JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Learning Curve for Robot-Assisted Neck Dissection in Head and Neck Cancer: A 3-Year Prospective Case Study and Analysis.
JAMA Otolaryngol Head Neck Surg
PUBLISHED: 11-14-2014
Show Abstract
Hide Abstract
Robot-assisted neck dissection (RAND) for the management of regional metastases is a recently developed technique in the field of head and neck cancer that uses a robotic surgical system. This is the first report that estimates the learning curve for RAND.
Related JoVE Video
Nonthermal Plasma Induces Apoptosis in ATC Cells: Involvement of JNK and p38 MAPK-Dependent ROS.
Yonsei Med. J.
PUBLISHED: 10-18-2014
Show Abstract
Hide Abstract
To determine the effects of nonthermal plasma (NTP) induced by helium (He) alone or He plus oxygen (O?) on the generation of reactive oxygen species (ROS) and cell death in anaplastic thyroid cancer cells.
Related JoVE Video
Identification of the Major Prostaglandin Glycerol Ester Hydrolase in Human Cancer Cells.
J. Biol. Chem.
PUBLISHED: 10-11-2014
Show Abstract
Hide Abstract
Prostaglandin glycerol esters (PG-Gs) are produced as a result of the oxygenation of the endocannabinoid, 2-arachidonoylglycerol (2-AG), by cyclooxygenase 2. Understanding the role that PG-Gs play in a biological setting has been difficult because of their sensitivity to enzymatic hydrolysis. By comparing PG-G hydrolysis across human cancer cell lines to serine hydrolase activities determined by activity-based protein profiling, we identified lysophospholipase A2 (LYPLA2) as a major enzyme responsible for PG-G hydrolysis. The principal role played by LYPLA2 in PGE2-G hydrolysis was confirmed by siRNA knockdown. Purified, recombinant LYPLA2 hydrolyzed PG-Gs in the following order of activity - PGE2-G > PGF2?-G > PGD2-G; LYPLA2 hydrolyzed 1-AG but not 2-AG or arachidonoylethanolamide (AEA). Chemical inhibition of LYPLA2 in the mouse macrophage-like cell line, RAW264.7, elicited an increase in PG-G production. Our data indicate that LYPLA2 serves as a major PG-G hydrolase in human cells. Perturbation of this enzyme should enable selective modulation of PG-Gs without alterations in endocannabinoids, thereby providing a means to decipher the unique functions of PG-Gs in biology and disease.
Related JoVE Video
A novel synthetic compound 3-amino-3-(4-fluoro-phenyl)-1H-quinoline-2,4-dione (KR22332) exerts a radioprotective effect via the inhibition of mitochondrial dysfunction and generation of reactive oxygen species.
Yonsei Med. J.
PUBLISHED: 06-24-2014
Show Abstract
Hide Abstract
Acute side effects of radiation such as oral mucositis are observed in most patients. Although several potential radioprotective agents have been proposed, no effective agent has yet been identified. In this study, we investigated the effectiveness of synthetic compound 3-amino-3-(4-fluoro-phenyl)-1H-quinoline-2,4-dione (KR22332) as a radioprotective agent.
Related JoVE Video
Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report.
Artif Organs
PUBLISHED: 04-21-2014
Show Abstract
Hide Abstract
Three-dimensional printing has come into the spotlight in the realm of tissue engineering. We intended to evaluate the plausibility of 3D-printed (3DP) scaffold coated with mesenchymal stem cells (MSCs) seeded in fibrin for the repair of partial tracheal defects. MSCs from rabbit bone marrow were expanded and cultured. A half-pipe-shaped 3DP polycaprolactone scaffold was coated with the MSCs seeded in fibrin. The half-pipe tracheal graft was implanted on a 10?×?10-mm artificial tracheal defect in four rabbits. Four and eight weeks after the operation, the reconstructed sites were evaluated bronchoscopically, radiologically, histologically, and functionally. None of the four rabbits showed any sign of respiratory distress. Endoscopic examination and computed tomography showed successful reconstruction of trachea without any collapse or blockage. The replaced tracheas were completely covered with regenerated respiratory mucosa. Histologic analysis showed that the implanted 3DP tracheal grafts were successfully integrated with the adjacent trachea without disruption or granulation tissue formation. Neo-cartilage formation inside the implanted graft was sufficient to maintain the patency of the reconstructed trachea. Scanning electron microscope examination confirmed the regeneration of the cilia, and beating frequency of regenerated cilia was not different from those of the normal adjacent mucosa. The shape and function of reconstructed trachea using 3DP scaffold coated with MSCs seeded in fibrin were restored successfully without any graft rejection.
