JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Impact of a Spatial Repellent on Malaria Incidence in Two Villages in Sumba, Indonesia.
Am. J. Trop. Med. Hyg.
PUBLISHED: 10-15-2014
Show Abstract
Hide Abstract
A randomized, double-blinded, placebo-controlled study was conducted to examine the effect of spatial repellent (SR) in households at risk of malaria in Indonesia. Following presumptive radical cure for malaria in 180 adult men representing sentinels of new infection in four clusters within two villages, all households were given either metofluthrin or placebo mosquito coils. Weekly blood smear screening and human-landing mosquito catches were done throughout the 6 months intervention. Malaria infections occurred in 61 subjects living in placebo households and 31 subjects living in SR coil households, suggesting a 52% protective effect of SR. Likewise, anopheles indoor human landing rates were 32% lower in homes receiving SR coils. Differences in the malaria attack rate between SR- and placebo-treated homes was significant when not accounting for the effects of clustering. When the analysis was adjusted for intra-cluster correlation, the differences between SR- and placebo-treated homes were not statistically significant. The findings provide evidence of SR public health benefit and support a larger trial statistically powered to detect those effects.
Related JoVE Video
Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis.
Lancet Infect Dis
PUBLISHED: 09-08-2014
Show Abstract
Hide Abstract
Chloroquine is the first-line treatment for Plasmodium vivax malaria in most endemic countries, but resistance is increasing. Monitoring of antimalarial efficacy is essential, but in P. vivax infections the assessment of treatment efficacy is confounded by relapse from the dormant liver stages. We systematically reviewed P. vivax malaria treatment efficacy studies to establish the global extent of chloroquine resistance.
Related JoVE Video
The relationship between organisational factors and the effectiveness of environmental management.
J. Environ. Manage.
PUBLISHED: 05-21-2014
Show Abstract
Hide Abstract
This paper examines the relationship between specific organisational factors (top management support, training, employee participation, teamwork and the link of performance to rewards) with the effectiveness of environmental management. The effectiveness of environmental management is measured in respect of the effectiveness of environmental management processes and environmental performance. Data were collected by mail survey questionnaire from a random sample of 899 senior financial officers in Australian manufacturing organisations. The findings highlight the significance of the effectiveness of environmental management processes as an antecedent of environmental performance and a mediator of the relationship between organisational factors and environmental performance. The findings provide managers with an insight into the specific organisational factors that they need to focus on to enhance the effectiveness of environmental management.
Related JoVE Video
Defining the geographical range of the Plasmodium knowlesi reservoir.
PLoS Negl Trop Dis
PUBLISHED: 03-01-2014
Show Abstract
Hide Abstract
The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations, on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical range of the parasite reservoir capable of infecting humans.
Related JoVE Video
Geographical variation in Plasmodium vivax relapse.
Malar. J.
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
Plasmodium vivax has the widest geographic distribution of the human malaria parasites and nearly 2.5 billion people live at risk of infection. The control of P. vivax in individuals and populations is complicated by its ability to relapse weeks to months after initial infection. Strains of P. vivax from different geographical areas are thought to exhibit varied relapse timings. In tropical regions strains relapse quickly (three to six weeks), whereas those in temperate regions do so more slowly (six to twelve months), but no comprehensive assessment of evidence has been conducted. Here observed patterns of relapse periodicity are used to generate predictions of relapse incidence within geographic regions representative of varying parasite transmission.
Related JoVE Video
G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests.
Malar. J.
PUBLISHED: 09-11-2013
Show Abstract
Hide Abstract
Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. vivax (known as "radical cure"), and that can reduce transmission of malaria parasites, are those in the 8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the most common human enzyme defect, affecting approximately 400 million people worldwide.Scaling up radical cure regimens will require testing for G6PD deficiency, in at two levels: 1) individual level to ensure safe case management, and 2) population level to understand the risk in the local population to guide Plasmodium vivax treatment policy. Several technical and operational knowledge gaps must be addressed to expand access to G6PD deficiency testing and to ensure that a patients G6PD status is known before deciding to administer an 8-aminoquinoline-based drug.In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure.
Related JoVE Video
Spatial distribution of G6PD deficiency variants across malaria-endemic regions.
Malar. J.
PUBLISHED: 09-05-2013
Show Abstract
Hide Abstract
Primaquine is essential for malaria control and elimination since it is the only available drug preventing multiple clinical attacks by relapses of Plasmodium vivax. It is also the only therapy against the sexual stages of Plasmodium falciparum infectious to mosquitoes, and is thus useful in preventing malaria transmission. However, the difficulties of diagnosing glucose-6-phosphate dehydrogenase deficiency (G6PDd) greatly hinder primaquines widespread use, as this common genetic disorder makes patients susceptible to potentially severe and fatal primaquine-induced haemolysis. The risk of such an outcome varies widely among G6PD gene variants.
