JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: comparison of emission rates and secondhand exposure.
Environ Sci Process Impacts
PUBLISHED: 09-03-2014
Show Abstract
Hide Abstract
In recent years, electronic cigarettes have gained increasing popularity as alternatives to normal (tobacco-containing) cigarettes. In the present study, particles generated by e-cigarettes and normal cigarettes have been analyzed and the degree of exposure to different chemical agents and their emission rates were quantified. Despite the 10-fold decrease in the total exposure to particulate elements in e-cigarettes compared to normal cigarettes, specific metals (e.g. Ni and Ag) still displayed a higher emission rate from e-cigarettes. Further analysis indicated that the contribution of e-liquid to the emission of these metals is rather minimal, implying that they likely originate from other components of the e-cigarette device or other indoor sources. Organic species had lower emission rates during e-cigarette consumption compared to normal cigarettes. Of particular note was the non-detectable emission of polycyclic aromatic hydrocarbons (PAHs) from e-cigarettes, while substantial emission of these species was observed from normal cigarettes. Overall, with the exception of Ni, Zn, and Ag, the consumption of e-cigarettes resulted in a remarkable decrease in secondhand exposure to all metals and organic compounds. Implementing quality control protocols on the manufacture of e-cigarettes would further minimize the emission of metals from these devices and improve their safety and associated health effects.
Related JoVE Video
Seasonal and spatial variation in dithiothreitol (DTT) activity of quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species.
J Environ Sci Health A Tox Hazard Subst Environ Eng
PUBLISHED: 08-26-2014
Show Abstract
Hide Abstract
A year-long sampling campaign of quasi-ultrafine particles (dp < 0.25 ?m) was conducted at 10 distinct sites representing source, urban and/or near-freeway, rural receptor and desert locations across the Los Angeles air basin. Redox activity of the PM samples was measured by means of the Dithiothreitol (DTT) assay and detailed chemical analysis was performed to measure the concentrations of chemical species. DTT activity per unit air volume and unit PM mass (expressed in nmol min(-1) m(-3) and nmol/min/?g PM, respectively) showed similar trends across sites and seasons. DTT activity was generally higher during cold seasons (winter and fall) compared to warm seasons (summer and spring). Noticeable peaks were observed at urban near-freeway locations representing "source" sites impacted by fresh traffic emissions. Regression analysis indicated strong association (R > 0.7) between the DTT activity and the concentrations of carbonaceous species (OC, EC, WSOC and WIOC) across all seasons and strong winter-time correlations with organic tracers of primary vehicular emissions including polycyclic aromatic hydrocarbons (PAHs), alkanes, hopanes and steranes. Strong correlations were also observed, particularly during winter, between DTT activity and transition metals (e.g., Cr, Mn, V, Fe, Cu, Cd and Zn), which share similar vehicular sources with primary organics. A multivariate linear regression analysis indicated that the variability in DTT activity is best explained by the variability in concentrations of WSOC, WIOC, EC and hopanes. Combined contributions from these species explained 88% of the DTT activity. The appearance of WSOC as a typical tracer of secondary organic aerosol, along with EC, WIOC and hopanes, all markers of emissions from primary combustion sources, emphasizes the contributions of both primary and secondary sources to the overall oxidative potential of quasi-ultrafine particles. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.
Related JoVE Video
Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
Air pollution in China and other parts of Asia poses large health risks and is an important contributor to global climate change. Almost half of Chinese homes use biomass and coal fuels for cooking and heating. China's economic growth and infrastructure development has led to increased emissions from coal-fired power plants and an expanding fleet of motor vehicles. Black carbon (BC) from incomplete biomass and fossil fuel combustion is the most strongly light-absorbing component of particulate matter (PM) air pollution and the second most important climate-forcing human emission. PM composition and sources may also be related to its human health impact. We enrolled 280 women living in a rural area of northwestern Yunnan where biomass fuels are commonly used. We measured their blood pressure, distance from major traffic routes, and daily exposure to BC (pyrolytic biomass combustion), water-soluble organic aerosol (organic aerosol from biomass combustion), and, in a subset, hopane markers (motor vehicle emissions) in winter and summer. BC had the strongest association with systolic blood pressure (SBP) (4.3 mmHg; P < 0.001), followed by PM mass and water-soluble organic mass. The effect of BC on SBP was almost three times greater in women living near the highway [6.2 mmHg; 95% confidence interval (CI), 3.6 to 8.9 vs. 2.6 mmHg; 95% CI, 0.1 to 5.2]. Our findings suggest that BC from combustion emissions is more strongly associated with blood pressure than PM mass, and that BC's health effects may be larger among women living near a highway and with greater exposure to motor vehicle emissions.
