JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes.
Front Microbiol
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
The aim of this study was to examine antibiotic resistance (AR) dissemination in coastal water, considering the contribution of different sources of fecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of fecal contamination: human-derived sewage and seagull feces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin, and amoxicillin were the most frequent. Higher rates of AR were found among seawater and feces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull feces (29 and 32%) were lower than in isolates from seawater (39%). Seawater AR profiles were similar to those from seagull feces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes bla TEM, sul1, sul2, tet(A), and tet(B), were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (bla CTX-M-1 and bla SHV-12) and seagull feces (bla CMY-2). Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull feces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived fecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health.
Related JoVE Video
The contribution of Escherichia coli from human and animal sources to the integron gene pool in coastal waters.
Front Microbiol
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
To understand the contribution of animal- and human-derived fecal pollution sources in shaping integron prevalence and diversity in beach waters, 414 Escherichia coli strains were collected from beach waters (BW, n = 166), seagull feces (SF, n = 179), and wastewaters (WW, n = 69), on the World Biosphere Reserve of the Berlenga Island, Portugal. Statistical differences were found between the prevalence of integrons in BW (21%) and WW (10%), but not between BW and SF (19%). The majority of integrase-positive (intI (+))-strains affiliated to commensal phylogroups B1 (37%), A0 (24%), and A1 (20%). Eighteen different gene cassette arrays were detected, most of them coding for resistances to aminoglycosides, trimethoprim, chloramphenicol, and quaternary ammonia compounds. Common arrays were found among strains from different sources. Multi-resistance to three or more different classes of antibiotics was observed in 89, 82, and 57% of intI (+)-strains from BW, SF and WW, respectively. Plasmids were detected in 79% of strains (60/76) revealing a high diversity of replicons in all sources, mostly belonging to IncF (Frep, FIA, and FIB subgroups), IncI1, IncN, IncY, and IncK incompatibility groups. In 20% (15/76) of strains, integrons were successfully mobilized through conjugation to E. coli CV601. Results obtained support the existence of a diverse integron pool in the E. coli strains from this coastal environment, associated with different resistance traits and plasmid incompatibility groups, mainly shaped by animal fecal pollution inputs. These findings underscore the role of wild life in dissemination of integrons and antibiotic resistance traits in natural environments.
Related JoVE Video
A microcosm approach to evaluate the degradation of tributyltin (TBT) by Aeromonas molluscorum Av27 in estuarine sediments.
Environ. Res.
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Tributyltin (TBT) is a biocide extremely toxic to a wide range of organisms, which has been used for decades in antifouling paints. Despite its global ban in 2008, TBT is still a problem of great concern due to the high levels trapped in sediments. Aeromonas molluscorum Av27 is a TBT degrading bacterium that was isolated from an estuarine system. We investigated the ability and the role of this bacterium on TBT degradation in this estuarine system, using a microcosm approach in order to mimic environmental conditions. The experiment was established and followed for 150 days. Simultaneously, changes in the indigenous bacterial community structure were also investigated. The results revealed a maximum TBT degradation rate of 28% accompanied by the detection of the degradation products over time. Additionally, it was observed that TBT degradation was significantly enhanced by the presence of Av27. In addition a significantly higher TBT degradation occurred when the concentration of Av27 was higher. TBT degradation affected the bacterial community composition as revealed by the changes in the prevalence of Proteobacteria subdivisions, namely the increase of Deltaproteobacteria and the onset of Epsilonproteobacteria. However, the addition of Av27 strain did not affect the dominant phylotypes. Total bacterial number, bacterial biomass productivity, 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analyses also indicated alterations on the bacterial community structure over time, with bacteria non-tolerant to pollutants increasing their representativeness, as, for instance, the increase of the number of Alphaproteobacteria clones from 6% in the beginning to 12% at the end of the experiment. The work herein presented confirms the potential of Av27 strain to be used in the decontamination of TBT-polluted environments.
Related JoVE Video
Draft Genome Sequence of Serratia fonticola UTAD54, a Carbapenem-Resistant Strain Isolated from Drinking Water.
Genome Announc
PUBLISHED: 11-29-2013
Show Abstract
Hide Abstract
Serratia fonticola UTAD54 is an environmental isolate that is resistant to carbapenems due to the presence of a class A carbapenemase and a metallo-?-lactamase that are unique to this strain. Its draft genome sequence was obtained to clarify the molecular basis of its carbapenem resistance and identify the genomic context of its carbapenem resistance determinants.
Related JoVE Video
Draft Genome Sequence of Serratia fonticola LMG 7882T Isolated from Freshwater.