Related JoVE Video
Protective effects of Korean red ginseng on radiation-induced oral mucositis in a preclinical rat model.
Nutr Cancer
PUBLISHED: 03-11-2014
Show Abstract
Hide Abstract
Numerous studies' attempts to improve radiation-induced oral mucositis have not produced a qualified treatment yet. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in an in vivo rat model. After 20 Gy of irradiation, rats were divided randomly into the following 4 groups: control, KRG only, radiotherapy (RT) only, and RT + KRG group. The rats were monitored in terms of survival rate, activity, mucositis grade, oral intake, and body weight. The tongue, buccal mucosa, and submandibular gland (SMG) were harvested, and the weight of the SMG was analyzed. The samples then underwent hematoxylin and eosin, TUNEL, and immunohistochemical staining. Radiation-induced severe oral mucositis and SMG injury led to poor oral intake and delayed healing, resulting in the death of some rats. We found that survival rate, oral intake, and body weight increased. Moreover, rats treated with KRG showed less severe mucositis and decreased histologic changes of the oral mucosa and SMG. Furthermore, we showed that the protective effects of KRG were caused by inhibition of the apoptotic signal transduction pathway linked to caspase-3. In conclusion, KRG protects the oral mucosa and SMG from radiation-induced damage by inhibiting caspase-mediated apoptosis in rats.
Related JoVE Video
Tracheal reconstruction using chondrocytes seeded on a poly(L-lactic-co-glycolic acid)-fibrin/hyaluronan.
J Biomed Mater Res A
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
Reconstruction of trachea is still a clinical dilemma. Tissue engineering is a recent and promising concept to resolve this problem. This study evaluated the feasibility of allogeneic chondrocytes cultured with fibrin/hyaluronic acid (HA) hydrogel and degradable porous poly(L-lactic-co-glycolic acid) (PLGA) scaffold for partial tracheal reconstruction. Chondrocytes from rabbit articular cartilage were expanded and cultured with fibrin/HA hydrogel and injected into a 5 × 10 mm-sized, curved patch-shape PLGA scaffold. After 4 weeks in vitro culture, the scaffold was implanted on a tracheal defect in eight rabbits. Six and 10 weeks postoperatively, the implanted sites were evaluated by bronchoscope and radiologic and histologic analyses. Ciliary beat frequency (CBF) of regenerated epithelium was also evaluated. None of the eight rabbits showed any sign of respiratory distress. Bronchoscopic examination did not reveal stenosis of the reconstructed trachea and the defects were completely recovered with respiratory epithelium. Computed tomography scan showed good luminal contour of trachea. Histologic data showed that the implanted chondrocytes successfully formed neocartilage with minimal granulation tissue. CBF of regenerated epithelium was similar to that of normal epithelium. Partial tracheal defect was successfully reconstructed anatomically and functionally using allogeneic chondrocytes cultured with PLGA-fibrin/HA composite scaffold.
Related JoVE Video
Small intestine submucosa and mesenchymal stem cells composite gel for scarless vocal fold regeneration.
Biomaterials
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
The purpose of this study is to demonstrate scarless vocal fold (VF) regeneration by using a composite gel composed of small intestine submucosa (SIS) and mesenchymal stem cells (MSCs). A scar was made with an electrocoagulator on both VFs in 24 rabbits, followed by injection of either MSCs, SIS, or MSCs-SIS composite gel in the right side VF, while the left side VF was left untreated. VF scars were evaluated with in vivo fluorescence live imaging system (IFLIS), endoscopy, histology, and videokymography (VKG) after eight weeks. IFLIS demonstrated that SIS enabled the MSCs to survive and be engrafted in the VF. The histological analysis showed increased hyaluronic acid accumulation and controlled collagen deposition by MSCs-SIS composite gel. VKG analysis showed more favorable vibrations of MSCs-SIS injected VF, compared to other treatment group. In conclusion, the injectable SIS supplied a niche for the MSCs to stably settle down in scarred VFs and helped to regulate ECM synthesis. The ECM remodeling underwent by the surviving MSCs eventually led to the functional improvement of the VF. The results of the present investigation suggest that SIS-MSCs composite gel is a plausible biomaterial for prolonged survival of MSCs in VFs and promotes scarless VF healing.