Related JoVE Video
The distribution and bionomics of anopheles malaria vector mosquitoes in Indonesia.
Adv. Parasitol.
PUBLISHED: 07-24-2013
Show Abstract
Hide Abstract
Malaria remains one of the greatest human health burdens in Indonesia. Although Indonesia has a long and renowned history in the early research and discoveries of malaria and subsequently in the successful use of environmental control methods to combat the vector, much remains unknown about many of these mosquito species. There are also significant gaps in the existing knowledge on the transmission epidemiology of malaria, most notably in the highly malarious eastern half of the archipelago. These compound the difficulty of developing targeted and effective control measures. The sheer complexity and number of malaria vectors in the country are daunting. The difficult task of summarizing the available information for each species and/or species complex is compounded by the patchiness of the data: while relatively plentiful in one area or region, it can also be completely lacking in others. Compared to many other countries in the Oriental and Australasian biogeographical regions, only scant information on vector bionomics and response to chemical measures is available in Indonesia. That information is often either decades old, geographically patchy or completely lacking. Additionally, a large number of information sources are published in Dutch or Indonesian language and therefore less accessible. This review aims to present an updated overview of the known distribution and bionomics of the 20 confirmed malaria vector species or species complexes regarded as either primary or secondary (incidental) malaria vectors within Indonesia. This chapter is not an exhaustive review of each of these species. No attempt is made to specifically discuss or resolve the taxonomic record of listed species in this document, while recognizing the ever evolving revisions in the systematics of species groups and complexes. A review of past and current status of insecticide susceptibility of eight vector species of malaria is also provided.
Related JoVE Video
Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report.
Malar. J.
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
The diagnosis and management of glucose-6-phosphate dehydrogenase (G6PD) deficiency is a crucial aspect in the current phases of malaria control and elimination, which will require the wider use of 8-aminoquinolines for both reducing Plasmodium falciparum transmission and achieving the radical cure of Plasmodium vivax. 8-aminoquinolines, such as primaquine, can induce severe haemolysis in G6PD-deficient individuals, potentially creating significant morbidity and undermining confidence in 8-aminoquinoline prescription. On the other hand, erring on the side of safety and excluding large numbers of people with unconfirmed G6PD deficiency from treatment with 8-aminoquinolines will diminish the impact of these drugs. Estimating the remaining G6PD enzyme activity is the most direct, accessible, and reliable assessment of the phenotype and remains the gold standard for the diagnosis of patients who could be harmed by the administration of primaquine. Genotyping seems an unambiguous technique, but its use is limited by cost and the large range of recognized G6PD genotypes. A number of enzyme activity assays diagnose G6PD deficiency, but they require a cold chain, specialized equipment, and laboratory skills. These assays are impractical for care delivery where most patients with malaria live. Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing. The discussions and conclusions of a workshop conducted in Incheon, Korea in May 2012 to review key knowledge gaps in G6PD deficiency are reported here.
Related JoVE Video
G6PD deficiency: global distribution, genetic variants and primaquine therapy.
Adv. Parasitol.
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a potentially pathogenic inherited enzyme abnormality and, similar to other human red blood cell polymorphisms, is particularly prevalent in historically malaria endemic countries. The spatial extent of Plasmodium vivax malaria overlaps widely with that of G6PD deficiency; unfortunately the only drug licensed for the radical cure and relapse prevention of P. vivax, primaquine, can trigger severe haemolytic anaemia in G6PD deficient individuals. This chapter reviews the past and current data on this unique pharmacogenetic association, which is becoming increasingly important as several nations now consider strategies to eliminate malaria transmission rather than control its clinical burden. G6PD deficiency is a highly variable disorder, in terms of spatial heterogeneity in prevalence and molecular variants, as well as its interactions with P. vivax and primaquine. Consideration of factors including aspects of basic physiology, diagnosis, and clinical triggers of primaquine-induced haemolysis is required to assess the risks and benefits of applying primaquine in various geographic and demographic settings. Given that haemolytically toxic antirelapse drugs will likely be the only therapeutic options for the coming decade, it is clear that we need to understand in depth G6PD deficiency and primaquine-induced haemolysis to determine safe and effective therapeutic strategies to overcome this hurdle and achieve malaria elimination.
Related JoVE Video
Suppressive chemoprophylaxis invites avoidable risk of serious illness caused by Plasmodium vivax malaria.
Travel Med Infect Dis
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
Despite inadequacy in preventing vivax malaria after travel, suppressive chemoprophylaxis has dominated travel medicine strategy since the advent of chloroquine in 1946. The lethal threat of falciparum malaria versus the perceived benign consequence of vivax malaria underpins this strategic posture. Recent evidence demonstrating vivax malaria as often pernicious should prompt reconsideration of that posture. Causal prophylaxis kills early developing forms of plasmodia in the liver, thus preventing attacks of falciparum and vivax malaria during travel and delayed onset vivax malaria following travel. Primaquine is the only available drug for this application, and has good evidence of safety, tolerability and efficacy in non-pregnant, G6PD-normal travelers. The primaquine label, however, carries no such indication. Risk of pernicious vivax malaria from all across the endemic regions of the globe, including much of sub-Saharan Africa, should raise consideration of daily primaquine during travel as the preferred front-line option for chemoprophylaxis against malaria in travelers.