Genome Announc
PUBLISHED: 11-23-2013
Show Abstract
Hide Abstract
Serratia fonticola is a Gram-negative bacterium with a wide distribution in aquatic environments. On some occasions, it has also been regarded as a significant human pathogen. In this work, we report the first draft genome sequence of an S. fonticola strain (LMG 7882(T)), which was isolated from freshwater.
Related JoVE Video
Gulls identified as major source of fecal pollution in coastal waters: A microbial source tracking study.
Sci. Total Environ.
PUBLISHED: 07-10-2013
Show Abstract
Hide Abstract
Gulls were reported as sources of fecal pollution in coastal environments and potential vectors of human infections. Microbial source tracking (MST) methods were rarely tested to identify this pollution origin. This study was conducted to ascertain the source of water fecal contamination in the Berlenga Island, Portugal. A total of 169 Escherichia coli isolates from human sewage, 423 isolates from gull feces and 334 water isolates were analyzed by BOX-PCR. An average correct classification of 79.3% was achieved. When an 85% similarity cutoff was applied 24% of water isolates were present in gull feces against 2.7% detected in sewage. Jackknifing resulted in 29.3% of water isolates classified as gull, and 10.8% classified as human. Results indicate that gulls constitute a major source of water contamination in the Berlenga Island. This study validated a methodology to differentiate human and gull fecal pollution sources in a real case of a contaminated beach.
Related JoVE Video
Effects of UV radiation on the lipids and proteins of bacteria studied by mid-infrared spectroscopy.
Environ. Sci. Technol.
PUBLISHED: 06-05-2013
Show Abstract
Hide Abstract
Knowledge of the molecular effects of UV radiation (UVR) on bacteria can contribute to a better understanding of the environmental consequences of enhanced UV levels associated with global climate changes and will help to optimize UV-based disinfection strategies. In the present work, the effects of exposure to UVR in different spectral regions (UVC, 100-280 nm; UVB, 280-320 nm; and UVA, 320-400 nm) on the lipids and proteins of two bacterial strains ( Acinetobacter sp. strain PT5I1.2G and Pseudomonas sp. strain NT5I1.2B) with distinct UV sensitivities were studied by mid-infrared spectroscopy. Exposure to UVR caused an increase in methyl groups associated with lipids, lipid oxidation, and also led to alterations in lipid composition, which were confirmed by gas chromatography. Additionally, mid-infrared spectroscopy revealed the effects of UVR on protein conformation and protein composition, which were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), oxidative damage to amino acids, and changes in the propionylation, glycosylation and/or phosphorylation status of cell proteins. Differences in the targets of UVR in the two strains tested were identified and may explain their discrepant UV sensitivities. The significance of the results is discussed from an ecological standpoint and with respect to potential improvements in UV-based disinfection technologies.
Related JoVE Video
Genetic diversity and antimicrobial resistance of Escherichia coli from Tagus estuary (Portugal).
Sci. Total Environ.
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
Fecal pollution of surface waters is a current world-wide public health concern and may contribute for the dissemination of antibiotic resistance. The Tagus estuary located in the south of Portugal is one of the largest wetlands in the west coast of Europe. In this study, water samples were collected from seven stations with different anthropic pressures along the estuary and evaluated for water quality indicator bacteria. Escherichia coli isolates (n=350) were typed by REP-PCR. Representatives of each REP profile (n=220) were evaluated phenotypically for resistance to 17 antibiotics and characterized in terms of phylogenetic group. Resistant isolates were screened for the presence of antibiotic resistance genes (tet(A), tet(B), sul1, sul2, qnrA, qnrB, qnrS, aacA4-cr, bla(TEM), bla(SHV), bla(CTX-M), bla(CMY-like), bla(IMP), bla(VIM)) and integrase genes (intI1 and intI2). The highest antibiotic resistance prevalence was observed for streptomycin and tetracycline followed by ?-lactams and sulphonamides. Among E. coli isolates, 65.16% were resistant to at least one of the 17 antibiotics tested and approximately 19% were multiresistant. In our E. coli population phylo-groups A and D were predominant and characterized by higher prevalence of the antibiotic resistance. intI1 and intI2 genes were found in 12% of the isolates with prevalence of class 1 integrons. A strong correlation between the prevalence of integrons and multiresistance was observed. Differences in terms of antibiotic resistance between phylogenetic groups and between sampling sites were statistically significant. The results demonstrate a high prevalence of antibiotic resistance among E. coli circulating in the Tagus estuary with emphasis on the occurrence of resistance to last-resort antibiotics and on the high incidence of multiresistance.
Related JoVE Video
Growth conditions influence UVB sensitivity and oxidative damage in an estuarine bacterial isolate.
Photochem. Photobiol. Sci.