Related JoVE Video
Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G(1) arrest via the ATM/p53 pathway.
Arch. Biochem. Biophys.
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
Recent advances in physics have made possible the use of non-thermal atmospheric pressure plasma (NTP) in cancer research. Although increasing evidence suggests that NTP induces death of various cancer cell types, thus offering a promising alternative treatment, the mechanism of its therapeutic effect is little understood. In this study, we report for the first time that NTP led to apoptotic cell death in oral cavity squamous cell carcinoma (OSCC). Interestingly, NTP induced a sub-G(1) arrest in p53 wild-type OSCCs, but not in p53-mutated OSCCs. In addition, NTP increased the expression levels of ATM, p53 (Ser 15, 20 and 46), p21, and cyclin D1. A comet assay, Western blotting and immunocytochemistry of ?H2AX suggested that NTP-induced apoptosis and sub-G(1) arrest were associated with DNA damage and the ATM/p53 signaling pathway in SCC25 cells. Moreover, ATM knockdown using siRNA attenuated the effect of NTP on cell death, sub-G(1) arrest and related signals. Taken together, these results indicate that NTP induced apoptotic cell death in p53 wild-type OSCCs through a novel mechanism involving DNA damage and triggering of sub-G(1) arrest via the ATM/p53 pathway. These findings show the therapeutic potential of NTP in OSCC.
Related JoVE Video
Non-thermal atmospheric pressure plasma inhibits thyroid papillary cancer cell invasion via cytoskeletal modulation, altered MMP-2/-9/uPA activity.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Plasma, the fourth state of matter, is defined as a partially or completely ionized gas that includes a mixture of electrons and ions. Advances in plasma physics have made it possible to use non-thermal atmospheric pressure plasma (NTP) in cancer research. However, previous studies have focused mainly on apoptotic cancer cell death mediated by NTP as a potential cancer therapy. In this study, we investigated the effect of NTP on invasion or metastasis, as well as the mechanism by which plasma induces anti-migration and anti-invasion properties in human thyroid papillary cancer cell lines (BHP10-3 and TPC1). Wound healing, pull-down, and Transwell assays demonstrated that NTP reduced cell migration and invasion. In addition, NTP induced morphological changes and cytoskeletal rearrangements, as detected by scanning electron microscopy and immunocytochemistry. We also examined matrix metalloproteinase (MMP)-2/-9 and urokinase-type plasminogen activator (uPA) activity using gelatin zymography, uPA assays and RT-PCR. FAK, Src, and paxillin expression was detected using Western blot analyses and immunocytochemistry. NTP decreased FAK, Src, and paxillin expression as well as MMP/uPA activity. In conclusion, NTP inhibited the invasion and metastasis of BHP10-3 and TPC1 cells by decreasing MMP-2/-9 and uPA activities and rearranging the cytoskeleton, which is regulated by the FAK/Src complex. These findings suggest novel actions for NTP and may aid in the development of new therapeutic strategies for locally invasive and metastatic cancers.
Related JoVE Video
Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray.
Rev Sci Instrum
PUBLISHED: 11-05-2013
Show Abstract
Hide Abstract
Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 10-20 keV (?E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.
Related JoVE Video
Discovery and Optimization of Piperidyl-1,2,3-Triazole Ureas as Potent, Selective, and in Vivo-Active Inhibitors of ?/?-Hydrolase Domain Containing 6 (ABHD6).
J. Med. Chem.
PUBLISHED: 10-23-2013
Show Abstract
Hide Abstract
?/?-Hydrolase domain containing 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) to regulate certain forms of cannabinoid receptor-dependent signaling in the nervous system. The full spectrum of ABHD6 metabolic activities and functions is currently unknown and would benefit from selective, in vivo-active inhibitors. Here, we report the development and characterization of an advanced series of irreversible (2-substituted)-piperidyl-1,2,3-triazole urea inhibitors of ABHD6, including compounds KT182 and KT203, which show exceptional potency and selectivity in cells (<5 nM) and, at equivalent doses in mice (1 mg kg(-1)), act as systemic and peripherally restricted ABHD6 inhibitors, respectively. We also describe an orally bioavailable ABHD6 inhibitor, KT185, that displays excellent selectivity against other brain and liver serine hydrolases in vivo. We thus describe several chemical probes for biological studies of ABHD6, including brain-penetrant and peripherally restricted inhibitors that should prove of value for interrogating ABHD6 function in animal models.