Related JoVE Video
Understanding the sources and composition of the incremental excess of fine particles across multiple sampling locations in one air shed.
J Environ Sci (China)
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
Well-designed health studies and the development of effective regulatory policies need to rely on an understanding of the incremental differences in particulate matter concentrations and their sources. Although only a limited number of studies have been conducted to examine spatial differences in sources to particulate matter within an air shed, routine monitoring data can be used to better understand these differences. Measurements from the US EPA Chemical Speciation Network (CSN) collected between 2002-2008 were analyzed to demonstrate the utility of regulatory data across three sites located within 100 km of each other. Trends in concentrations, source contribution, and incremental excesses across three sites were investigated using the Positive Matrix Factorization model. Similar yearly trends in chemical composition were observed across all sites, however, excesses of organic matter and elemental carbon were observed in the urban center that originated from local emissions of mobile sources and biomass burning. Secondary sulfate and secondary nitrate constituted over half of the PM2.5 with no spatial differences observed across sites. For these components, the excess of emissions from industrial sources could be directly quantified. This study demonstrates that CSN data from multiple sites can be successfully used to derive consistent source profiles and source contributions for regional pollution, and that CSN data can be used to quantify incremental differences in source contributions of across these sites. The analysis strategy can be used in other regions of the world to take advantage of existing ambient particulate matter monitoring data to better the understanding of spatial differences in source contributions within a given air shed.
Related JoVE Video
Global perspective on the oxidative potential of airborne particulate matter: a synthesis of research findings.
Environ. Sci. Technol.
PUBLISHED: 06-10-2014
Show Abstract
Hide Abstract
An emerging hypothesis in the field of air pollution is that oxidative stress is one of the important pathways leading to adverse health effects of airborne particulate matter (PM). To advance our understanding of sources and chemical elements contributing to aerosol oxidative potential and provide global comparative data, we report here on the biological oxidative potential associated with size-segregated airborne PM in different urban areas of the world, measured by a biological (cell-based) reactive oxygen species (ROS) assay. Our synthesis indicates a generally greater intrinsic PM oxidative potential as well as higher levels of exposure to redox-active PM in developing areas of the world. Moreover, on the basis of our observations, smaller size fractions are generally associated with higher intrinsic ROS activity compared with larger PM size fractions. Another important outcome of our study is the identification of major species and sources that are associated with ROS activity. Water-soluble transition metals (e.g., Fe, Ni, Cu, Cr, Mn, Zn and V) and water-soluble organic carbon (WSOC) showed consistent correlations with the oxidative potential of airborne PM across different urban areas and size ranges. The major PM sources associated with these chemical species include residual/fuel oil combustion, traffic emissions, and secondary organic aerosol formation, indicating that these sources are major drivers of PM-induced oxidative potential. Moreover, comparison of ROS activity levels across different seasons indicated that photochemical aging increases the intrinsic oxidative potential of airborne PM.
Related JoVE Video
Fine particle air pollution and mortality: importance of specific sources and chemical species.
Epidemiology
PUBLISHED: 04-11-2014
Show Abstract
Hide Abstract
While exposure to ambient fine particles <2.5 ?m in aerodynamic diameter (PM2.5) has well-established health effects, there is limited quantitative evidence that links specific sources of PM2.5 with those effects. This study was designed to examine the risks of exposure to chemical species and source-specific PM2.5 mass on mortality in Seoul, Korea, a highly populated city.
Related JoVE Video
Local structure and speciation of platinum in fresh and road-aged North American sourced vehicle emissions catalysts: an X-ray absorption spectroscopic study.
Environ. Sci. Technol.
PUBLISHED: 03-12-2014
Show Abstract
Hide Abstract
Given emerging concerns about the bioavailability and toxicity of anthropogenic platinum compounds emitted into the environment from sources including vehicle emission catalysts (VEC), the platinum species present in selected North American sourced fresh and road-aged VEC were determined by Pt and Cl X-ray absorption spectroscopy. Detailed analysis of the Extended X-ray Absorption Fine Structure at the Pt L3 and L2 edges of the solid phase catalysts revealed mainly oxidic species in the fresh catalysts and metallic components dominant in the road-aged catalysts. In addition, some bimetallic components (Pt-Ni, Pt-Pd, Pt-Rh) were observed in the road-aged catalysts from supporting Ni-, Pd-, and Rh-K edge XAS studies. These detailed analyses allow for the significant conclusion that this study did not find any evidence for the presence of chloroplatinate species in the investigated solid phase of a Three Way Catalyst or Diesel Oxidation Catalysts.