PUBLISHED: 03-15-2013
Show Abstract
Hide Abstract
The dose-dependent variation of oxidative cellular damage imposed by UVB exposure in a representative estuarine bacterial strain, Pseudomonas sp. NT5I1.2B, was studied at different growth phases (mid-exponential, late-exponential, and stationary), growth temperatures (15 °C and 25 °C) and growth media (nutrient-rich Tryptic Soy Broth [TSB] and nutrient-poor M9). Survival and markers of oxidative damage (lipid peroxidation, protein carbonylation, DNA strand breakage, and DNA-protein cross-links) were monitored during exposure to increasing UVB doses (0-60 kJ m(-2)). Oxidative damage did not follow a clear linear dose-dependent pattern, particularly at high UVB doses (>10 kJ m(-2)), suggesting a dynamic interaction between damage induction and repair during irradiation and/or saturation of oxidative damage. Survival of stationary phase cells generally exceeded that of exponential phase cells by up to 33.5 times; the latter displayed enhanced levels of DNA-protein cross-links (up to 15.6-fold) and protein carbonylation (up to 6.0-fold). Survival of mid-exponential phase cells was generally higher at 15 °C than at 25 °C (up to 6.6-fold), which was accompanied by lower levels of DNA strand breaks (up to 4000-fold), suggesting a temperature effect on reactive oxygen species (ROS) generation and/or ROS interaction with cellular targets. Survival under medium-high UVB doses (>10 kJ m(-2)) was generally higher (up to 5.4-fold) in cells grown in TSB than in M9. These results highlight the influence of growth conditions preceding irradiation on the extent of oxidative damage induced by UVB exposure in bacteria.
Related JoVE Video
Comparative genomics of IncP-1? plasmids from water environments reveals diverse and unique accessory genetic elements.
Plasmid
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
The goal of this study was to determine and compare the complete genome sequences of three new broad-host-range conjugative plasmids. Plasmids pMLUA1, pMLUA3 and pMLUA4 were previously recovered from estuarine water by exogenous plasmid isolation and ranged in size from ?55 to 59 kb. Comparative genomics showed that their backbone region was identical to the prototype pKJK5 and other IncP1-? plasmids captured from soils. The accessory region was inserted between the tra region and parA, and presented the typical IncP-1? ISPa17 and Tn402-like transposon modules. Nevertheless, new class 1 integrons were identified (In794, carrying aadA5 and In795, carrying qacF5-aadA5), as well as a composite transposon IS26-msr(E)-mph(E)-IS26 carrying genes that confer resistance to macrolides. A new insertion sequence, termed ISUnCu17, was also identified on pMLUA3. The architecture of the accessory regions implies the occurrence of multiple insertions and deletions. These data support the notion that IncP-1 plasmids from the ? subgroup are proficient in the capture of diverse genetic elements, including antibiotic resistance genes, and thus may contribute to the co-selection of several resistance determinants. This study constitutes the first report of completely sequenced IncP-1? plasmids from water environments, and enhances our understanding of the geographic distribution and genetic diversity of these replicons.
Related JoVE Video
Contribution of chemical water properties to the differential responses of bacterioneuston and bacterioplankton to ultraviolet-B radiation.
FEMS Microbiol. Ecol.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
The surface microlayer (SML) is characterized by different physicochemical properties from underlying waters (UW). However, whether these differences in abiotic factors underlie the distinct sensitivity of bacterioneuston (i.e. SML bacteria) and bacterioplankton to environmental stressors remains to be addressed. We investigated the contribution of abiotic factors to the UV-B sensitivity of bacterioneuston and bacterioplankton. Nutrients (especially nitrogen and phosphate) emerged as important determinants of bacterial UV-B sensitivity. The role of particles, nutrients, and dissolved organic components on bacterial UV-B sensitivity was further evaluated using dilution cultures. Filtered samples were twofold more UV sensitive than unfiltered samples, suggesting a UV-protective effect of particles. High nutrient concentrations attenuated bacterial UV-B sensitivity (up to 40%), compared with unamended conditions, by influencing bacterial physiology and/or community composition. Suspending cells in natural water, particularly from the SML, also attenuated UV-B sensitivity (up to 23%), compared with suspension in an artificial mineral solution. Bioassays using Pseudomonas sp. strain NT5I1.2B revealed that chemical water properties influence UV-induced oxidative damage. UV-B sensitivity was associated with high cell-specific activities. The chemical environment of the SML and UW influences UV-B effects on the corresponding bacterial communities. Maintaining low cell activities might be advantageous in stressful environments, like the SML.
Related JoVE Video
Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems.
