the major scientific findings are: i) the major route of biotransformation of 1 is Phase II metabolism to produce 2; ii) metabolite 2 is formed in various organs/tissues (i.e. blood, liver, kidney); and iii) as dogs, which are deficient in NAT genes, do not produce 2, the dog will not be an appropriate toxicological model to evaluate 1.
Related JoVE Video
Involvement of different human glutathione transferase isoforms in the glutathione conjugation of reactive metabolites of troglitazone.
Drug Metab. Dispos.
PUBLISHED: 09-13-2011
Show Abstract
Hide Abstract
Null mutation of glutathione transferase (GST) M1 and GSTT1 was reported to correlate statistically with an abnormal increase in the plasma levels of alanine aminotransferase or aspartate aminotransferase caused by troglitazone in diabetic patients (Clin Pharmacol Ther, 73:435-455, 2003). This clinical evidence leads to the hypothesis that GSH conjugation catalyzed by GSTT1 and GSTM1 has a role in the elimination of reactive metabolites of troglitazone. However, the contribution of GST isoforms expressed in human liver to the detoxification of reactive metabolites of troglitazone has not yet been clarified. We investigated the involvement of human GST isoforms in the GSH conjugation of reactive metabolites of troglitazone using recombinant GST enzymes. Five reported GSH conjugates of reactive metabolites were produced from troglitazone after incubation with liver microsomes, NADPH, and GSH in a GSH concentration-dependent manner. Addition of human recombinant GSTA1, GSTA2, GSTM1, or GSTP1 protein to the incubation mixture further increased the GSH conjugates. However, the addition of GSTT1 did not show any catalytic effect. It is of interest that one of the reactive metabolites with a quinone structure was predominantly conjugated with GSH by GSTM1. Thus, we demonstrated that the GST isoforms contributed differently to the GSH conjugation of individual reactive metabolites of troglitazone, and GSTM1 is the most important GST isoform in the GSH conjugation of a specific reactive metabolite produced from the cytotoxic, quinone-form metabolite of troglitazone.
Related JoVE Video
Culture period-dependent changes in the uptake of transporter substrates in sandwich-cultured rat and human hepatocytes.
Drug Metab. Dispos.
PUBLISHED: 06-14-2011
Show Abstract
Hide Abstract
Sandwich-cultured hepatocytes (SCH) are a useful tool for evaluating hepatobiliary drug transport in vitro. Some studies have investigated the in vitro-in vivo correlations of the biliary clearance of drugs using SCH. In most cases, the biliary clearance observed in vivo correlated well with the predicted clearance, but the predicted absolute values were underestimated when based on in vitro experiments with SCH. We hypothesized that the down-regulated function of uptake transporters is one of the causes of this underestimation. Therefore, the uptake of taurocholate, digoxin, pravastatin, and rosuvastatin was investigated in sandwich-cultured rat hepatocytes (SCRH) cultured for 5, 24, 48, and 96 h, and the predicted hepatic clearance from in vitro uptake clearance (CL(H, vitro)) was calculated with a dispersion model. In SCRH cultured for 96 h, the saturable uptake of taurocholate, digoxin, pravastatin, and rosuvastatin decreased to 7.5, 3.3, 64, and 23%, respectively, of their uptake in hepatocytes cultured for 5 h, and a better prediction of in vivo hepatic clearance (CL(H, vivo)) was achieved when based on CL(H, vitro) of 5-h-cultured hepatocytes. These results suggest that the uptake activity is considerably reduced in cell culture, even in a sandwich-culture format. In a similar study, we also examined taurocholate and rosuvastatin in sandwich-cultured human hepatocytes (SCHH). Unlike in SCRH, the saturable uptake of these compounds did not differ markedly in SCHH cultured for 5 or 96 h. Thus, the uptake activity in SCHH was maintained relatively well compared with that in SCRH.
Related JoVE Video
Developmental changes in P-glycoprotein function in the blood-brain barrier of nonhuman primates: PET study with R-11C-verapamil and 11C-oseltamivir.
J. Nucl. Med.
PUBLISHED: 05-13-2011
Show Abstract
Hide Abstract
P-glycoprotein (P-gp) plays a pivotal role in limiting the penetration of xenobiotic compounds into the brain at the blood-brain barrier (BBB), where its expression increases with maturation in rats. We investigated developmental changes in P-gp function in the BBB of nonhuman primates using PET with R-(11)C-verapamil, a PET radiotracer useful for evaluating P-gp function. In addition, developmental changes in the brain penetration of (11)C-oseltamivir, a substrate for P-gp, was investigated as practical examples.
Related JoVE Video
Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments.
Drug Metab. Dispos.
PUBLISHED: 03-07-2011
Show Abstract
Hide Abstract
The present study investigated prediction of the overall renal tubular secretion and hepatic clearances of anionic drugs based on in vitro transport studies. The saturable uptake of eight drugs, most of which were OAT3 substrates (rosuvastatin, pravastatin, pitavastatin, valsartan, olmesartan, trichlormethiazide, p-aminohippurate, and benzylpenicillin) by freshly prepared human kidney slices underestimated the overall intrinsic clearance of the tubular secretion; therefore, a scaling factor of 10 was required for in vitro-in vivo extrapolation. We examined the effect of gemfibrozil and its metabolites, gemfibrozil glucuronide and the carboxylic metabolite, gemfibrozil M3, on pravastatin uptake by human kidney slices. The inhibition study using human kidney slices suggests that OAT3 plays a predominant role in the renal uptake of pravastatin. Comparison of unbound concentrations and K(i) values (1.5, 9.1, and 4.0 ?M, for gemfibrozil, gemfibrozil glucuronide, and gemfibrozil M3, respectively) suggests that the mechanism of the interaction is due mainly to inhibition by gemfibrozil and gemfibrozil glucuronide. Furthermore, extrapolation of saturable uptake by cryopreserved human hepatocytes predicts clearance comparable with the observed hepatic clearance although fluvastatin and rosuvastatin required a scaling factor of 11 and 6.9, respectively. This study suggests that in vitro uptake assays using human kidney slices and hepatocytes provide a good prediction of the overall tubular secretion and hepatic clearances of anionic drugs and renal drug-drug interactions. It is also recommended that in vitro-in vivo extrapolation be performed in animals to obtain more reliable prediction.