Related JoVE Video
Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM(2.5)) in retirement communities of the Los Angeles Basin.
Sci. Total Environ.
PUBLISHED: 02-20-2014
Show Abstract
Hide Abstract
Concurrent indoor and outdoor measurements of fine particulate matter (PM2.5) were conducted at three retirement homes in the Los Angeles Basin during two separate phases (cold and warm) between 2005 and 2006. Indoor-to-outdoor relationships of PM2.5 chemical constituents were determined and sources of indoor and outdoor PM2.5 were evaluated using a molecular marker-based chemical mass balance (MM-CMB) model. Indoor levels of elemental carbon (EC) along with metals and trace elements were found to be significantly affected by outdoor sources. EC, in particular, displayed very high indoor-to-outdoor (I/O) mass ratios accompanied by strong I/O correlations, illustrating the significant impact of outdoor sources on indoor levels of EC. Similarly, indoor levels of polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes were strongly correlated with their outdoor components and displayed I/O ratios close to unity. On the other hand, concentrations of n-alkanes and organic acids inside the retirement communities were dominated by indoor sources (e.g. food cooking and consumer products), as indicated by their I/O ratios, which exceeded unity. Source apportionment results revealed that vehicular emissions were the major contributor to both indoor and outdoor PM2.5, accounting for 39 and 46% of total mass, respectively. Moreover, the contribution of vehicular sources to indoor levels was generally comparable to its corresponding outdoor estimate. Other water-insoluble organic matter (other WIOM), which accounts for emissions from uncharacterized primary biogenic sources, displayed a wider range of contributions, varying from 2 to 73% of PM2.5, across all sites and phases of the study. Lastly, higher indoor than outdoor contribution of other water-soluble organic matter (other WSOM) was evident at some of the sites, suggesting the production of secondary aerosols as well as direct emissions from primary sources (including cleaning or other consumer products) at the indoor environments.
Related JoVE Video
Risk assessment of total and bioavailable potentially toxic elements (PTEs) in urban soils of Baghdad-Iraq.
Sci. Total Environ.
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
The solubility of soil-associated potentially toxic elements (PTEs) in surrogate biological fluids provides valuable information about their potential health hazard. This work addresses the concentrations and bioaccessibility of nine PTEs (As, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn) in thirty eight agricultural land and playground soils collected from a semi-arid urban area of Baghdad-Iraq. Two surrogate biological fluids (SBFs), macrophage vacuole (MS) and gastric (GS) solutions, were used to extract the metals to simulate the biological availability of the PTEs via inhalation and ingestion exposure routes. ICP/AES was used to quantify PTEs in both strong acid digests (for total concentration), and in the SBF extracts. Soil contamination factors showed that some sites exhibited elevated levels of As (36 ± 10 mg/kg), however, these levels of As are not likely to have significant human health impacts whether the particulate arsenic is ingested or/and inhaled. Soil-geochemical variables (including: pH, EC, CO3(=), soil organic carbon (SOC)) and major elements (e.g. Al, Ca, and Fe) were used to interpret the lability of PTEs in the soils. Hazardous index (HI) based non-cancer risk of inhalation and ingestion of PTEs was estimated to be 2-fold higher for that based on total element concentrations compared with that for bioavailable fractions for both children and adults. A similar conclusion was reached for the estimated cancer risk (which was lower than the threshold level of concern for children and adults). A sensitivity analysis showed that there is a 97% chance for children and 90% for adults to have hazardous indices of the total PTEs >1 (the acceptable value); the corresponding metrics for the bioavailable fraction of the elements were 39% for children, and 3% for adults; these results were sensitive to the concentrations of "airborne" soil particles.
Related JoVE Video
Spatial and temporal variation in fine particulate matter mass and chemical composition: the Middle East Consortium for Aerosol Research Study.