Water Res.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
In this study we investigated the co-occurrence of resistance to non-beta-lactams among cefotaxime-resistant extended-spectrum beta-lactamase (ESBL) producers (ESBL(+)) versus non-ESBL producers (ESBL(-)), from aquatic environments. Higher prevalence of resistance to tetracycline, fluoroquinolones and aminoglycosides were observed in ESBL(+). Among ESBL(+) resistant to tetracycline (n = 18), tet(A) was detected in 88.9% and tet(B) in 16.7%. Among fluoroquinolone-resistant-ESBL(+) (n = 15), aacA4-cr and qnrVC4 were identified in 26.6% and 40% strains, respectively. The qnrVC4 gene was detected for the first time in Pseudomonas sp. and Escherichia coli. Class 1 integrase genes were detected in 56.41% of ESBL(+) and in 27.67% ESBL(-). Gene cassette arrays identified conferred resistance to aminoglycosides (aadA-type genes and aacA4), trimethoprim (dfrA17), chloramphenicol (catB8), fluoroquinolones (qnrVC4) and beta-lactams (blaOXA-10). Conjugation experiments were performed with CTX-M-producers. Transconjugants showed multiresistance to 3 or more classes of antibiotics, and conjugative plasmids were assigned to IncF, IncK and IncI1 replicons. Results obtained showed that co-selection of resistance to aminoglycosides, quinolones and tetracyclines is prevalent among ESBL-producers and that these features are successfully mobilized by IncF, IncK and IncI1 conjugative plasmids. This study reinforces the importance of natural aquatic systems as reservoir of mobile genetic platforms carrying multiple resistance determinants. Moreover, to the best of our knowledge, this constitutes the first observation of IncK::CTX-M-3 in Aeromonas hydrophila and the first report of IncK plasmids in Portugal.
Related JoVE Video
Role of transition metals in UV-B-induced damage to bacteria.
Photochem. Photobiol.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
The purpose of this study was to explore the possible link between metals and UV-B-induced damage in bacteria. The effect of growth in the presence of enhanced concentrations of different transition metals (Co, Cu, Fe, Mn and Zn) on the UV-B sensitivity of a set of bacterial isolates was explored in terms of survival, activity and oxidative stress biomarkers (ROS generation, damage to DNA, lipid and proteins and activity of antioxidant enzymes). Metal amendment, particularly Fe, Cu and Mn, enhanced bacterial inactivation during irradiation by up to 35.8%. Amendment with Fe increased ROS generation during irradiation by 1.2-13.3%, DNA damage by 10.8-37.4% and lipid oxidative damage by 9.6-68.7%. Lipid damage during irradiation also increased after incubation with Cu and Co by up to 66.8% and 56.5% respectively. Mn amendment decreased protein carbonylation during irradiation by up to 44.2%. These results suggest a role of Fe, Co, Cu and Mn in UV-B-induced bacterial inactivation and the importance of metal homeostasis to limit the detrimental effects of ROS generated during irradiation.
Related JoVE Video
Molecular analysis of the diversity of genus Psychrobacter present within a temperate estuary.
FEMS Microbiol. Ecol.
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
Many members of the genus Psychrobacter are endemic in extremely cold and saline environments and the genus has been described as only marginally successful in warmer habitats. In a previous study the Psychrobacter genus was, unexpectedly, the most frequently isolated bacterial genus from the sea-surface microlayer (SML) and the underlying water (UW) of a temperate estuary (Ria de Aveiro, Portugal). Here we analysed the diversity in Psychrobacter populations inhabiting this estuary. Samples were collected at three dates and three locations from sea-SML and UW. Isolated Psychrobacter strains were well-adapted to temperatures and salt concentrations above the ones described as optimal for most members of this genus. Hydrocarbon-degrading potential was not confirmed for these strains. We developed and optimized a reliable and specific denaturing gradient gel electrophoresis (DGGE)-based method for the analysis of Psychrobacter populations in aquatic systems. DGGE profiles inferred that Psychrobacter populations were very stable in the estuary, a strong indication for the presence of well-adapted phylotypes. The analysis of genus-specific clone libraries revealed a surprisingly high diversity among Psychrobacter in Ria de Aveiro. Results indicated that novel species were probably cultivated. Significant differences between sea-SML and UW Psychrobacter communities were revealed. Observed diversity trends may be related to environmental factors such as salinity and/or anthropogenic pressures such as contamination with hydrocarbons.
Related JoVE Video
Novel gene cassettes and integrons in antibiotic-resistant bacteria isolated from urban wastewaters.
Res. Microbiol.