Related JoVE Video
Organic anion transporter 3 mediates the efflux transport of an amphipathic organic anion, dehydroepiandrosterone sulfate, across the blood-brain barrier in mice.
Drug Metab. Dispos.
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
The present study investigated the efflux transport systems of organic anions across the blood-brain barrier (BBB) using dehydroepiandrosterone sulfate (DHEAS) as a probe. The elimination of DHEAS from the brain after microinjection into the cerebral cortex was characterized in wild-type mice and mice with deficiency of well characterized organic anion transporters, organic anion-transporting polypeptide 1a4 (Oatp1a4)/Slco1a4 and organic anion transporter 3 (Oat3)/Slc22a8, at the BBB. The saturable efflux of DHEAS from the brain was completely inhibited by probenecid, benzylpenicillin, and estrone-3-sulfate and moderately inhibited by taurocholate and p-aminohippurate (50-57%). Uptake of DHEAS and estrone-3-sulfate was greater in murine Oat3 cRNA-injected oocytes than that in water-injected oocytes. Efflux of these compounds from the brain was significantly delayed in Oat3(-/-) mice compared with that in wild-type mice, indicating that indeed Oat3 is functionally important in vivo. Furthermore, probenecid and taurocholate inhibited DHEAS efflux completely in Oat3(-/-) mice. Contrary to the past report in rats that suggested involvement of Oatp1a4, specific uptake of DHEAS and estrone-3-sulfate by murine Oatp1a4 was not detected in vitro, and efflux of both compounds from the brain was not altered in Oatp1a4(-/-) mice. There was no significant difference in the uptake of DHEAS by brain slices prepared from wild-type, Oatp1a4(-/-), and Oat3(-/-) mice. Taken together, these results suggest that Oat3 plays a significant role in the efflux of steroid conjugates across the BBB in mice and that the BBB also expresses other unknown organic anion transporters for the efflux of DHEAS. Transport mechanisms of organic anions at the BBB are far more diverse than they were assumed to be.
Related JoVE Video
Posttranslational negative regulation of glycosylated and non-glycosylated BCRP expression by Derlin-1.
Biochem. Biophys. Res. Commun.
PUBLISHED: 12-08-2010
Show Abstract
Hide Abstract
Human breast cancer resistance protein (BCRP)/MXR/ABCG2 is a well-recognized ABC half-transporter that is highly expressed at the apical membrane of many normal tissues and cancer cells. BCRP facilitates disposition of endogenous and exogenous harmful xenobiotics to protect cells/tissues from xenobiotic-induced toxicity. Despite the enormous impact of BCRP in the physiological and pathophysiological regulation of the transport of a wide variety of substrates, little is known about the factors that regulate posttranslational expression of BCRP. Here, we identified Derlin-1, a member of a family of proteins that bears homology to yeast Der1p, as a posttranslational regulator of BCRP expression. Overexpression of Derlin-1 suppressed ER to Golgi transport of wild-type (WT) BCRP that is known to be efficiently trafficked to the plasma membrane. On the other hand, protein expression of N596Q variant of BCRP, N-linked glycosylation-deficient mutant that preferentially undergoes ubiquitin-mediated ER-associated degradation (ERAD), was strongly suppressed by the overexpression of Derlin-1, whereas knockdown of Derlin-1 stabilized N596Q protein, suggesting a negative regulatory role of Derlin-1 for N596Q protein expression. Notably, knockdown of Derlin-1 also stabilized the expression of tunicamycin-induced deglycosylated WT BCRP protein, implying the importance of glycosylation state for the recognition of BCRP by Derlin-1. Thus, our data demonstrate that Derlin-1 is a negative regulator for both glycosylated and non-glycosylated BCRP expression and provide a novel posttranslational regulatory mechanism of BCRP by Derlin-1.
Related JoVE Video
The ATP-binding cassette transporter BCRP1/ABCG2 plays a pivotal role in cardiac repair after myocardial infarction via modulation of microvascular endothelial cell survival and function.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 09-09-2010
Show Abstract
Hide Abstract
To clarify the impact of breast cancer resistance protein 1 (BCRP1)/ATP-binding cassette transporter subfamily G member 2 (ABCG2) expression on cardiac repair after myocardial infarction (MI).
Related JoVE Video
Positron emission tomography studies using (15R)-16-m-[11C]tolyl-17,18,19,20-tetranorisocarbacyclin methyl ester for the evaluation of hepatobiliary transport.
J. Pharmacol. Exp. Ther.
PUBLISHED: 08-17-2010
Show Abstract
Hide Abstract
A quantitative positron emission tomography (PET) methodology was developed for in vivo kinetic analysis of hepatobiliary transport. Serial abdominal PET scans were performed on normal and multidrug resistance-associated protein 2 (Mrp2)-deficient rats after intravenous injection of (15R)-16-m-[(11)C]tolyl-17,18,19,20-tetranorisocarbacyclin methyl ester (15R-[(11)C] TIC-Me) as a radiotracer. 15R-[(11)C]TIC-Me was rapidly converted to its acid form in blood within 10 s. PET scans revealed that 15R-[(11)C]TIC was localized mainly in the liver within 5 min of injection. By 90 min, total radioactivity in bile of Mrp2-deficient rats was significantly reduced compared with controls. Metabolite analysis by thin-layer chromatography autoradiography showed that 15R-[(11)C]TIC is converted to at least three metabolites (M1, M2, and M3), and M2 and M3 are the major metabolites in plasma and bile, respectively. Hepatic uptake clearance of total radioactivity in normal rats was close to the hepatic blood flow rate and slightly higher than that in Mrp2-deficient rats. The intrinsic canalicular efflux clearance of M3 (CL(int,bile,M3)) in Mrp2-deficient rats was decreased to 12% of controls, whereas clearance of M2 was moderately decreased (54%). An in vitro transport assay detected ATP-dependent uptake of both M2 and M3 by rat Mrp2-expressing membrane vesicles. These results demonstrated that M3 is excreted primarily into the bile by Mrp2 in normal rats. We conclude that PET studies using 15R-[(11)C]TIC-Me could be useful for in vivo analyses of Mrp2-mediated hepatobiliary transport.
Related JoVE Video
Direct and rapid genotyping of glutathione-S-transferase M1 and T1 from human blood specimens using the SmartAmp2 method.
Drug Metab. Dispos.