ScientificWorldJournal
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
Ambient fine particulate matter (PM2.5) samples were collected from January to December 2007 to investigate the sources and chemical speciation in Palestine, Jordan, and Israel. The 24-h PM2.5 samples were collected on 6-day intervals at eleven urban and rural sites simultaneously. Major chemical components including metals, ions, and organic and elemental carbon were analyzed. The mass concentrations of PM2.5 across the 11 sites varied from 20.6 to 40.3 ?g/m(3), with an average of 28.7 ?g/m(3). Seasonal variation of PM2.5 concentrations was substantial, with higher average concentrations (37.3 ?g/m(3)) in the summer (April-June) months compared to winter (October-December) months (26.0 ?g/m(3)) due mainly to high contributions of sulfate and crustal components. PM2.5 concentrations in the spring were greatly impacted by regional dust storms. Carbonaceous mass was the most abundant component, contributing 40% to the total PM2.5 mass averaged across the eleven sites. Crustal components averaged 19.1% of the PM2.5 mass and sulfate, ammonium, and nitrate accounted for 16.2%, 6.4%, and 3.7%, respectively, of the total PM2.5 mass. The results of this study demonstrate the need to better protect the health and welfare of the residents on both sides of the Jordan River in the Middle East.
Related JoVE Video
An In Vitro alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter.
Environ. Toxicol.
PUBLISHED: 01-09-2014
Show Abstract
Hide Abstract
Exposures to air pollution in the form of particulate matter (PM) can result in excess production of reactive oxygen species (ROS) in the respiratory system, potentially causing both localized cellular injury and triggering a systemic inflammatory response. PM-induced inflammation in the lung is modulated in large part by alveolar macrophages and their biochemical signaling, including production of inflammatory cytokines, the primary mechanism via which inflammation is initiated and sustained. We developed a robust, relevant, and flexible method employing a rat alveolar macrophage cell line (NR8383) which can be applied to routine samples of PM from air quality monitoring sites to gain insight into the drivers of PM toxicity that lead to oxidative stress and inflammation. Method performance was characterized using extracts of ambient and vehicular engine exhaust PM samples. Our results indicate that the reproducibility and the sensitivity of the method are satisfactory and comparisons between PM samples can be made with good precision. The average relative percent difference for all genes detected during 10 different exposures was 17.1%. Our analysis demonstrated that 71% of genes had an average signal to noise ratio (SNR) ? 3. Our time course study suggests that 4 h may be an optimal in vitro exposure time for observing short-term effects of PM and capturing the initial steps of inflammatory signaling. The 4 h exposure resulted in the detection of 57 genes (out of 84 total), of which 86% had altered expression. Similarities and conserved gene signaling regulation among the PM samples were demonstrated through hierarchical clustering and other analyses. Overlying the core congruent patterns were differentially regulated genes that resulted in distinct sample-specific gene expression "fingerprints." Consistent upregulation of Il1f5 and downregulation of Ccr7 was observed across all samples, while TNF? was upregulated in half of the samples and downregulated in the other half. Overall, this PM-induced cytokine expression assay could be effectively integrated into health studies and air quality monitoring programs to better understand relationships between specific PM components, oxidative stress activity and inflammatory signaling potential. © 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014.
Related JoVE Video
Diurnal and seasonal trends in the apparent density of ambient fine and coarse particles in Los Angeles.
Environ. Pollut.
PUBLISHED: 01-09-2014
Show Abstract
Hide Abstract
Diurnal and seasonal variations in the apparent density of ambient fine and coarse particulate matter (PM2.5 and CPM [PM2.5-10], respectively) were investigated in a location near downtown Los Angeles. The apparent densities, determined by particle mass-to-volume ratios, showed strong diurnal and seasonal variations, with higher values during the warm phase (June to August 2013) compared to cold phase (November 2012 to February 2013). PM2.5 apparent density showed minima during the morning and afternoon rush hours of the cold phase (1.20g cm(-3)), mainly due to the increased contribution of traffic-emitted soot particles, and highest values were found during the midday in the warm phase (2.38g cm(-3)). The lowest CPM apparent density was observed during the morning rush hours of the cold phase (1.41g cm(-3)), while highest in early afternoon during the warm phase (2.91g cm(-3)), most likely due to the increased wind-induced resuspension of road dust.
Related JoVE Video
Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon.
Environ. Sci. Technol.
PUBLISHED: 12-06-2013
Show Abstract
Hide Abstract
Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 ?gC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 ?gC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.
Related JoVE Video
Iron Isotope Composition of Particles Produced by UV-Femtosecond Laser Ablation of Natural Oxides, Sulfides, and Carbonates.
Anal. Chem.