Related JoVE Video
Evidence and implications of mortality associated with acute Plasmodium vivax malaria.
Clin. Microbiol. Rev.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Vivax malaria threatens patients despite relatively low-grade parasitemias in peripheral blood. The tenet of death as a rare outcome, derived from antiquated and flawed clinical classifications, disregarded key clinical evidence, including (i) high rates of mortality in neurosyphilis patients treated with vivax malaria; (ii) significant mortality from zones of endemicity; and (iii) the physiological threat inherent in repeated, very severe paroxysms in any patient, healthy or otherwise. The very well-documented course of this infection, with the exception of parasitemia, carries all of the attributes of "perniciousness" historically linked to falciparum malaria, including severe disease and fatal outcomes. A systematic analysis of the parasite biomass in severely ill patients that includes blood, marrow, and spleen may ultimately explain this historic misunderstanding. Regardless of how this parasite is pernicious, recent data demonstrate that the infection comes with a significant burden of morbidity and associated mortality. The extraordinary burden of malaria is not heavily weighted upon any single continent by a single species of parasite-it is a complex problem for the entire endemic world, and both species are of fundamental importance. Humanity must rally substantial resources, intellect, and energy to counter this daunting but profound threat.
Related JoVE Video
Review: Improving the therapeutic index of 8-aminoquinolines by the use of drug combinations: review of the literature and proposal for future investigations.
Am. J. Trop. Med. Hyg.
PUBLISHED: 12-07-2011
Show Abstract
Hide Abstract
Because 8-aminoquinolines affect critical survival stages of Plasmodium parasites, treatment and control of malaria could be markedly improved by more widespread use of these drugs; however, hemolytic toxicity, which is widely prevalent in G6PD-deficient patients, severely constrains this use. Primaquine was approved more than 50 years ago after extensive clinical testing. Review of the mid-20th century literature in the light of present understanding of pharmacokinetics and metabolism suggests that manipulation of these factors might dissociate 8-aminoquinoline efficacy from toxicity and lead to an improved therapeutic index.
Related JoVE Video
Phenotyping clinical resistance to chloroquine in Plasmodium vivax in northeastern Papua, Indonesia.
Int J Parasitol Drugs Drug Resist
PUBLISHED: 12-01-2011
Show Abstract
Hide Abstract
Chloroquine (CQ)-resistant Plasmodium vivax was first documented in 1989 and threatens much of eastern Indonesia, with > 50% of therapeutic failure rates. We screened 2236 subjects for malaria infection through active case detection and identified 232 infected cases with 100 subjects carried P. vivax mono infection. We prospectively evaluated therapeutic responses to CQ in 73 subjects infected by P. vivax in northeastern Papua, Indonesia. We phenotyped these infections as susceptible or resistant to CQ using a 28-day in vivo test format. Eighteen subjects (25%) had persistent or recurrent parasitemia during the test and were provisionally classified as resistant. Among the remainder, 46 (63%) subjects had no persistent or recurrent parasitemia and were classified as having infections sensitive to CQ, 4 were lost to follow up, and 5 dropped out. Among the 18 provisionally resistant cases, 1 subject (6%) had persistent parasitemia at Day 3 and was considered as a direct treatment failure, 2 subjects (11%) had recurrent parasitemia by Day 7 and were considered early treatment failures, and 7 (39%) and 8 (44%) had recurrent parasitemia by Days 14 and 28, respectively. Analysis of blood for CQ+N-desethylchloroquine (DCQ) levels on day of recurrence from 15 of the 18 with treatment failures showed 11 subjects having CQ+DCQ blood levels ? 100 ng/ml and 2 with CQ+DCQ blood levels < 100 ng/ml. The 28-day cumulative incidence of therapeutic failure likely due to parasite resistance was 17.5%. These findings affirm P. vivax resistance to CQ in eastern Indonesia, albeit at lower levels than reported elsewhere. This simple means of phenotyping P. vivax infections could be implemented in other malaria endemic areas of Indonesia.
Related JoVE Video
Performance of the CareStart™ G6PD deficiency screening test, a point-of-care diagnostic for primaquine therapy screening.