PUBLISHED: 07-07-2010
Show Abstract
Hide Abstract
Clinical studies have suggested that a defect in both glutathione S-transferase (GST) M1 and GSTT1 increases the risk of drug-induced hepatotoxicity. The present study developed the method that enables genotyping of GSTM1 and GSTT1 directly using a small aliquot of blood samples based on an isothermal Smart amplification process version 2 (SmartAmp-2). SmartAmp-2 reaction could complete the genotyping of GSTM1 and GSTT1 within 40 min. The frequency of wild-type, GSTM1 null, GSTT1 null, and double null was 24, 21, 35, and 19%, respectively, consistent with previous reports in the Japanese population. The genotypes of 94 human genomic DNA samples determined by SmartAmp-2 were identical to those determined by the conventional polymerase chain reaction method. SmartAmp-2 was able to determine the genotypes of GSTM1 and GSTT1 even when human blood specimens were used. The SmartAmp-2 method is a rapid and accurate means of identifying the GSTM1 and GSTT1 genotypes, making it less time and more labor efficient in clinical practice than conventional methods requiring preparation of genomic DNA and electrophoresis. This will contribute to evaluate the susceptibility of disease and adverse reactions to drugs caused by deletion of GSTM1 and GSTT1.
Related JoVE Video
Genome-wide analysis of epigenetic signatures for kidney-specific transporters.
Kidney Int.
PUBLISHED: 06-16-2010
Show Abstract
Hide Abstract
DNA methylation-dependent gene silencing is one of the most characterized mechanisms in epigenetic regulation of gene expression. This process is thought to influence the ability of hepatocyte nuclear factor 1 (HNF1) to transactivate organic anion transporter expression in the liver and kidney. To evaluate this further we profiled 282 mouse solute carrier transporters by examining regions near their transcription start sites for tissue-dependent differentially methylated regions (T-DMR) using restriction tag-mediated amplification to determine T-DMR disparity between the liver and kidney. Forty-two of these were associated with T-DMR tags hypomethylated in the kidney but hypermethylated in the liver. Computational analysis found a canonical HNF1-binding motif within 1 kbp of the promoter region of 13 carriers including the amino acid transporters Slc6a19, Slc6a20, Slc7a8 and Slc7a9; all expressed predominantly in the kidney. Bisulfite genomic sequencing found that CpG dinucleotides neighboring the T-DMR tags were hypomethylated in the kidney compared with the liver. The Hnf1alpha promoter region itself contained a T-DMR hypomethylated in the liver and kidney but hypermethylated in the cerebrum, consistent with the tissue distribution of Hnf1alpha. Taken together, our results show a central role of DNA methylation in the kidney-specific expression of amino acid transporters thus determining both the tissue distribution of their master regulator, Hnf1alpha, and its interaction with downstream genes.
Related JoVE Video
Application of physiologically based pharmacokinetic modeling and clearance concept to drugs showing transporter-mediated distribution and clearance in humans.
J Pharmacokinet Pharmacodyn
PUBLISHED: 05-06-2010
Show Abstract
Hide Abstract
This review illustrates the concept of a rate-determining process in the overall hepatic elimination of anionic drugs that involves transporters in the uptake process. A kinetic study in rats has demonstrated that uptake is the rate-determining process for most anionic drugs, and this is likely to hold true for the hepatic elimination of statins in humans. To simulate the effects of variations in the transporter activities on systemic and liver exposure, a physiologically based pharmacokinetic model was constructed for pravastatin, the overall elimination of which involves OATP1B1 and MRP2 in the hepatic uptake and canalicular efflux, respectively. The plasma concentrations of pravastatin in humans were successfully reproduced using the kinetic parameters extrapolated from in vitro data obtained using human hepatocytes and canalicular membrane vesicles and the scaling factors determined in rats. Sensitivity analyses showed that a variation in hepatic uptake altered the plasma concentration of pravastatin markedly, but had a small effect on the liver concentration, and vice versa for the canalicular efflux. Therefore, variation in the OATP1B1 activities will have small and large impacts on the therapeutic efficacy and adverse effect (myopathy) of pravastatin, respectively, whereas that affecting the MRP2 activities may have an opposite effect (i.e., large and small impacts on the therapeutic efficacy and side effect). This pharmacokinetic characteristics likely hold true for other anionic statins, i.e., variation of OATP1B1 is associated with the risk of adverse reactions, whereas that of sequestration mechanisms causes the variation of their pharmacological effect.
Related JoVE Video
Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone.
J. Pharmacol. Exp. Ther.
PUBLISHED: 03-19-2010
Show Abstract
Hide Abstract
A synergistic effect of P-glycoprotein (P-gp)/Abcb1a and breast cancer resistance protein (Bcrp)/Abcg2 was reported to limit the brain penetration of their common substrates. This study investigated this based on pharmacokinetics using Mdr1a/1b(-/-), Bcrp(-/-), and Mdr1a/1b(-/-)/Bcrp(-/-) mice. Comparison of the brain- and testis-to-plasma ratios (C(brain)/C(plasma) and C(testis)/C(plasma), respectively) of the reference compounds quinidine and dantrolene for P-gp and Bcrp, respectively, indicates that impairment of either P-gp and Bcrp did not cause any change in the efflux activities of Bcrp or P-gp, respectively, at both the blood-brain barrier (BBB) and blood-testis barrier (BTB). The C(brain)/C(plasma) and C(testis)/C(plasma) of the common substrates erlotinib, flavopiridol, and mitoxantrone were markedly increased in Mdr1a/1b(-/-)/Bcrp(-/-) mice even compared with Mdr1a/1b(-/-) and Bcrp(-/-) mice. Efflux activities by P-gp and Bcrp relative to passive diffusion at the BBB and BTB were separately evaluated based on the C(brain)/C(plasma) and C(testis)/C(plasma) in the knockout strains to the wild-type strain. P-gp made a larger contribution than Bcrp to the net efflux of the common substrates, but Bcrp activities were also significantly larger than passive diffusion. These parameters could reasonably account for the marked increase in C(brain)/C(plasma) and C(testis)/C(plasma) in the Mdr1a/1b(-/-)/Bcrp(-/-) mice. In conclusion, the synergistic effect of P-gp and Bcrp on C(brain)/C(plasma) and C(testis)/C(plasma) can be explained by their contribution to the net efflux at the BBB and BTB without any interaction between P-gp and Bcrp.