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
In this study, the occurrence and diversity of integrons were evaluated in 697 isolates belonging to Enterobacteriaceae and Aeromonas spp. isolated from urban wastewaters. Screening of integrons was performed by dot blot hybridization and intI-positive strains were further characterized. The global prevalence of integrons was 3.73%. Three new gene cassettes were identified: a novel aadA variant (aadA17), a gene putatively involved in cell signaling (dcyA) and an open reading frame of unknown function interrupted by a novel insertion sequence (orfER.17::ISAs12). In total, thirteen different gene cassette arrays were detected, 4 representing novel integrons: intI1-dcyA-tniC, intI1-orfER.1.7::ISAs12-aadA13-qacE?1-sul1, intI1-aacA4-catB3-bla(OxA-10)-aadA1-qacE?1-sul1 and intI1-catB8-aadA17-qacE?1-sul1. Approximately 80% of strains were resistant to at least 3 antibiotics of different classes. The presence of novel integron structures in treated effluents suggests that domestic wastewaters may favor the formation of novel combinations of gene cassettes. Moreover, the high prevalence of multiresistant strains highlights the urgent need to employ effective means of effluent disinfection to avoid dissemination of antibiotic-resistant bacteria.
Related JoVE Video
Characterization of bacterial diversity in two aerated lagoons of a wastewater treatment plant using PCR-DGGE analysis.
Microbiol. Res.
PUBLISHED: 11-10-2009
Show Abstract
Hide Abstract
Aerated lagoons are commonly used for domestic and industrial wastewater treatment due to their low cost and minimal need of operational requirements. However, little information is known regarding microbial communities that inhabit these ecosystems. In this study, a 16S-DGGE approach was used to estimate bacterial diversity and to monitor community changes in two aerated lagoons from a wastewater treatment plant receiving urban and industrial effluents. Pronounced shifts between bacterial communities collected in winter-spring and summer-autumn months were detected. Temperature, dissolved oxygen (DO) and pH were the variables that most influenced the bacterial communities. Phylogenetic affiliation of predominant members was assessed by the determination of the 16S rDNA sequence of correspondent bands. Affiliations to Cytophaga-Flexibacter-Bacteroides (CFB) group, Firmicutes, and beta- and epsilon-proteobacteria were found.
Related JoVE Video
Wastewater bacterial communities bring together broad-host range plasmids, integrons and a wide diversity of uncharacterized gene cassettes.
Res. Microbiol.
PUBLISHED: 09-17-2009
Show Abstract
Hide Abstract
To investigate the mobile gene pool present in wastewater environments, total community DNA was obtained from two distinct raw effluents: urban and slaughterhouse wastewaters. Bacterial community structure was evaluated by DGGE analysis of 16S rRNA gene fragments. Detection of broad-host-range plasmid sequences and integrase encoding genes was carried out through PCR and Southern hybridization. Gene cassette libraries were obtained using primers targeting consensus sequences that flank gene cassettes. Analysis of DGGE profiles revealed a complex and distinct bacterial community among effluents (similarity<25%). Despite that, All plasmid-specific sequences searched (rep for IncN, trfA for IncP-1 and oriV for IncQ and IncW) and integrase genes were present in both effluents. Gene cassettes recovered from clone libraries showed low homology with genes encoding putative enzymes involved in the metabolism of amino sugars, cell wall synthesis, motility, gene regulation, intercellular signalling and secretion pathways and in the synthesis of cellulose, folic acid and antibiotics. Additionally, in the majority of clones, no identifiable open reading frames homologues were found in the databases. According to our results, wastewater environments promote the development of bacterial communities that support and bring together different types of molecular elements that, in association, play a major role in bacterial adaptation and evolution.
Related JoVE Video
INTEGRALL: a database and search engine for integrons, integrases and gene cassettes.
Bioinformatics
PUBLISHED: 02-19-2009
Show Abstract
Hide Abstract
INTEGRALL is a freely available, text-based search system developed with the aim of collecting and organizing information on integrons in a single database. The current release (1.2) contains more than 4800 integron sequences and provides a public genetic repository for sequence data and nomenclature, offering scientists an easy and interactive access to integrons DNA sequences, their molecular arrangements as well as their genetic contexts.
Related JoVE Video
Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment.
Bioresour. Technol.
PUBLISHED: 01-12-2009
Show Abstract
Hide Abstract
This study focused on the diversity of bacterial communities from two series of two-stage constructed wetlands (CWs) treating tannery wastewater, under different hydraulic conditions. Series were separately planted with Typha latifolia and Phragmites australis in expanded clay aggregates and operated for 31 months. The effect of plant species, hydraulic loading and unit stage on bacterial communities was addressed through bacterial enumeration and denaturating gradient gel electrophoresis (DGGE). Diverse and distinct bacterial communities were found in each system unit, which was related in part to the type of plant and stage position (first or second unit in the series). Numerical analysis of DGGE profiles showed high diversity in each unit with an even distribution of species. No clear relation was established between the sample collection time, hydraulic loading applied and the bacterial diversity. Isolates retrieved from plant roots and substrates of CWs were affiliated with gamma-Proteobacteria, Firmicutes, alpha-Proteobacteria, Sphingobacteria, Actinobacteria and Bacteroidetes. Both series were effective in removing organic matter from the inlet wastewater, however, based on batch degradation experiments it seems that biodegradation was limited by the recalcitrant properties of the wastewater.