PLoS ONE
PUBLISHED: 08-22-2011
Show Abstract
Hide Abstract
Development of reliable, easy-to-use, rapid diagnostic tests (RDTs) to detect glucose-6-phosphate dehydrogenase (G6PD) deficiency at point of care is essential to deploying primaquine therapies as part of malaria elimination strategies. We assessed a kit under research and development called CareStart™ G6PD deficiency screening test (Access Bio, New Jersey, USA) by comparing its performance to quantitative G6PD enzyme activity using a standardized spectrophotometric method (gold standard). Blood samples (n?=?903) were collected from Cambodian adults living in Pailin province, western Cambodia. G6PD enzyme activities ranged from 0 to 20.5 U/g Hb (median 12.0 U/g Hg). Based on a normal haemoglobin concentration and wild-type G6PD gene, the normal values of G6PD enzymatic activity for this population was 3.6 to 20.5 U/g Hg (95(th) percentiles from 5.5 to 17.2 U/g Hg). Ninety-seven subjects (10.7%) had <3.6 U/g Hg and were classified as G6PD deficient. Prevalence of deficiency was 15.0% (64/425) among men and 6.9% (33/478) among women. Genotype was analyzed in 66 G6PD-deficient subjects and 63 of these exhibited findings consistent with Viangchang genotype. The sensitivity and specificity of the CareStart™ G6PD deficiency screening test was 0.68 and 1.0, respectively. Its detection threshold was <2.7 U/g Hg, well within the range of moderate and severe enzyme deficiencies. Thirteen subjects (1.4%, 12 males and 1 female) with G6PD enzyme activities <2 U/g Hg were falsely classified as "normal" by RDT. This experimental RDT test here evaluated outside of the laboratory for the first time shows real promise, but safe application of it will require lower rates of falsely "normal" results.
Related JoVE Video
Plasmodium falciparum malaria endemicity in Indonesia in 2010.
PLoS ONE
PUBLISHED: 04-08-2011
Show Abstract
Hide Abstract
Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010.
Related JoVE Video
Malaria distribution, prevalence, drug resistance and control in Indonesia.
Adv. Parasitol.
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
Approximately 230 million people live in Indonesia. The country is also home to over 20 anopheline vectors of malaria which transmit all four of the species of Plasmodium that routinely infect humans. A complex mosaic of risk of infection across this 5000-km-long archipelago of thousands of islands and distinctive habitats seriously challenges efforts to control malaria. Social, economic and political dimensions contribute to these complexities. This chapter examines malaria and its control in Indonesia, from the earliest efforts by malariologists of the colonial Netherlands East Indies, through the Global Malaria Eradication Campaign of the 1950s, the tumult following the coup détat of 1965, the global resurgence of malaria through the 1980s and 1990s and finally through to the decentralization of government authority following the fall of the authoritarian Soeharto regime in 1998. We detail important methods of control and their impact in the context of the political systems that supported them. We examine prospects for malaria control in contemporary decentralized and democratized Indonesia with multidrug-resistant malaria and greatly diminished capacities for integrated malaria control management programs.
Related JoVE Video
Consideration of ethics in primaquine therapy against malaria transmission.
Trends Parasitol.
PUBLISHED: 07-15-2010
Show Abstract
Hide Abstract
Millions of people receive primaquine against sexual plasmodia responsible for malaria transmission. These gametocytes cause no symptoms and do not threaten the host, but they infect mosquitoes and threaten the community. Primaquine causes hemolysis in the small minority of patients with glucose-6-phosphate dehydrogenase deficiency (G6PDd). Clinical studies in the 1950s demonstrated gametocytocidal primaquine to be safe without G6PDd screening. However, the evaluated G6PDd variant, African A-, represents mild sensitivity to primaquine. The view of primaquine as a safe gametocytocide thus rests largely upon observations from a G6PDd variant that is unlikely to challenge safety. The early clinical work does not seem to afford an adequate assessment of safety in G6PDd patients. Potential risk of harm without clinical benefit to the patient raises ethical questions that should be examined.
Related JoVE Video
The international limits and population at risk of Plasmodium vivax transmission in 2009.
PLoS Negl Trop Dis
PUBLISHED: 03-17-2010
Show Abstract
Hide Abstract
A research priority for Plasmodium vivax malaria is to improve our understanding of the spatial distribution of risk and its relationship with the burden of P. vivax disease in human populations. The aim of the research outlined in this article is to provide a contemporary evidence-based map of the global spatial extent of P. vivax malaria, together with estimates of the human population at risk (PAR) of any level of transmission in 2009.
Related JoVE Video
Evaluation of chloroquine therapy for vivax and falciparum malaria in southern Sumatra, western Indonesia.
Malar. J.
PUBLISHED: 02-12-2010
Show Abstract
Hide Abstract
Chloroquine was used as first-line treatment for Plasmodium falciparum or Plasmodium vivax in Indonesia before the initial launch of artemisinin combination therapy in 2004. A study to evaluate efficacies of chloroquine against P. falciparum and P. vivax was undertaken at Lampung in southern Sumatra, western Indonesia in 2002.