Related JoVE Video
Pharmacokinetic modeling of the hepatobiliary transport mediated by cooperation of uptake and efflux transporters.
Drug Metab. Rev.
PUBLISHED: 02-24-2010
Show Abstract
Hide Abstract
Hepatocytes express various transporters in the sinusoidal and canalicular membrane, which mediate hepatic uptake and canalicular efflux, forming directional transport from the sinusoid to the bile. Drug-drug interactions and genetic polymorphisms of the transporters are known to cause variations in transporter function. This review focuses on pharmacokinetic modeling of hepatobiliary transport of drugs to explain the alteration of the disposition of drugs caused by such variations, based on the clearance concept. For modeling and simulation, pravastatin and dibromosulfophthalein have been used as model compounds which are known to undergo transpoter-mediated hepatic uptake followed by biliary excretion. Pharmacokinetic modeling of hepatobiliary transport illustrates the concept of the rate-determining process in overall hepatobiliary transport.
Related JoVE Video
Basolateral efflux mediated by multidrug resistance-associated protein 3 (Mrp3/Abcc3) facilitates intestinal absorption of folates in mouse.
Pharm. Res.
PUBLISHED: 02-11-2010
Show Abstract
Hide Abstract
This study investigated the role of an ABC transporter, Mrp3/Abcc3 in intestinal folate absorption.
Related JoVE Video
Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine.
J. Pharmacol. Exp. Ther.
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
This report describes a potent and selective inhibitor of multidrug and toxin extrusion (MATE) protein, pyrimethamine (PYR), and examines its effect on the urinary and biliary excretion of typical Mate1 substrates in mice. In vitro inhibition studies demonstrated that PYR is a potent inhibitor of mouse (m)Mate1 (K(i) = 145 nM) among renal organic cation transporters mOctn1 and mOctn2 (K(i) > 30 microM), mOct1 (K(i) = 3.6 microM), and mOct2 (K(i) = 6.0 microM). PYR inhibited the uptake of metformin by kidney brush-border membrane vesicles (BBMVs) (K(i) = 41 nM) and canalicular membrane vesicles in the presence of outward gradient of H+. PYR treatment significantly increased the kidney-to-plasma ratio of tetraethylammonium, and both the liver- and kidney-to-plasma ratios of metformin in mice, whereas it did not affect their plasma concentrations and urinary excretion rates. Furthermore, the plasma lactate concentration, a biomarker for inhibition of gluconeogenesis by metformin, was significantly higher in the PYR-treated group than in the control group. These results not only suggest the importance of mMate1 in the efflux of organic cations into the urine and bile in mice but also the importance of canalicular efflux mediated by MATE proteins for the therapeutic efficacy of metformin. PYR is a potent inhibitor of human (h)MATE1 and hMATE2-K (K(i) = 77 and 46 nM, respectively) and H+ and organic cation exchanger in human kidney BBMVs (K(i) = 31 nM) in the presence of outward gradient of H+. Taken together, PYR can be used as a potent probe inhibitor of human MATE transporters.
Related JoVE Video
DNA methylation profiles of organic anion transporting polypeptide 1B3 in cancer cell lines.
Pharm. Res.
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
Multispecific organic anion transporter, OATP1B3/SLCO1B3, is expressed in several cancer cell lines as well as tumor tissues, and its expression sensitizes the cells to some anti-cancer agents. The present study was aimed to characterize the DNA methylation profiles around the transcriptional start site (TSS) of OATP1B3 and correlate them with the mRNA expression in cancer and immortalized cell lines.
Related JoVE Video
Functional characterization of multidrug resistance-associated protein 3 (mrp3/abcc3) in the basolateral efflux of glucuronide conjugates in the mouse small intestine.
J. Pharmacol. Exp. Ther.
PUBLISHED: 11-04-2009
Show Abstract
Hide Abstract
The intestine expresses metabolic enzymes and transporters and functions as a barrier to orally administered xenobiotics. This study aimed to examine the importance of multidrug resistance-associated protein 3 (Mrp3/Abcc3) in the serosal efflux of glucuronide conjugates formed in the intestine using wild-type and Mrp3(-/-) mice. The everted sacs of the intestine were incubated with 4-methylumbelliferone (4MU), and the efflux rates of intracellularly formed glucuronide conjugate of 4MU (4MUG) into the mucosal and serosal sides were determined. The permeability-surface area product across the serosal membrane (PS(serosal)) of 4MUG in wild-type mice was greatest in the duodenum followed by the jejunum, ileum, and colon. The corresponding parameters were significantly reduced in Mrp3(-/-) mice (approximately 33% of that in wild-type mice) except for the colon where the PS(serosal) of 4MUG was similar between wild-type and Mrp3(-/-) mice. There was no difference in the PS(mucosal) of 4MUG in whole segments of the intestine between wild-type and Mrp3(-/-) mice. In addition to 4MUG, the PS(serosal) of the glucuronide conjugates of 7-ethyl-10-hydroxycamptothecin (SN-38) and acetaminophen in the jejunal everted sacs were also significantly reduced in Mrp3(-/-) mice compared with wild-type mice. There was no difference in the mRNA and protein expression of efflux transporters between wild-type and Mrp3(-/-) mice. These results suggest that Mrp3 plays major roles in the efflux transport of various glucuronide conjugates from the enterocytes to the portal blood in the small intestine together with unknown transporter(s), but the contribution of Mrp3 to the basolateral efflux of 4MUG was negligible in the colon.
Related JoVE Video
Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans.
Drug Metab. Dispos.