Related JoVE Video
Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes.
J. Radiat. Res.
PUBLISHED: 09-26-2013
Show Abstract
Hide Abstract
Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways.
Related JoVE Video
Tissue-engineered tracheal reconstruction using chondrocyte seeded on a porcine cartilage-derived substance scaffold.
Int. J. Pediatr. Otorhinolaryngol.
PUBLISHED: 09-24-2013
Show Abstract
Hide Abstract
Tracheal reconstruction with tissue-engineering technique has come into the limelight in the realm of head and neck surgery. We intended to evaluate the plausibility of allogenic chondrocytes cultured with porcine cartilage-derived substance (PCS) scaffold for partial tracheal defect reconstruction.
Related JoVE Video
Persistent dysphonia after laryngomicrosurgery for benign vocal fold disease.
Clin Exp Otorhinolaryngol
PUBLISHED: 09-04-2013
Show Abstract
Hide Abstract
Laryngomicrosurgery (LMS) is used to manage most vocal fold lesions. However, the functional voice outcome of the LMS might be diverse due to the influence of various factors. We intend to evaluate the incidence and etiologic factors of persistent dysphonia after LMS for benign vocal fold disease (BVFD).
Related JoVE Video
Integrated phenotypic and activity-based profiling links Ces3 to obesity and diabetes.
Nat. Chem. Biol.
PUBLISHED: 06-25-2013
Show Abstract
Hide Abstract
Phenotypic screening is making a comeback in drug discovery as the maturation of chemical proteomics methods has facilitated target identification for bioactive small molecules. A limitation of these approaches is that time-consuming genetic methods or other means are often required to determine the biologically relevant target (or targets) from among multiple protein-compound interactions that are typically detected. Here, we have combined phenotypic screening of a directed small-molecule library with competitive activity-based protein profiling to map and functionally characterize the targets of screening hits. Using this approach, we identify carboxylesterase 3 (Ces3, also known as Ces1d) as a primary molecular target of bioactive compounds that promote lipid storage in adipocytes. We further show that Ces3 activity is markedly elevated during adipocyte differentiation. Treatment of two mouse models of obesity-diabetes with a Ces3 inhibitor ameliorates multiple features of metabolic syndrome, illustrating the power of the described strategy to accelerate the identification and pharmacologic validation of new therapeutic targets.
Related JoVE Video
Evaluation of NHS carbamates as a potent and selective class of endocannabinoid hydrolase inhibitors.
ACS Chem Neurosci
PUBLISHED: 06-17-2013
Show Abstract
Hide Abstract
Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzymes function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors.
Related JoVE Video
Tolfenamic acid induces apoptosis and growth inhibition in anaplastic thyroid cancer: Involvement of nonsteroidal anti-inflammatory drug-activated gene-1 expression and intracellular reactive oxygen species generation.
Free Radic. Biol. Med.
PUBLISHED: 05-26-2013
Show Abstract
Hide Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are usually used for the treatment of inflammatory diseases. However, certain NSAIDs also have antitumor activities in various cancers, including head and neck cancer, through cyclooxygenase-dependent or independent pathways. Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), a TGF-? superfamily protein, is induced by NSAIDs and has been shown to be induced by several antitumorigenic compounds and to exhibit proapoptotic and antitumorigenic activities. In this report, we demonstrate for the first time that tolfenamic acid (TA) transcriptionally induced the expression of NAG-1 during TA-induced apoptosis of anaplastic thyroid cancer (ATC) cells. TA reduced the viability of ATC cells in a dose-dependent manner and induced apoptosis, findings that were coincident with NAG-1 expression. Overexpression of the NAG-1 gene using cDNA enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. Subsequently, we found that intracellular ROS generation plays an important role in activating the proapoptotic protein NAG-1. Then, we confirmed antitumorigenic effects of TA in a nude mouse orthotopic ATC model, and this result accompanied the augmentation of NAG-1 expression and ROS generation in tumor tissue. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression and ROS generation in in vitro and in vivo ATC models, providing a novel mechanistic explanation and indicating a potential chemotherapeutic approach for treatment of ATC.