Related JoVE Video
Targeting the hypnozoite reservoir of Plasmodium vivax: the hidden obstacle to malaria elimination.
Trends Parasitol.
PUBLISHED: 02-03-2010
Show Abstract
Hide Abstract
Plasmodium vivax is the major species of malaria parasite outside Africa. It is especially problematic in that the infection can relapse in the absence of mosquitoes by activation of dormant hypnozoites in the liver. Medicines that target the erythrocytic stages of Plasmodium falciparum are also active against P. vivax, except where these have been compromised by resistance. However, the only clinical therapy against relapse of vivax malaria is the 8-aminoquinoline, primaquine. This molecule has the drawback of causing haemolysis in genetically sensitive patients and requires 14 days of treatment. New, safer and more-easily administered drugs are urgently needed, and this is a crucial gap in the broader malaria-elimination agenda. New developments in cell biology are starting to open ways to the next generation of drugs against hypnozoites. This search is urgent, given the time needed to develop a new medication.
Related JoVE Video
Histopathology of fatal respiratory distress caused by Plasmodium vivax malaria.
Am. J. Trop. Med. Hyg.
PUBLISHED: 10-29-2009
Show Abstract
Hide Abstract
An otherwise healthy 20-year-old woman in Goa, India, received antibiotics after a diagnosis of upper respiratory tract infection. One week later, vivax malaria was diagnosed at a health center, but the patient developed respiratory distress and lost consciousness. She arrived at emergency department in shock, breathless, and comatose. She died within minutes. Two independent laboratories later confirmed Plasmodium vivax by microscopy (140,000/microL) and by nested and real-time polymerase chain reaction methods. Post-mortem examination showed congestion of alveolar capillaries by heavy monocytic infiltrates, along with diffuse damage to alveolar membranes consistent with acute respiratory distress syndrome. Parasites seen in lung tissue were roughly proportionate to both peripheral hyperparasitemia and those seen in other organs without lesions. In this patient, vivax malaria caused a rapidly fatal respiratory distress.
Related JoVE Video
The treatment of established non-union of the proximal humerus using the Polarus locking intramedullary nail.
Int J Shoulder Surg
PUBLISHED: 10-16-2009
Show Abstract
Hide Abstract
Non-union following fracture of the proximal humerus is not uncommon, particularly in the elderly. This can be associated with significant morbidity due to pain, instability and functional impairment. The Polarus device (Acumed) is a locked, antegrade intramedullary nail designed to stabilize displaced 2-, 3- and 4-part fractures of the proximal humerus. We report our experience with the Polarus nail for the treatment of established non-union of the proximal humerus.
Related JoVE Video
Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite.
Lancet Infect Dis
PUBLISHED: 08-22-2009
Show Abstract
Hide Abstract
Plasmodium vivax is geographically the most widely distributed cause of malaria in people, with up to 2.5 billion people at risk and an estimated 80 million to 300 million clinical cases every year--including severe disease and death. Despite this large burden of disease, P vivax is overlooked and left in the shadow of the enormous problem caused by Plasmodium falciparum in sub-Saharan Africa. The technological advances enabling the sequencing of the P vivax genome and a recent call for worldwide malaria eradication have together placed new emphasis on the importance of addressing P vivax as a major public health problem. However, because of this parasites biology, it is especially difficult to interrupt the transmission of P vivax, and experts agree that the available methods for preventing and treating infections with P vivax are inadequate. It is thus imperative that the development of new methods and strategies become a priority. Advancing the development of such methods needs renewed emphasis on understanding the biology, pathogenesis, and epidemiology of P vivax. This Review critically examines what is known about P vivax, focusing on identifying the crucial gaps that create obstacles to the elimination of this parasite in human populations.
Related JoVE Video
Resistance to chloroquine by Plasmodium vivax at Alor in the Lesser Sundas Archipelago in eastern Indonesia.
Am. J. Trop. Med. Hyg.
PUBLISHED: 07-29-2009
Show Abstract
Hide Abstract
The therapeutic response to standard chloroquine therapy against Plasmodium vivax was evaluated in 36 subjects living at Alor in the Lesser Sundas Archipelago of eastern Indonesia. Chloroquine level were measured on 32 individuals, and showed evidence of adequate absorption of standard chloroquine therapy. Three subjects failed treatment by Day 2 or 3, with evidence of rising asexual parasitemia, and two others had stable parasitemia to Day 7. Ten more subjects had recurrent parasitemia by Day 14, two by Day 21, and another one by Day 28. Three subjects had recurrent parasitemia on Days 14 and 28, but with chloroquine < 100 ng/mL. Eleven subjects cleared parasitemia by Day 3 and had no recurrences up to Day 28. In summary, 28-day cumulative incidence of confirmed resistance to chloroquine was 56% of infections evaluated. Chloroquine should not be considered adequate for treatment of acute vivax malaria acquired in this region.