PUBLISHED: 10-29-2009
Show Abstract
Hide Abstract
Elucidation of the rate-determining process in the overall hepatic elimination of drugs is critical for predicting their intrinsic hepatic clearance and the impact of variation of sequestration clearance on their systemic concentration. The present study investigated the rate-determining process in the overall hepatic elimination of the HMG-CoA reductase inhibitors pravastatin, pitavastatin, atorvastatin, and fluvastatin both in rats and humans. The uptake of these statins was saturable in both rat and human hepatocytes. Intrinsic hepatic clearance obtained by in vivo pharmacokinetic analysis in rats was close to the uptake clearance determined by the multiple indicator dilution method but much greater than the intrinsic metabolic clearance extrapolated from an in vitro model using liver microsomes. In vivo uptake clearance of the statins in humans (pravastatin, 1.44; pitavastatin, 30.6; atorvastatin, 12.7; and fluvastatin, 62.9 ml/min/g liver), which was obtained by multiplying in vitro uptake clearance determined in cryopreserved human hepatocytes by rat scaling factors, was within the range of overall in vivo intrinsic hepatic clearance (pravastatin, 0.84-1.2; pitavastatin, 14-35; atorvastatin, 11-19; and fluvastatin, 123-185 ml/min/g liver), whereas the intrinsic metabolic clearance of atorvastatin and fluvastatin was considerably low compared with their intrinsic hepatic clearance. Their uptake is the rate-determining process in the overall hepatic elimination of the statins in rats, and this activity likely holds true for humans. In vitro-in vivo extrapolation of the uptake clearance using a cryopreserved human hepatocytes model and rat scaling factors will be effective for predicting in vivo intrinsic hepatic clearance involving active uptake.
Related JoVE Video
Construction of triple-transfected cells [organic anion-transporting polypeptide (OATP) 1B1/multidrug resistance-associated protein (MRP) 2/MRP3 and OATP1B1/MRP2/MRP4] for analysis of the sinusoidal function of MRP3 and MRP4.
Drug Metab. Dispos.
PUBLISHED: 07-23-2009
Show Abstract
Hide Abstract
Multidrug resistance-associated protein (MRP) 3/ABCC3 and MRP4/ABCC4 are ATP-binding cassette (ABC) transporters expressed in the sinusoidal membrane of hepatocytes. The purpose of the present study was to establish organic anion-transporting polypeptide (OATP) 1B1/MRP2/MRP3 and OATP1B1/MRP2/MRP4 triple transfectants as in vitro model of the hepatobiliary transport of anionic drugs. To find in vivo relevant Mrp3 probes, wild-type and Mrp3(-/-) mice were given gemfibrozil, 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridymethyl)benzothiazole (E3040), troglitazone, bisphenol A, and 4-methylumbelliferone orally. Plasma concentrations of the glucuronide conjugates were significantly lower in Mrp3(-/-) mice than in wild-type mice. The systemic exposure of gemfibrozil, E3040, and troglitazone were similar in wild-type and Mrp3(-/-) mice. 4-Methylumbelliferone and bisphenol A were undetectable in the plasma. In MRP3-expressing membrane vesicles, ATP-dependent uptakes of the glucuronide conjugates of estradiol, gemfibrozil, E3040, and troglitazone were markedly greater than those in controls, whereas MRP4-expressing membrane vesicles exhibited significant ATP-dependent uptake of gemfibrozil glucuronide and estradiol glucuronide. MRP3 or MRP4 was expressed in the OATP1B1/MRP2 double transfectants using adenovirus. The expression levels of OATP1B1 and MRP2 proteins were maintained both in the OATP1B1/MRP2/MRP3 and OATP1B1/MRP2/MRP4 triple transfectants, whereas MRP3 and MRP4 were localized in the basal membrane. Significant reductions in the basal-to-apical flux of the glucuronide conjugates of estradiol, gemfibrozil, E3040, and troglitazone were observed in the OATP1B1/MRP2/MRP3 triple transfectants compared with those in the double transfectants, whereas significant reduction was observed only for gemfibrozil glucuronide and estradiol glucuronide in the OATP1B1/MRP2/MRP4 triple transfectants. These results suggest that MRP3- or MRP4-triple transfectants provide a simple and useful in vitro system for evaluating their importance in the hepatobiliary transport of drugs.
Related JoVE Video
The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine.
Drug Metab. Dispos.
PUBLISHED: 06-25-2009
Show Abstract
Hide Abstract
Cimetidine is known to cause drug-drug interactions (DDIs) with organic cations in the kidney, and a previous clinical study showed that coadministration of cimetidine or probenecid with fexofenadine (FEX) decreased its renal clearance. FEX was taken up into human kidney by human organic anion transporter (hOAT) 3 (SLC22A8), but the mechanism of its luminal efflux has not been clarified. The present study examined the molecular mechanism of these DDIs. Saturable uptake of FEX was observed in human kidney slices, with K(m) and V(max) values of 157+/-7 microM and 418+/-16 nmol/15 min/g kidney, respectively. Cimetidine only slightly inhibited its uptake even at 100 microM, far greater than its clinically relevant concentration, whereas 10 microM probenecid markedly inhibited its uptake. As candidate transporters for the luminal efflux of FEX, we focused on human multidrug and toxin extrusions MATE1 (SLC47A1) and MATE2-K (SLC47A2). Saturable uptake of FEX could be observed in human embryonic kidney 293 cells expressing human MATE1 (hMATE1), whereas hMATE2-K-specific uptake of FEX was too small to conduct its further kinetic analysis. The hMATE1-mediated uptake clearance of FEX was inhibited by cimetidine in a concentration-dependent manner, and it was decreased to 60% of the control value in the presence of 3 microM cimetidine. Taken together, our results suggest that the DDI of FEX with probenecid can be explained by the inhibition of renal uptake mediated by hOAT3, whereas the DDI with cimetidine is mainly caused by the inhibition of hMATE1-mediated efflux of FEX rather than the inhibition of its renal uptake process.
Related JoVE Video
Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion t
Drug Metab. Dispos.
PUBLISHED: 05-15-2009
Show Abstract
Hide Abstract
[3R,4R,5S]-4-Acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802) is a pharmacologically active form of the anti-influenza virus drug oseltamivir. Abnormal behavior is a suspected adverse effect of oseltamivir on the central nervous system. This study focused on the transport mechanisms of Ro 64-0802 across the blood-brain barrier (BBB). Ro 64-0802 was found to be a substrate of organic anion transporter 3 (OAT3/SLC22A8) and multidrug resistance-associated protein 4 (MRP4/ABCC4). Human embryonic kidney 293 cells expressing OAT3 exhibited a greater intracellular accumulation of Ro 64-0802 than mock-transfected cells (15 versus 1.2 microl/mg protein/10 min, respectively). The efflux of Ro 64-0802 was 3-fold greater when MRP4 was expressed in MDCKII cells and was significantly inhibited by indomethacin. After its microinjection into the cerebrum, the amount of Ro 64-0802 in brain was significantly greater in both Oat3(-/-) mice and Mrp4(-/-) mice compared with the corresponding wild-type mice (0.36 versus 0.080 and 0.32 versus 0.060 nmol at 120 min after injection, respectively). The brain/plasma concentration ratio (K(p,) (brain)) of Ro 64-0802, determined in wild-type mice after subcutaneous continuous infusion for 24 h, was close to the capillary volume (approximately 10 microl/g brain). Although the K(p,) (brain) of Ro 64-0802 was unchanged in Oat3(-/-) mice, it was significantly greater in Mrp4(-/-) mice (41 microl/g of brain). These results suggest that Ro 64-0802 can cross the BBB from the blood, but its brain distribution is limited by its active efflux by Mrp4 and Oat3 across the BBB. The transporter responsible for the brain uptake of Ro 64-0802 remains unknown, but Oat3 is a candidate transporter.