Related JoVE Video
Wavelength dependence of biological damage induced by UV radiation on bacteria.
Arch. Microbiol.
Show Abstract
Hide Abstract
The biological effects of UV radiation of different wavelengths (UVA, UVB and UVC) were assessed in nine bacterial isolates displaying different UV sensitivities. Biological effects (survival and activity) and molecular markers of oxidative stress [DNA strand breakage (DSB), generation of reactive oxygen species (ROS), oxidative damage to proteins and lipids, and the activity of antioxidant enzymes catalase and superoxide dismutase] were quantified and statistically analyzed in order to identify the major determinants of cell inactivation under the different spectral regions. Survival and activity followed a clear wavelength dependence, being highest under UVA and lowest under UVC. The generation of ROS, as well as protein and lipid oxidation, followed the same pattern. DNA damage (DSB) showed the inverse trend. Multiple stepwise regression analysis revealed that survival under UVA, UVB and UVC wavelengths was best explained by DSB, oxidative damage to lipids, and intracellular ROS levels, respectively.
Related JoVE Video
Analysis of antibiotic resistance in bacteria isolated from the surface microlayer and underlying water of an estuarine environment.
Microb. Drug Resist.
Show Abstract
Hide Abstract
We compared the prevalence of cultivable antibiotic-resistant bacteria and resistance genes in the surface microlayer (SML) and underlying waters (UW) of an estuary. Prevalence of resistant bacteria was determined in antibiotic-supplemented agar. Bacterial isolates from the UW (n=91) and SML (n=80), selected in media without antibiotic, were characterized concerning susceptibility against nine antibiotics. The presence of genes bla(TEM), bla(OXA-B), bla(SHV), bla(IMP), tet(A), tet(B), tet(E), tet(M), cat, sul1, sul2, sul3, aadA, IntI1, IntI2, and IntI3 was assessed by PCR. The variable regions of integrons were sequenced. Ampicillin- and streptomycin-resistant bacteria were significantly more prevalent in SML. Resistance levels among the bacterial collections were generally low, preventing detection of significant differences between SML and UW. The tet(E) gene was detected in two Aeromonas isolates and tet(M) was detected in a Pseudomonas isolate. Gene sul1 was amplified from three Aeromonas isolates. Prevalence of intI genes was 2.11%. Cassette arrays contained genes encoding resistance to aminoglycosides and chloramphenicol. A higher prevalence of antibiotic-resistant bacteria in the SML, although only detectable when bacteria were selected in antibiotic-supplemented agar, suggests that SML conditions select for antibiotic resistance. Results also showed that antibiotic resistance was uncommon among estuarine bacteria and the resistance mechanisms are probably predominantly intrinsic.
Related JoVE Video
Contribution of reactive oxygen species to UV-B-induced damage in bacteria.
J. Photochem. Photobiol. B, Biol.
Show Abstract
Hide Abstract
The present work aimed to identify the reactive oxygen species (ROS) produced during UV-B exposure and their biochemical targets, in a set of bacterial isolates displaying different UV susceptibilities. For that, specific exogenous ROS scavengers (catalase/CAT, superoxide dismutase/SOD, sodium azide and mannitol) were used. Biological effects were assessed from total bacterial number, colony counts and heterotrophic activity (glucose uptake and respiration). DNA strand breakage, ROS generation, oxidative damage to proteins and lipids were used as markers of oxidative stress. Sodium azide conferred a statistically significant protection in terms of lipid oxidation and cell survival, suggesting that singlet oxygen might play an important role in UV-B induced cell inactivation. Mannitol exerted a significant protection against DNA strand breakage and protein carbonylation, assigning hydroxyl radicals to DNA and protein damage. The addition of exogenous CAT and SOD significantly protected the capacity for glucose uptake and respiration, suggesting that superoxide and H(2)O(2) are involved in the impairment of activity during UV-B exposure. The observation that amendment with ROS scavengers can sometimes also exert a pro-oxidant effect suggests that the intracellular oxidant status of the cell ultimately determines the efficiency of antioxidant defenses.
Related JoVE Video
Occurrence of IMP-8, IMP-10, and IMP-13 metallo-?-lactamases located on class 1 integrons and other extended-spectrum ?-lactamases in bacterial isolates from Tunisian rivers.
Scand. J. Infect. Dis.