Related JoVE Video
Resistance to therapies for infection by Plasmodium vivax.
Clin. Microbiol. Rev.
PUBLISHED: 07-15-2009
Show Abstract
Hide Abstract
The gravity of the threat posed by vivax malaria to public health has been poorly appreciated. The widely held misperception of Plasmodium vivax as being relatively infrequent, benign, and easily treated explains its nearly complete neglect across the range of biological and clinical research. Recent evidence suggests a far higher and more-severe disease burden imposed by increasingly drug-resistant parasites. The two frontline therapies against vivax malaria, chloroquine and primaquine, may be failing. Despite 60 years of nearly continuous use of these drugs, their respective mechanisms of activity, resistance, and toxicity remain unknown. Although standardized means of assessing therapeutic efficacy against blood and liver stages have not been developed, this review examines the provisional in vivo, ex vivo, and animal model systems for doing so. The rationale, design, and interpretation of clinical trials of therapies for vivax malaria are discussed in the context of the nuance and ambiguity imposed by the hypnozoite. Fielding new drug therapies against real-world vivax malaria may require a reworking of the strategic framework of drug development, namely, the conception, testing, and evaluation of sets of drugs designed for the cure of both blood and liver asexual stages as well as the sexual blood stages within a single therapeutic regimen.
Related JoVE Video
Malaria zoonoses.
Travel Med Infect Dis
PUBLISHED: 06-03-2009
Show Abstract
Hide Abstract
The genus Plasmodium includes many species that naturally cause malaria among apes and monkeys. The 2004 discovery of people infected by Plasmodium knowlesi in Malaysian Borneo alerted to the potential for non-human species of plasmodia to cause human morbidity and mortality. Subsequent work revealed what appears to be a surprisingly high risk of infection and relatively severe disease, including among travelers to Southeast Asia. The biology and medicine of this zoonosis is reviewed here, along with an examination of the spectrum of Plasmodium species that may cause infection of humans.
Related JoVE Video
Acquired immunity to malaria.
Clin. Microbiol. Rev.
PUBLISHED: 01-13-2009
Show Abstract
Hide Abstract
Naturally acquired immunity to falciparum malaria protects millions of people routinely exposed to Plasmodium falciparum infection from severe disease and death. There is no clear concept about how this protection works. There is no general agreement about the rate of onset of acquired immunity or what constitutes the key determinants of protection; much less is there a consensus regarding the mechanism(s) of protection. This review summarizes what is understood about naturally acquired and experimentally induced immunity against malaria with the help of evolving insights provided by biotechnology and places these insights in the context of historical, clinical, and epidemiological observations. We advocate that naturally acquired immunity should be appreciated as being virtually 100% effective against severe disease and death among heavily exposed adults. Even the immunity that occurs in exposed infants may exceed 90% effectiveness. The induction of an adult-like immune status among high-risk infants in sub-Saharan Africa would greatly diminish disease and death caused by P. falciparum. The mechanism of naturally acquired immunity that occurs among adults living in areas of hyper- to holoendemicity should be understood with a view toward duplicating such protection in infants and young children in areas of endemicity.
Related JoVE Video
Randomized, open-label trial of primaquine against vivax malaria relapse in Indonesia.
Antimicrob. Agents Chemother.
Show Abstract
Hide Abstract
Radical cure of Plasmodium vivax infection applies blood schizontocidal therapy against the acute attack and hypnozoitocidal therapy against later relapse. Chloroquine and primaquine have been used for 60 years in this manner. Resistance to chloroquine by the parasite now requires partnering other blood schizontocides with primaquine. However, the safety and efficacy of primaquine against relapse when combined with other drugs have not been demonstrated. This randomized, open-label, and relapse-controlled trial estimated the efficacy of primaquine against relapse when administered with quinine or dihydroartemisinin-piperaquine for treatment of the acute infection. Among 650 soldiers who had returned to their malaria-free base in Java, Indonesia, after 12 months in malarious Papua, Indonesia, 143 with acute P. vivax malaria were eligible for study. One hundred sixteen enrolled subjects were randomized to these treatments: artesunate (200-mg dose followed by 100 mg/day for 6 days), quinine (1.8 g/day for 7 days) plus concurrent primaquine (30 mg/day for 14 days), or dihydroartemisinin (120 mg) plus piperaquine (960 mg) daily for 3 days followed 25 days later by primaquine (30 mg/day for 14 days). Follow-up was for 12 months. One hundred thirteen subjects were analyzable. Relapse occurred in 32 of 41 (78%) subjects administered artesunate alone (2.71 attacks/person-year), 7 of 36 (19%) administered quinine plus primaquine (0.23 attack/person-year), and 2 of 36 (6%) administered dihydroartemisinin-piperaquine plus primaquine (0.06 attack/person-year). The efficacy of primaquine against relapse was 92% (95% confidence interval [CI] = 81% to 96%) for quinine plus primaquine and 98% (95% CI = 91% to 99%) for dihydroartemisinin-piperaquine plus primaquine. Antirelapse therapy with primaquine begun a month after treatment of the acute attack with dihydroartemisinin-piperaquine proved safe and highly efficacious against relapse by P. vivax acquired in Papua, Indonesia.