Related JoVE Video
Prediction of the hepatic and renal clearance of transporter substrates in rats using in vitro uptake experiments.
Drug Metab. Dispos.
PUBLISHED: 04-13-2009
Show Abstract
Hide Abstract
The clearance route and the absolute values for hepatic and renal clearance of drugs are important criteria for the selection of drug candidates. Based on pharmacokinetic theory, by assuming that uptake is the rate-determining process for the biliary excretion of drugs, organ intrinsic clearance should be simply estimated by the intrinsic uptake. In this study, to investigate whether organ clearance can be predicted from the in vitro uptake activity, we performed uptake experiments using isolated hepatocytes and kidney slices, integration plot analyses, and in vivo pharmacokinetic studies using 12 barely metabolized drugs in rats. The in vivo hepatic and renal clearance could be approximated by uptake clearance estimated from integration plot analyses, except for the renal clearance of some drugs that was relatively small. The comparison of intrinsic uptake clearance from in vitro experiments and integration plot studies revealed that in vivo hepatic uptake was well explained by uptake into isolated hepatocytes, whereas in kidney, in vivo uptake clearance was 10 to 100 times that in kidney slices and a scaling factor is required for its prediction from in vitro experiments. The organ clearance and the fraction excreted into urine could be predicted from in vitro studies except for drugs whose renal clearance was relatively small. This study suggests that the uptake process is the determining factor for organ clearance of minimally metabolized drugs, and uptake assays using isolated hepatocytes and kidney slices are useful for evaluating the uptake clearance.
Related JoVE Video
Analysis of DNA methylation and histone modification profiles of liver-specific transporters.
Mol. Pharmacol.
PUBLISHED: 03-17-2009
Show Abstract
Hide Abstract
Tissue-specific expression of transporters is tightly linked with their physiological functions through the regulation of the membrane transport of their substrates. We hypothesized that epigenetic regulation underlies the tissue-specific expression of mouse liver-specific transporters (Oatp1b2/Slco1b2, Ntcp/Slc10a1, Bsep/Abcb11, and Abcg5/g8). We examined their DNA methylation and histone modification profiles near the transcriptional start site (TSS) in the liver, kidney, and cerebrum. Genome-wide DNA methylation profiling with tissue-dependent differentially methylated region profiling with restriction tag-mediated amplification and subsequent bisulfite genomic sequencing demonstrated that the CpG dinucleotides around the TSS of Oatp1b2 (from -515 to +149 CpGs), Ntcp (from -481 to +495 CpGs), Bsep (from -339 to +282 CpGs), and Abcg5/g8 (from -161 to +5 CpGs for Abcg5, i.e., from -213 to -48 CpGs for Abcg8) were hypomethylated in the liver and hypermethylated in the kidney and cerebrum. The opposite pattern was observed for Pept2/Slc15a2 (from -638 to +4 CpGs), which was expressed in the kidney and cerebrum but not in the liver. These DNA methylation profiles are consistent with the tissue distribution of these transporters. A chromatin immunoprecipitation assay demonstrated that the histone H3 associated with Oatp1b2, Ntcp, Bsep, and Abcg5/g8 promoters was hyperacetylated in the liver but was acetylated very little in the kidney and cerebrum, whereas the upstream region of Pept2 was hyperacetylated only in the kidney and cerebrum. These results suggest the involvement of epigenetic systems in the tissue-specific expression of mouse transporters Oatp1b2, Ntcp, Bsep, Abcg5/g8, and Pept2.
Related JoVE Video
In vitro-in vivo extrapolation of transporter-mediated clearance in the liver and kidney.
Drug Metab. Pharmacokinet.
PUBLISHED: 03-03-2009
Show Abstract
Hide Abstract
Transporters govern drug movement into and out of tissues, thereby playing an important role in drug disposition in plasma and to the site of action. The molecular cloning of such transporters has clarified the importance of members of the solute carrier family, such as OATP/SLCO, OCT/SLC22, OAT/SLC22, and MATE/SLC47, and the ATP-binding cassette transporters, such as P-glycoprotein/ABCB1, MRPs/ABCC, and BCRP/ABCG2. Elucidation of molecular characteristics of transporters has allowed the identification of transporters as mechanisms for drug-drug interactions, and of interindividual differences in drug dispositions and responses. Cumulative studies have highlighted the cooperative roles of uptake transporters and metabolic enzymes/efflux transporters. In this way, the concept of a rate-limiting process in hepatic/renal elimination across epithelial cells has developed. This review illustrates the concept of the rate-limiting step in the hepatic elimination mediated by transporters, and describes the prediction of the in vivo pharmacokinetics of drugs whose disposition is determined by transporters, based on in vitro experiments using pravastatin as an example. This review also illustrates the transporters regulating the peripheral drug concentrations.
Related JoVE Video
Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans.