Show Abstract
Hide Abstract
Antibiotic-resistant bacteria have been surveyed widely in water bodies, but few studies have determined the diversity of antibiotic-resistant bacteria in river waters. This study was undertaken to investigate the origin of resistance among polluted river bacterial isolates in Tunisia.
Related JoVE Video
Prevalence and diversity of carbapenem-resistant bacteria in untreated drinking water in Portugal.
Microb. Drug Resist.
Show Abstract
Hide Abstract
We examined the prevalence and diversity of carbapenem-resistant bacteria (CRB) in untreated drinking water. Prevalence was estimated in plate count agar (PCA) and R2A media with or without antibiotics. Clonal relatedness of isolates was established by repetitive extragenic palindroitic (REP)-PCR. Phylogeny was based on the 16S rRNA gene. Antimicrobial susceptibility was assessed by disc diffusion methods. Genes encoding beta-lactamases and integrases were inspected by PCR. CRB ranged from 0.02% to 15.9% of cultivable bacteria, while ampicillin-resistant bacteria ranged from 1.5% to 31.4%. Carbapenem-resistant isolates affiliated with genera Stenotrophomonas, Pseudomonas, Janthinobacterium, Chryseobacterium, Sphingobacterium, Acidovorax, Caulobacter, Cupriavidus, and Sphingomonas. CRB were highly resistant to beta-lactams, but mostly susceptible to other classes. Transmissible beta-lactamase genes and integrase genes were not detected. The genus-specific bla(L1) was detected in 61% of the Stenotrophomonas isolates. Contrarily to what has been reported for extensively used antibiotics, low levels of carbapenem resistance were detected in untreated drinking water, often represented by intrinsically resistant genera. Production of chromosomal-encoded carbapenemases was the prevalent carbapenem resistance mechanism. Results suggest that the dissemination of anthropogenic-derived carbapenem resistance is at an early stage. This presents an opportunity to rationally develop monitoring strategies to identify dissemination routes and assess the impact of human actions in the environmental resistome.
Related JoVE Video
Diversity of gene cassette promoters in class 1 integrons from wastewater environments.
Appl. Environ. Microbiol.
Show Abstract
Hide Abstract
The diversity of gene cassette promoters in class 1 integrons was investigated in 47 strains isolated from wastewaters. The weak PcW and PcH1 variants predominated, suggesting that, similar to clinical environments, high rates of gene cassette recombination, rather than high expression of gene cassettes, have been preferentially selected in wastewaters.
Related JoVE Video
Resistance to broad-spectrum antibiotics in aquatic systems: anthropogenic activities modulate the dissemination of bla(CTX-M)-like genes.
Appl. Environ. Microbiol.
Show Abstract
Hide Abstract
We compared the resistomes within polluted and unpolluted rivers, focusing on extended-spectrum beta-lactamase (ESBL) genes, in particular bla(CTX-M). Twelve rivers from a Portuguese hydrographic basin were sampled. Physicochemical and microbiological parameters of water quality were determined, and the results showed that 9 rivers were classified as unpolluted (UP) and that 3 were classified as polluted (P). Of the 225 cefotaxime-resistant strains isolated, 39 were identified as ESBL-producing strains, with 18 carrying a bla(CTX-M) gene (15 from P and 3 from UP rivers). Analysis of CTX-M nucleotide sequences showed that 17 isolates produced CTX-M from group 1 (CTX-M-1, -3, -15, and -32) and 1 CTX-M that belonged to group 9 (CTX-M-14). A genetic environment study revealed the presence of different genetic elements previously described for clinical strains. ISEcp1 was found in the upstream regions of all isolates examined. Culture-independent bla(CTX-M)-like libraries were comprised of 16 CTX-M gene variants, with 14 types in the P library and 4 types in UP library, varying from 68% to 99% similarity between them. Besides the much lower level of diversity among CTX-M-like genes from UP sites, the majority were similar to chromosomal ESBLs such as bla(RAHN-1). The results demonstrate that the occurrence and diversity of bla(CTX-M) genes are clearly different between polluted and unpolluted lotic ecosystems; these findings favor the hypothesis that natural environments are reservoirs of resistant bacteria and resistance genes, where anthropogenic-driven selective pressures may be contributing to the persistence and dissemination of genes usually relevant in clinical environments.
Related JoVE Video
Broad diversity of conjugative plasmids in integron-carrying bacteria from wastewater environments.
FEMS Microbiol. Lett.