Related JoVE Video
Proteome-Wide Reactivity Profiling Identifies Diverse Carbamate Chemotypes Tuned for Serine Hydrolase Inhibition.
ACS Chem. Biol.
PUBLISHED: 05-23-2013
Show Abstract
Hide Abstract
Serine hydrolases are one of the largest and most diverse enzyme classes in Nature. Inhibitors of serine hydrolases are used to treat many diseases, including obesity, diabetes, cognitive dementia, and bacterial and viral infections. Nonetheless, the majority of the 200+ serine hydrolases in mammals still lack selective inhibitors for their functional characterization. We and others have shown that activated carbamates, through covalent reaction with the conserved serine nucleophile of serine hydrolases, can serve as useful inhibitors for members of this enzyme family. The extent to which carbamates, however, cross-react with other protein classes remains mostly unexplored. Here, we address this problem by investigating the proteome-wide reactivity of a diverse set of activated carbamates in vitro and in vivo, using a combination of competitive and click chemistry (CC)-activity-based protein profiling (ABPP). We identify multiple classes of carbamates, including O-aryl, O-hexafluoroisopropyl (HFIP), and O-N-hydroxysuccinimidyl (NHS) carbamates that react selectively with serine hydrolases across entire mouse tissue proteomes in vivo. We exploit the proteome-wide specificity of HFIP carbamates to create in situ imaging probes for the endocannabinoid hydrolases monoacylglycerol lipase (MAGL) and ?-? hydrolase-6 (ABHD6). These findings, taken together, designate the carbamate as a privileged reactive group for serine hydrolases that can accommodate diverse structural modifications to produce inhibitors that display exceptional potency and selectivity across the mammalian proteome.
Related JoVE Video
Valproic Acid Sensitizes TRAIL-Resistant Anaplastic Thyroid Carcinoma Cells to Apoptotic Cell Death.
Ann. Surg. Oncol.
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
Anaplastic thyroid carcinoma (ATC) is an aggressive human tumor associated with a median survival of 2-6 months. TRAIL, as a ligand of death receptors, is known to induce apoptotic cell death in several cancer cells. However, TRAIL treatment alone is not effective against TRAIL-resistant cancer cells. This study was designed to investigate whether valproic acid (VPA) enhances apoptotic cell death of TRAIL-resistant ATC cells and to identify the mechanism of cell death of ATC cells by combination treatment with VPA and TRAIL.
Related JoVE Video
Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines.
Neurotoxicology
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Radiation is a widely used treatment for head and neck cancers, and one of its most severe side effects is ototoxicity. Radiation-induced ototoxicity has been demonstrated to be linked to the increased production of ROS and MAPK. We intended to investigate the effect of p38 inhibition on radiation-induced ototoxicity in cochlea-derived HEI-OC1 cells and in a zebrafish model. The otoprotective effect of p38 inhibition against radiation was tested in vitro in the organ of Corti-derived cell line, HEI-OC1, and in vivo in a zebrafish model. Radiation-induced apoptosis, mitochondrial dysfunction, and an increase of intracellular NO generation were demonstrated in HEI-OC1 cells. The p38-specific inhibitor, SB203580, ameliorated radiation-induced apoptosis and mitochondrial injury in HEI-OC1 cells. p38 inhibition reduced radiation-induced activation of JNK, p38, cytochrome c, and cleavage of caspase-3 and PARP in HEI-OC1 cells. Scanning electron micrography showed that SB203580 prevented radiation-induced destruction of kinocilium and stereocilia in zebrafish neuromasts. The results of this study suggest that p38 plays an important role in mediating radiation-induced ototoxicity and inhibition of p38 could be a plausible option for preventing radiation ototoxicity.
Related JoVE Video
A novel fluorophosphonate inhibitor of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol with potential anti-obesity effects.
Br. J. Pharmacol.