J. Pharmacol. Exp. Ther.
PUBLISHED: 02-24-2009
Show Abstract
Hide Abstract
Hepatobiliary excretion mediated by transporters, organic anion-transporting polypeptide (OATP) 1B1 and multidrug resistance-associated protein (MRP) 2, is the major elimination pathway of an HMG-CoA reductase inhibitor, pravastatin. The present study examined the effects of changes in the transporter activities on the systemic and liver exposure of pravastatin using a physiologically based pharmacokinetic model. Scaling factors, determined by comparing in vivo and in vitro parameters of pravastatin in rats for the hepatic uptake and canalicular efflux, were obtained. The simulated plasma and liver concentrations and biliary excretion profiles were very close to the observed data in rats under linear and nonlinear conditions. In vitro parameters, determined in human cryopreserved hepatocytes and canalicular membrane vesicles, were extrapolated to in vivo parameters using the scaling factors obtained in rats. The simulated plasma concentrations of pravastatin were close to the reported values in humans. Sensitivity analyses showed that changes in the hepatic uptake ability altered the plasma concentration of pravastatin markedly but had a minimal effect on the liver concentration, whereas changes in the ability of canalicular efflux altered the liver concentration of pravastatin markedly but had a small effect on the plasma concentration. In conclusion, the model allows the prediction of the disposition of pravastatin in humans. The present study suggests that changes in the OATP1B1 activities may have a small and a large impact on the therapeutic efficacy and side effect (myopathy) of pravastatin, respectively, whereas those in the MRP2 activities may have opposite impacts (i.e., large and small impacts on the therapeutic efficacy and side effect).
Related JoVE Video
Characterization of the inhibition of breast cancer resistance protein-mediated efflux of mitoxantrone by pharmaceutical excipients.
Int J Pharm
PUBLISHED: 01-03-2009
Show Abstract
Hide Abstract
Previously we showed that some excipients can inhibit breast cancer resistance protein (BCRP/ABCG2) in vitro and in vivo. We then evaluated the reversibility and the mode of BCRP inhibition of excipients, such as Tween 20 and Pluronic P85, by the intracellular mitoxantrone uptake study. To evaluate the reversibility of BCRP inhibitory effects, BCRP expressing cells were preincubated with the excipients and the intracellular mitoxantrone uptake was determined after removing or not removing the excipients. To evaluate the mode of BCRP inhibitory effects, the intracellular mitoxantrone uptake at the different mitoxantrone concentrations in the medium with the excipients was determined. Both Tween 20 and Pluronic P85 increased the mitoxantrone uptake in BCRP expressing cells, but these effects were disappeared when the excipients were removed. Moreover, both excipients increased the uptake at low substrate concentrations. However, at high substrate concentrations, Tween 20 increased the uptake to less extent compared with low substrate concentrations, whereas there was no such effect of Pluronic P85. Taken together, Pluronic P85 and Tween 20 appear to inhibit BCRP-mediated efflux of mitoxantrone reversibly and the inhibition mode of Pluronic P85 may be competitive but not that of Tween 20, which may be mixed type.
Related JoVE Video
Forskolin modifies retinal vascular development in Mrp4-knockout mice.
Invest. Ophthalmol. Vis. Sci.
Show Abstract
Hide Abstract
Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development.
Related JoVE Video
Effect of coadministration of single and multiple doses of rifampicin on the pharmacokinetics of fexofenadine enantiomers in healthy subjects.
Drug Metab. Dispos.
Show Abstract
Hide Abstract
The effect of rifampicin on the pharmacokinetics of fexofenadine enantiomers was examined in healthy subjects who received fexofenadine alone or with single or multiple doses of rifampicin (600 mg). A single coadministered dose of rifampicin significantly decreased the oral clearance (CL(tot)/F) and renal clearance (CL(r)) of S- and R-fexofenadine by 76 and 62%, and 73 and 62%, respectively. Even after multiple doses, rifampicin significantly decreased these parameters, although the effect on the CL(tot)/F was slightly blunted. Multiple doses of rifampicin abolished the difference in the CL(tot)/F of fexofenadine enantiomers, whereas the stereoselectivity in the CL(r) persisted. Rifampicin inhibited the uptake of fexofenadine enantiomers by human hepatocytes via organic anion transporter (OAT) OATP1B3 and its basal-to-apical transport in Caco-2 cells, but not OAT3-mediated or multidrug and toxic compound extrusion 1 (MATE1)-mediated transport. The plasma-unbound fraction of S-fexofenadine was 1.8 times higher than that of R-fexofenadine. The rifampicin-sensitive uptake by hepatocytes was 1.6 times higher for R-fexofenadine, whereas the transport activities by OATP1B3, OAT3, MATE1, or P-glycoprotein were identical for both enantiomers. S-fexofenadine is a more potent human histamine H1 receptor antagonist than R-fexofenadine. In conclusion, rifampicin has multiple interaction sites with fexofenadine, all of which contribute to increasing the area under the curve of fexofenadine when they are given simultaneously, to surpass the effect of the induction of P-glycoprotein elicited by multiple doses.
Related JoVE Video
Effect of the fluoroquinolone antibacterial agent DX-619 on the apparent formation and renal clearances of 6?-hydroxycortisol, an endogenous probe for CYP3A4 inhibition, in healthy subjects.
Pharm. Res.
Show Abstract
Hide Abstract
To examine the effect of the fluoroquinolone DX-619 on CYP3A4 and urinary excretion of 6?-hydroxycortisol, an endogenous probe of hepatic CYP3A4 activity, in healthy subjects.
Related JoVE Video
DNA methylation and histone modification profiles of mouse organic anion transporting polypeptides.
Drug Metab. Dispos.
Show Abstract
Hide Abstract
Organic anion transporting polypeptides (rodents, Oatps; human, OATPs) are primarily involved in the transmembrane transportation of a wide range of endogenous and exogenous compounds. Multiple mouse Oatp1 isoforms are closely located on chromosome 6, where each isoform shows distinct tissue distribution; Oatp1b2, Oatp1a6, and Oatp1c1 are expressed exclusively in the liver, kidney, and cerebrum, respectively; Oatp1a1 in the liver and kidney; and Oatp1a4 in the liver and cerebrum. We have identified tissue-dependent differentially methylated region (T-DMR) around the transcriptional start site (TSS) of Oatp1b2, which correlates with its liver-specific expression. Bisulfite sequencing also demonstrated the presence of T-DMRs around the TSS in other Oatp1 genes: CpG dinucleotides at +149 relative to the TSS for Oatp1c1; -48, +101, and +356 for Oatp1a4; -572 and -550 for Oatp1a1; and -122 and +216 for Oatp1a6 were differentially methylated among the liver, kidney, and cerebrum. These methylation profiles were largely consistent with the tissue distribution of Oatp1 mRNAs. Chromatin immunoprecipitation assay revealed that the mRNA expression of Oatp1 genes was accompanied by acetylated histone H3. Human OATP1B1 and OATP1B3 are located on chromosome 12p12 in the OATP1 cluster; both show predominant expression in the liver. These genes also contained T-DMRs that were hypomethylated in the liver, compared with kidney cortex: -511, -411, and +92 relative to the TSS for OATP1B1 and -331, +70, and +73 for OATP1B3. These results suggest that the difference in epigenetic profiles comprising DNA methylation and histone acetylation determines the distinct tissue distribution of Oatp/OATP mRNAs.