Show Abstract
Hide Abstract
In this study we assessed the occurrence, diversity and conjugative potential of plasmids in integron-carrying Aeromonas and Enterobacteriaceae from wastewaters. Sixty-six strains were included as donors in mating assays using rifampicin-resistant Escherichia coli and Pseudomonas putida recipient strains. The diversity of plasmids from donors and transconjugants (resistant to tetracycline or streptomycin) was evaluated by restriction analysis and replicon typing targeting 19 incompatibility groups. Restriction patterns revealed a diverse plasmid pool present in these strains. Plasmids were assigned to FrepB (Aeromonas salmonicida, Aeromonas veronii, Aeromonas sp., E. coli, Enterobacter sp.), FIC (A. salmonicida, Aeromonas sp.), FIA (Shigella sp.), I1 (A. veronii, Aeromonas sp., E. coli), HI1 (E. coli) and U (Aeromonas media) replicons. Nevertheless, 50% of the plasmids could not be assigned to any replicon type. Among integron-positive transconjugants, FrepB, I1 and HI1 replicons were detected. Results showed that wastewaters enclose a rich plasmid pool associated with integron-carrying bacteria, capable of conjugating to different bacterial hosts. Moreover, replicons detected in this study in Aeromonas strains expand our current knowledge of plasmid diversity in this genus.
Related JoVE Video
The UV responses of bacterioneuston and bacterioplankton isolates depend on the physiological condition and involve a metabolic shift.
FEMS Microbiol. Ecol.
Show Abstract
Hide Abstract
Bacteria from the surface microlayer (bacterioneuston) and underlying waters (bacterioplankton) were isolated upon exposure to UV-B radiation, and their individual UV sensitivity in terms of CFU numbers, activity (leucine and thymidine incorporation), sole-carbon source use profiles, repair potential (light-dependent and independent), and photoadaptation potential, under different physiological conditions, was compared. Colony counts were 11.5-16.2% more reduced by UV-B exposure in bacterioplankton isolates (P < 0.05). Inhibition of leucine incorporation in bacterioneuston isolates was 10.9-11.5% higher than in bacterioplankton (P < 0.05). These effects were accompanied by a shift in sole-carbon source use profiles, assessed with Biolog(®) EcoPlates, with a reduction in consumption of amines and amino acids and increased use of polymers, particularly in bacterioneuston isolates. Recovery under starvation was generally enhanced compared with nourished conditions, especially in bacterioneuston isolates. Overall, only insignificant increases in the induction of antibiotic resistant mutant phenotypes (Rif(R) and Nal(R) ) were observed. In general, a potential for photoadaptation could not be detected among the tested isolates. These results indicate that UV effects on bacteria are influenced by their physiological condition and are accompanied by a shift in metabolic profiles, more significant in bacterioneuston isolates, suggesting the presence of bacterial strains adapted to high UV levels in the SML.
Related JoVE Video
Spatial and temporal analysis of estuarine bacterioneuston and bacterioplankton using culture-dependent and culture-independent methodologies.
Antonie Van Leeuwenhoek
Show Abstract
Hide Abstract
Bacterioneuston may play a key role in water-air exchange of gases and in processing organic matter and pollutants that accumulate at the sea-surface microlayer (SML). However, the phylogenetic diversity of bacterioneuston has been poorly characterized. We analyzed 24 samples each from the SML and underlying water (UW) at three sites in the Ria de Aveiro estuary, Portugal. Cultivation and culture-independent techniques were used to compare bacterioneuston and bacterioplankton. Culturable heterotrophic bacteria were enriched in the SML. The culturable community was dominated by Psychrobacter and Acinetobacter. The presence of high numbers of Psychrobacter was a notable result. Differences were confined to a few genera overrepresented in UW samples (Kocuria, Agrococcus and Vibrio). 16S rDNA DGGE profiles were highly stable in terms of number and position of bands between sampling sites and dates but cluster analysis revealed a slight tendency for grouping according to sampled layer. SML-specific DGGE bands affiliated with Actinobacteria, Cyanobacteria, Gammaproteobacteria and Bacteroidetes. Low similarity between nucleotide sequences of DGGE-bands and previously reported sequences suggest the occurrence of SML-specific populations. Enrichment of SML for Pseudomonas and Aeromonas was questioned and the diversity of both communities was analyzed. Consistent differences between SML and UW aeromonads communities were not identified. In terms of Pseudomonas, a culturable operational taxonomic unit was consistently overrepresented within SML samples. Taken together, our results indicate that the similarity between SML and UW communities depends on spatial and temporal factors.
Related JoVE Video
Effects of UV-B radiation on the structural and physiological diversity of bacterioneuston and bacterioplankton.
Appl. Environ. Microbiol.
Show Abstract
Hide Abstract
The effects of UV radiation (UVR) on estuarine bacterioneuston and bacterioplankton were assessed in microcosm experiments. Bacterial abundance and DNA synthesis were more affected in bacterioplankton. Protein synthesis was more inhibited in bacterioneuston. Community analysis indicated that UVR has the potential to select resistant bacteria (e.g., Gammaproteobacteria), particularly abundant in bacterioneuston.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.