PUBLISHED: 02-22-2013
Show Abstract
Hide Abstract
The development of potent and selective inhibitors of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) via DAG lipases (DAGL) ? and ? is just starting to be considered as a novel and promising source of pharmaceuticals for the treatment of disorders that might benefit from a reduction in endocannabinoid tone, such as hyperphagia in obese subjects.
Related JoVE Video
Robotic-assisted neck dissection in submandibular gland cancer: preliminary report.
J. Oral Maxillofac. Surg.
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
Robot-assisted neck dissection (ND) in patients with head and neck cancer has been developed as a plausible substitute for conventional surgery and it provides an excellent cosmetic outcome. The authors hypothesized that surgery for submandibular gland (SMG) cancer could be achieved with a gasless retroauricular (RA) approach using the robotic system. This study evaluated the feasibility of robot-assisted ND using an RA approach for SMG cancer.
Related JoVE Video
Chemoproteomic discovery of AADACL1 as a regulator of human platelet activation.
Chem. Biol.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
A comprehensive knowledge of the platelet proteome is necessary for understanding thrombosis and for envisioning antiplatelet therapies. To discover other biochemical pathways in human platelets, we screened platelets with a carbamate library designed to interrogate the serine hydrolase subproteome and used competitive activity-based protein profiling to map the targets of active carbamates. We identified an inhibitor that targets arylacetamide deacetylase-like 1 (AADACL1), a lipid deacetylase originally identified in invasive cancers. Using this compound, along with highly selective second-generation inhibitors of AADACL1, metabolomics, and RNA interference, we show that AADACL1 regulates platelet aggregation, thrombus growth, RAP1 and PKC activation, lipid metabolism, and fibrinogen binding to platelets and megakaryocytes. These data provide evidence that AADACL1 regulates platelet and megakaryocyte activation and highlight the value of this chemoproteomic strategy for target discovery in platelets.
Related JoVE Video
Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging.
Auris Nasus Larynx
PUBLISHED: 03-29-2011
Show Abstract
Hide Abstract
The number of patients with cochlear implant (CI) has been rapidly increasing in recent years, and these patients show a growing need of examination by magnetic resonance imaging (MRI). However, the use of MRI on patients with CI is restricted by the internal magnet of the CI. Many studies have investigated the safety of performing 1.5T MRI on patients with CI, which is now being practiced in a clinical setting. We experienced a case in which the polarity of the cochlear implant magnet was reversed after the patient was examined using 1.5T MRI. The external device was attached to the internal device oppositely. We could not find displacement of the internal device, magnet, or electrode upon radiological evaluation. We came up with two possible mechanisms by which the polarity of the magnet reversed. The first possibility was that the magnetic field of MRI reversed the polarity of the magnet. The second was that the internal magnet was physically realigned while interacting with the MRI. We believe the second hypothesis to be more reliable. A removable magnet and a loose magnet boundary of a CI device may have allowed for physical reorientation of the internal magnet. Therefore, in order to avoid these complications, first, the internal magnet must not be aligned anti-parallel with the magnetic polarity of MRI. In the Siemens MRI, the vector of the magnetic field is downward, so implant site should be placed in facing upwards to minimize demagnetization. In the GE Medical Systems MRI, the vector of the magnetic field is upward, so the implant site should be placed facing downwards. Second, wearing of a commercial mold which is fixed to the internal device before performing MRI can be helpful. In addition, any removable internal magnets in a CI device should be removed before MRI, especially in the trunk. However, to ultimately solve this problem, the pocket of the internal magnet should be redesigned for safety.
Related JoVE Video
Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer.
Chem. Biol.
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
Cancer cells couple heightened lipogenesis with lipolysis to produce fatty acid networks that support malignancy. Monoacylglycerol lipase (MAGL) plays a principal role in this process by converting monoglycerides, including the endocannabinoid 2-arachidonoylglycerol (2-AG), to free fatty acids. Here, we show that MAGL is elevated in androgen-independent versus androgen-dependent human prostate cancer cell lines, and that pharmacological or RNA-interference disruption of this enzyme impairs prostate cancer aggressiveness. These effects were partially reversed by treatment with fatty acids or a cannabinoid receptor-1 (CB1) antagonist, and fully reversed by cotreatment with both agents. We further show that MAGL is part of a gene signature correlated with epithelial-to-mesenchymal transition and the stem-like properties of cancer cells, supporting a role for this enzyme in protumorigenic metabolism that, for prostate cancer, involves the dual control of endocannabinoid and fatty acid pathways.