Related JoVE Video
Diagnosis and treatment of Plasmodium vivax malaria.
Adv. Parasitol.
Show Abstract
Hide Abstract
Infection by Plasmodium vivax poses unique challenges for diagnosis and treatment. Relatively low numbers of parasites in peripheral circulation may be difficult to confirm, and patients infected by dormant liver stages cannot be diagnosed before activation and the ensuing relapse. Radical cure thus requires therapy aimed at both the blood stages of the parasite (blood schizontocidal) and prevention of subsequent relapses (hypnozoitocidal). Chloroquine and primaquine have been the companion therapies of choice for the treatment of vivax malaria since the 1950s. Confirmed resistance to chloroquine occurs in much of the vivax endemic world and demands the investigation of alternative blood schizontocidal companions in radical cure. Such a shift in practice necessitates investigation of the safety and efficacy of primaquine when administered with those therapies, and the toxicity profile of such combination treatments, particularly in patients with glucose-6-phosphate dehydrogenase deficiency. These clinical studies are confounded by the frequency and timing of relapse among strains of P. vivax, and potentially by differing susceptibilities to primaquine. The inability to maintain this parasite in continuous in vitro culture greatly hinders new drug discovery. Development of safe and effective chemotherapies for vivax malaria for the coming decades requires overcoming these challenges.
Related JoVE Video
The global public health significance of Plasmodium vivax.
Adv. Parasitol.
Show Abstract
Hide Abstract
Plasmodium vivax occurs globally and thrives in both temperate and tropical climates. Here, we review the evidence of the biological limits of its contemporary distribution and the global population at risk (PAR) of the disease within endemic countries. We also review the most recent evidence for the endemic level of transmission within its range and discuss the implications for burden of disease assessments. Finally, the evidence-base for defining the contemporary distribution and PAR of P. vivax are discussed alongside a description of the vectors of human malaria within the limits of risk. This information along with recent data documenting the severe morbid and fatal consequences of P. vivax infection indicates that the public health significance of P. vivax is likely to have been seriously underestimated.
Related JoVE Video
G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map.
PLoS Med.
Show Abstract
Hide Abstract
Primaquine is a key drug for malaria elimination. In addition to being the only drug active against the dormant relapsing forms of Plasmodium vivax, primaquine is the sole effective treatment of infectious P. falciparum gametocytes, and may interrupt transmission and help contain the spread of artemisinin resistance. However, primaquine can trigger haemolysis in patients with a deficiency in glucose-6-phosphate dehydrogenase (G6PDd). Poor information is available about the distribution of individuals at risk of primaquine-induced haemolysis. We present a continuous evidence-based prevalence map of G6PDd and estimates of affected populations, together with a national index of relative haemolytic risk.
Related JoVE Video
Human ex vivo studies on asexual Plasmodium vivax: the best way forward.
Int. J. Parasitol.
Show Abstract
Hide Abstract
The lack of a continuous culture method for Plasmodium vivax has given the impression that investigations on this important species are severely curtailed. However, the use of new or improved ex vivo methods and tools to study fresh and thawed isolates from vivax malaria patients is currently providing useful data on P. vivax, such as sensitivity to antimalarial drugs, invasion mechanisms and pathobiology. This review discusses a practical framework for conducting ex vivo studies on the asexual erythrocytic stages of P. vivax and considers the synergies between ex vivo defined phenotypes, ex vivo derived omic studies and in vivo clinical studies.
Related JoVE Video
Reinventing primaquine for endemic malaria.
Expert Opin Emerg Drugs
Show Abstract
Hide Abstract
After sixty years of continuous use, primaquine remains the only therapy licensed for arresting transmission and relapse of malaria. The US Army developed primaquine for soldiers in a wartime crisis setting. Dosing strategies suited to that narrow population were adopted without modification or validation for the broader population of humans exposed to risk of malaria. The poor suitability of these strategies in populations exhibiting greater vulnerability to hemolytic toxicity among glucose-6-phosphate dehydrogenase deficient patients has not been addressed. Primaquine requires chemotherapeutic reinvention delivering less threatening doses by leveraging unexplored co-drug synergies.
Related JoVE Video
Good efficacy of artemether-lumefantrine for uncomplicated falciparum malaria in eastern Sumba, East Nusatenggara, Indonesia.
Acta Med Indones
Show Abstract
Hide Abstract
to evaluate the safety and efficacy of a fixed combination of artemether-lumefantrine for likely use against failures of the artesunate-amodiaquine first line therapy.