Related JoVE Video
Studies on the intestinal absorption characteristics of sulfasalazine, a breast cancer resistance protein (BCRP) substrate.
Drug Metab. Pharmacokinet.
Show Abstract
Hide Abstract
Oral sulfasalazine (SASP) is now used clinically as a probe substrate of a breast cancer resistance protein (BCRP) activity; however the intestinal absorption characteristics of SASP are not well understood. The purpose of this study was to clarify the characteristics of SASP transport in the mouse intestine. The everted ileum was incubated with SASP in the absence or presence of the Bcrp inhibitor Ko134. The steady-state intestinal absorptive clearance was 0.14 µL/min/cm in the absence of Ko134 and increased by 4.8-fold in the presence of Ko134. These results indicate that Bcrp mediates the efflux of SASP in the intestine. The absorptive clearance of SASP did not change in a concentration-dependent manner in the range of 0.1 to 50 µM in wild-type mice. By contrast, the absorptive clearance of SASP decreased significantly in a concentration-dependent manner in the presence of Ko134. Similar results were obtained in Bcrp(-/-) mice. These results suggest the possible involvement of some influx transporters in the intestinal absorption of SASP. In conclusion, both the influx and efflux transporters are involved in the intestinal absorption of SASP, which would explain why the absorptive clearance did not appear to change at various SASP concentrations in wild-type mice.
Related JoVE Video
PET imaging-based evaluation of hepatobiliary transport in humans with (15R)-11C-TIC-Me.
J. Nucl. Med.
Show Abstract
Hide Abstract
It is well accepted that drug transporters play a pivotal role in hepatobiliary excretion of anionic drugs, in which drug-drug interactions and genetic polymorphisms are known to cause variations. However, PET probes for in vivo functional characterization of these transporters have not been established yet. We used PET to investigate hepatic uptake and subsequent canalicular efflux of (11)C-labeled (15R)-16-m-tolyl-17,18,19,20-tetranorisocarbacyclin methyl ester [(15R)-(11)C-TIC-Me)] in healthy subjects.
Related JoVE Video
Association of multidrug resistance-associated protein 2 single nucleotide polymorphism rs12762549 with the basal plasma levels of phase II metabolites of isoflavonoids in healthy Japanese individuals.
Pharmacogenet. Genomics
Show Abstract
Hide Abstract
Multidrug resistance-associated protein 2 (MRP2; ABCC2) is an ATP-binding cassette transporter that mediates the efflux of anionic drugs and phase II metabolites. Our aim was to elucidate the impact of a single nucleotide polymorphism, rs12762549 (G>C), on the in-vivo activity of MRP2.
Related JoVE Video
Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP.
Br. J. Pharmacol.
Show Abstract
Hide Abstract
BACKGROUND AND PURPOSE An ATP-binding cassette (ABC) transporter, breast cancer resistance protein (BCRP)/ABCG2, limits oral bioavailability of sulphasalazine. Here we examined the effect of curcumin, the principal curcuminoid of turmeric, on oral bioavailability of microdoses and therapeutic doses of sulphasalazine in humans. EXPERIMENTAL APPROACH Effects of curcumin were measured on the ATP-dependent sulphasalazine uptake by hBCRP-expressing membrane vesicles and on oral bioavailability of sulphasalazine in wild-type and Bcrp(-/-) mice. Eight healthy Japanese subjects received an oral dose of sulphasalazine suspension (100 µg) or tablets (2 g) alone or after curcumin tablets (2 g). Uptake of sulphasalazine was studied in HEK293 cells transfected with the influx transporter (OATP)2B1. KEY RESULTS Curcumin was a potent hBCRP inhibitor in vitro (K(i) 0.70 ± 0.41 µM). Curcumin increased the area under the curve (AUC)(0-8) of plasma sulphasalazine eightfold in wild-type mice at 300 and 400 mg·kg(-1), but not in Bcrp(-/-) mice. Curcumin increased AUC(0-24) of plasma sulphasalazine 2.0-fold at microdoses and 3.2-fold at therapeutic doses in humans. Non-linearity of the dose-exposure relationship was observed between microdoses and therapeutic doses of sulphasalazine. Sulphasalazine was a substrate for OATP2B1 (K(m) 1.7 ± 0.3 µM). Its linear index (dose/K(m)) at the therapeutic dose was high and may saturate OATP2B1. CONCLUSIONS AND IMPLICATIONS Curcumin can be used to investigate effects of BCRP on oral bioavailability of drugs in humans. Besides the limited dissolution, OATP2B1 saturation is a possible mechanism underlying non-linearity in the dose-exposure relationship of sulphasalazine.
Related JoVE Video
Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter NTCP.
Hepatology
Show Abstract
Hide Abstract
Chronic hepatitis B virus (HBV) infection is a major public health problem worldwide. Although nucleos(t)ide analogs inhibiting viral reverse transcriptase are clinically available as anti-HBV agents, emergence of drug resistant virus highlights the need for new anti-HBV agents interfering with other targets. Here we report that cyclosporin A (CsA) can inhibit HBV entry into cultured hepatocytes. The anti-HBV effect of CsA was independent of binding to cyclophilin and calcineurin. Rather, blockade of HBV infection correlated with the ability to inhibit the transporter activity of sodium taurocholate cotransporting polypeptide (NTCP). We also found that HBV infection susceptible cells, differentiated HepaRG cells and primary human hepatocytes expressed NTCP, while non-susceptible cell lines did not. A series of compounds targeting NTCP could inhibit HBV infection. CsA inhibited the binding between NTCP and large envelope protein in vitro. Evaluation of CsA analogs identified a compound with higher anti-HBV potency, having an IC50 < 0.2 ?M. This study provides a proof of concept for the novel strategy to identify anti-HBV agents by targeting the candidate HBV receptor, NTCP, utilizing CsA as a structural platform. (Hepatology 2013;).
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.