Related JoVE Video
A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis.
Chem. Biol.
PUBLISHED: 02-07-2011
Show Abstract
Hide Abstract
Cancer cells show alterations in metabolism that support malignancy and disease progression. Prominent among these metabolic changes is elevations in neutral ether lipids (NELs). We have previously shown that the hydrolytic enzyme KIAA1363 (or AADACL1) is highly elevated in aggressive cancer cells, where it plays a key role in generating the monoalkylglycerol ether (MAGE) class of NELs. Here, we use activity-based protein profiling-guided medicinal chemistry to discover a highly potent and selective inhibitor of KIAA1363, the carbamate JW480. We show that JW480, and an shRNA probe that targets KIAA1363, reduce MAGEs and impair the migration, invasion, survival, and in vivo tumor growth of human prostate cancer cell lines. These findings indicate that the KIAA1363-MAGE pathway is important for prostate cancer pathogenesis and designate JW480 as a versatile pharmacological probe for disrupting this pro-tumorigenic metabolic pathway.
Related JoVE Video
Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer.
J. Med. Chem.
PUBLISHED: 09-24-2010
Show Abstract
Hide Abstract
The mTOR protein is a master regulator of cell growth and proliferation, and inhibitors of its kinase activity have the potential to become new class of anticancer drugs. Starting from quinoline 1, which was identified in a biochemical mTOR assay, we developed a tricyclic benzonaphthyridinone inhibitor 37 (Torin1), which inhibited phosphorylation of mTORC1 and mTORC2 substrates in cells at concentrations of 2 and 10 nM, respectively. Moreover, Torin1 exhibits 1000-fold selectivity for mTOR over PI3K (EC(50) = 1800 nM) and exhibits 100-fold binding selectivity relative to 450 other protein kinases. Torin1 was efficacious at a dose of 20 mg/kg in a U87MG xenograft model and demonstrated good pharmacodynamic inhibition of downstream effectors of mTOR in tumor and peripheral tissues. These results demonstrate that Torin1 is a useful probe of mTOR-dependent phenomena and that benzonaphthridinones represent a promising scaffold for the further development of mTOR-specific inhibitors with the potential for clinical utility.
Related JoVE Video
Successful Treatment of Tracheal Stenosis with Slide Tracheoplasty after the Failure of Resection with End-to-End Anastomosis.
Clin Exp Otorhinolaryngol
PUBLISHED: 04-10-2009
Show Abstract
Hide Abstract
The combined effects of inhaled irritant gases and heat in burn patients can result in the development of laryngotracheal strictures. Several factors could adversely affect the development of tracheal stenosis and cause the growth of granulation tissue. Yet the current treatment options for this condition are limited because of the paucity of case reports. We report here on a case of a patient who experienced recurrent upper tracheal stenosis after an inhalation injury. She displayed repetitive symptoms of stenosis even after several laryngomicrosurgeries and resection with end-to-end anastomosis. Finally, 5 yr after the burn injury, slide tracheoplasty was successfully performed and the postoperative check-up findings and the increased airway volume seen on imaging were all satisfactory.
Related JoVE Video
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1.
J. Biol. Chem.
PUBLISHED: 01-15-2009
Show Abstract
Hide Abstract
The mammalian target of rapamycin (mTOR) kinase is the catalytic subunit of two functionally distinct complexes, mTORC1 and mTORC2, that coordinately promote cell growth, proliferation, and survival. Rapamycin is a potent allosteric mTORC1 inhibitor with clinical applications as an immunosuppressant and anti-cancer agent. Here we find that Torin1, a highly potent and selective ATP-competitive mTOR inhibitor that directly inhibits both complexes, impairs cell growth and proliferation to a far greater degree than rapamycin. Surprisingly, these effects are independent of mTORC2 inhibition and are instead because of suppression of rapamycin-resistant functions of mTORC1 that are necessary for cap-dependent translation and suppression of autophagy. These effects are at least partly mediated by mTORC1-dependent and rapamycin-resistant phosphorylation of 4E-BP1. Our findings challenge the assumption that rapamycin completely inhibits mTORC1 and indicate that direct inhibitors of mTORC1 kinase activity may be more successful than rapamycin at inhibiting tumors that depend on mTORC1.