Related JoVE Video
A long neglected world malaria map: Plasmodium vivax endemicity in 2010.
PLoS Negl Trop Dis
Show Abstract
Hide Abstract
Current understanding of the spatial epidemiology and geographical distribution of Plasmodium vivax is far less developed than that for P. falciparum, representing a barrier to rational strategies for control and elimination. Here we present the first systematic effort to map the global endemicity of this hitherto neglected parasite.
Related JoVE Video
Primaquine toxicity forestalls effective therapeutic management of the endemic malarias.
Int. J. Parasitol.
Show Abstract
Hide Abstract
Treatment of acutely ill patients, informed by a diagnosis of the species of Plasmodium involved, has long dominated strategic thinking in malaria chemotherapeutics. This bias for both acute illness and access to diagnosis resulted in therapeutic strategies poorly suited to malaria as it occurs in endemic zones. Most of those malarias do not provoke illness and occur beyond diagnostic reach for technical or practical reasons. Therapies effective against all species and stages would likely prove more practical in endemic zones, especially if safely administered without laboratory screening for contraindications. The primary impediment to such therapies is the mild to severe hemolytic toxicity of primaquine in patients with glucose-6-phosphate dehydrogenase deficiency. Primaquine is the only treatment licensed for therapy against relapse caused by dormant liver stages occurring in some species, and against the sexual blood stages responsible for transmission to mosquitoes in all species. Despite being licensed over 50 years ago, no alternative drugs have been developed, and safer dosing regimens of primaquine have not been explored. These failures forestalled the emergence of therapies practical for use in endemic zones, especially in the context of eliminating transmission.
Related JoVE Video
Primaquine radical cure of Plasmodium vivax: a critical review of the literature.
Malar. J.
Show Abstract
Hide Abstract
Primaquine has been the only widely available hypnozoitocidal anti-malarial drug for half a century. Despite this its clinical efficacy is poorly characterized resulting in a lack of consensus over the optimal regimen for the radical cure of Plasmodium vivax.
Related JoVE Video
Serious and fatal illness associated with falciparum and vivax malaria among patients admitted to hospital at West Sumba in eastern Indonesia.
Am. J. Trop. Med. Hyg.
Show Abstract
Hide Abstract
Records of 3,449 patients admitted to Karitas Hospital at Waitabula in eastern Indonesia with microscopy-confirmed malaria through 2008 and 2009 were systematically reviewed. Falciparum, vivax, and mixed species malaria occurred among 1,541, 1,837, and 71 admissions, respectively. Among these, 400 (26%), 199 (11%), and 15 (21%) had serious illness. Fatalities occurred in 46 (12%), 18 (9%), and 2 (13%) of these patients, respectively. Although patients with a diagnosis of falciparum malaria were more likely to have serious illness compared with those with vivax malaria (odds ratio [OR] = 2.9; 95% confidence interval [CI]: 2.4-3.5), this diagnosis nonetheless was associated with 32% of serious illness and 27% of fatalities. Among the seriously ill with a diagnosis of falciparum or vivax malaria, no significant difference in risk of death occurred (OR = 1.3; 95% CI: 0.7-2.5). Serious and fatal illness was predominantly anemia or altered mental state syndromes among patients with either of the species diagnoses. Plasmodium vivax was associated with a substantial share of the burden of morbidity and mortality caused by malaria in this hypo- to meso-endemic community.
Related JoVE Video
Plasmodium vivax malaria endemicity in Indonesia in 2010.
PLoS ONE
Show Abstract
Hide Abstract
Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010.
Related JoVE Video
Severe disease in children hospitalized with a diagnosis of Plasmodium vivax in south-eastern Pakistan.
Malar. J.
Show Abstract
Hide Abstract
Infection by Plasmodium vivax has been considered rarely threatening to life, but recent studies challenge this notion. This study documented the frequency and character of severe illness in paediatric patients admitted to a hospital in south-eastern Pakistan with a laboratory-confirmed diagnosis of vivax malaria.
Related JoVE Video
Elimination therapy for the endemic malarias.
Curr Infect Dis Rep
Show Abstract
Hide Abstract
Most malaria diagnosed outside endemic zones occurs in patients experiencing the consequences of what was likely a single infectious bite by an anopheline mosquito. A single species of parasite is nearly always involved and expert opinion on malaria chemotherapy uniformly prescribes species- and stage-specific treatments. However the vast majority of people experiencing malaria, those resident in endemic zones, do so repeatedly and very often with the involvement of two or more species and stages of parasite. Silent forms of these infections-asymptomatic and beyond the reach of diagnostics-may accumulate to form substantial and unchallenged reservoirs of infection. In such settings treating only the species and stage of malaria revealed by diagnosis and not others may not be sensible or appropriate. Developing therapeutic strategies that address all species and stages independently of diagnostic evidence may substantially improve the effectiveness of the control and elimination of endemic malaria.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.