Related JoVE Video
Golgicide A reveals essential roles for GBF1 in Golgi assembly and function.
Nat. Chem. Biol.
PUBLISHED: 01-09-2009
Show Abstract
Hide Abstract
ADP ribosylation factor 1 (Arf1) plays a critical role in regulating secretory traffic and membrane transport within the Golgi of eukaryotic cells. Arf1 is activated by guanine nucleotide exchange factors (ArfGEFs), which confer spatial and temporal specificity to vesicular transport. We describe here the discovery and characterization of golgicide A, a potent, highly specific, reversible inhibitor of the cis-Golgi ArfGEF GBF1. Inhibition of GBF1 function resulted in rapid dissociation of COPI vesicle coat from Golgi membranes and subsequent disassembly of the Golgi and trans-Golgi network. Secretion of soluble and membrane-associated proteins was arrested at the endoplasmic reticulum-Golgi intermediate compartment, whereas endocytosis and recycling of transferrin were unaffected by GBF1 inhibition. Internalized shiga toxin was arrested within the endocytic compartment and was unable to reach the dispersed trans-Golgi network. Collectively, these results highlight the central role for GBF1 in coordinating bidirectional transport and maintaining structural integrity of the Golgi.
Related JoVE Video
Robotically assisted selective neck dissection in parotid gland cancer: preliminary report.
Laryngoscope
Show Abstract
Hide Abstract
Robot-assisted neck dissection (ND) in head and neck cancer patients has been demonstrated to be feasible. We hypothesized that surgery for parotid cancer could be achieved via a gasless modified facelift approach using the robotic system. We intended to evaluate the feasibility of robot-assisted selective ND (SND) via a modified facelift (MFL) approach in parotid gland cancer.
Related JoVE Video
Confirming target engagement for reversible inhibitors in vivo by kinetically tuned activity-based probes.
J. Am. Chem. Soc.
Show Abstract
Hide Abstract
The development of small-molecule inhibitors for perturbing enzyme function requires assays to confirm that the inhibitors interact with their enzymatic targets in vivo. Determining target engagement in vivo can be particularly challenging for poorly characterized enzymes that lack known biomarkers (e.g., endogenous substrates and products) to report on their inhibition. Here, we describe a competitive activity-based protein profiling (ABPP) method for measuring the binding of reversible inhibitors to enzymes in animal models. Key to the success of this approach is the use of activity-based probes that show tempered rates of reactivity with enzymes, such that competition for target engagement with reversible inhibitors can be measured in vivo. We apply the competitive ABPP strategy to evaluate a newly described class of piperazine amide reversible inhibitors for the serine hydrolases LYPLA1 and LYPLA2, two enzymes for which selective, in vivo active inhibitors are lacking. Competitive ABPP identified individual piperazine amides that selectively inhibit LYPLA1 or LYPLA2 in mice. In summary, competitive ABPP adapted to operate with moderately reactive probes can assess the target engagement of reversible inhibitors in animal models to facilitate the discovery of small-molecule probes for characterizing enzyme function in vivo.
Related JoVE Video
Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates.
Chem. Biol.
Show Abstract
Hide Abstract
The endocannabinoids 2-arachidonoyl glycerol (2-AG) and N-arachidonoyl ethanolamine (anandamide) are principally degraded by monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively. The recent discovery of O-aryl carbamates such as JZL184 as selective MAGL inhibitors has enabled functional investigation of 2-AG signaling pathways in vivo. Nonetheless, JZL184 and other reported MAGL inhibitors still display low-level cross-reactivity with FAAH and peripheral carboxylesterases, which can complicate their use in certain biological studies. Here, we report a distinct class of O-hexafluoroisopropyl (HFIP) carbamates that inhibits MAGL in vitro and in vivo with excellent potency and greatly improved selectivity, including showing no detectable cross-reactivity with FAAH. These findings designate HFIP carbamates as a versatile chemotype for inhibiting MAGL and should encourage the pursuit of other serine hydrolase inhibitors that bear reactive groups resembling the structures of natural substrates.
Related JoVE Video
Systematic identification of genomic markers of drug sensitivity in cancer cells.
Nature
Show Abstract
Hide Abstract
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewings sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.