PUBLISHED: 12-05-2013
Show Abstract
Hide Abstract
The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.
Related JoVE Video
Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in thessaloniki.
Environ. Sci. Technol.
PUBLISHED: 11-11-2013
Show Abstract
Hide Abstract
The recent economic crisis in Greece resulted in a serious wintertime air pollution episode in Thessaloniki. This air quality deterioration was mostly due to the increased price of fuel oil, conventionally used as a source of energy for domestic heating, which encouraged the residents to burn the less expensive wood/biomass during the cold season. A wintertime sampling campaign for fine particles (PM2.5) was conducted in Thessaloniki during the winters of 2012 and 2013 in an effort to quantify the extent to which the ambient air was impacted by the increased wood smoke emissions. The results indicated a 30% increase in the PM2.5 mass concentration as well as a 2-5-fold increase in the concentration of wood smoke tracers, including potassium, levoglucosan, mannosan, and galactosan. The concentrations of fuel oil tracers (e.g., Ni and V), on the other hand, declined by 20-30% during 2013 compared with 2012. Moreover, a distinct diurnal variation was observed for wood smoke tracers, with significantly higher concentrations in the evening period compared with the morning. Correlation analysis indicated a strong association between reactive oxygen species (ROS) activity and the concentrations of levoglucosan, galactosan, and potassium, underscoring the potential impact of wood smoke on PM-induced toxicity during the winter months in Thessaloniki.
Related JoVE Video
Atmospheric photolytic reduction of Hg(ii) in dry aerosols.
Environ Sci Process Impacts
PUBLISHED: 08-20-2013
Show Abstract
Hide Abstract
A laboratory reactor system was developed to examine the role of light and aerosol composition in the reduction of oxidized mercury (Hg(ii)) in laboratory-generated aerosols. Aerosolized sodium chloride, doped with mercury chloride, was exposed to light in a fixed-bed flow-through reactor. Three spectral ranges (UV, visible and a simulated solar spectrum) were examined, along with dark experiments, to investigate the role of light conditions in mercury reduction. In addition, the role of iron in the aerosol matrix was examined. The effluent from the reactor was analyzed for Hg(0) as evidence of reduction of Hg(ii) in the reactor. Significant reduction of Hg(ii) (1.5-9.9%) was observed for all three light sources and the rate of mercury reduction was proportional to the light irradiance. The presence of iron in the aerosol matrix inhibited the reduction rate and the degree of inhibition was dependent on the chemical form of the iron in the aerosol. The observed reduction reactions may be important chemical processes in the atmosphere and could be incorporated in atmospheric transport models that are used to understand the fate of atmospheric mercury.
Related JoVE Video
Sources of primary and secondary organic aerosol and their diurnal variations.
J. Hazard. Mater.
PUBLISHED: 06-08-2013
Show Abstract
Hide Abstract
PM2.5, as one of the criteria pollutants regulated in the U.S. and other countries due to its adverse health impacts, contains more than hundreds of organic pollutants with different sources and formation mechanisms. Daytime and nighttime PM2.5 samples from the August Mini-Intensive Gas and Aerosol Campaign (AMIGAS) in the southeastern U.S. were collected during summer 2008 at one urban site and one rural site, and were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), and various individual organic compounds including some important tracers for carbonaceous aerosol sources by gas chromatography-mass spectrometry. Most samples exhibited higher daytime OC concentration, while higher nighttime OC was found in a few events at the urban site. Sources, formation mechanisms and composition of organic aerosol are complicated and results of this study showed that it exhibited distinct diurnal variations. With detailed organic tracer information, sources contributing to particulate OC were identified: higher nighttime OC concentration occurring in several occasions was mainly contributed by the increasing primary emissions at night, especially diesel exhaust and biomass burning; whereas sources responsible for higher daytime OC concentration included secondary organic aerosol (SOA) formation (e.g., cis-pinonic acid and non-biomass burning WSOC) together with traffic emissions especially gasoline engine exhaust. Primary tracers from combustion related sources such as EC, polycyclic aromatic hydrocarbons, and hopanes and steranes were significantly higher at the urban site with an urban to rural ratio between 5 and 8. However, this urban-rural difference for secondary components was less significant, indicating a relatively homogeneous distribution of SOA spatially. We found cholesterol concentrations, a typical tracer for meat cooking, were consistently higher at the rural site especially during the daytime, suggesting the likely additional sources for this tracer at rural site and that it should be used with caution as meat cooking tracer in rural areas in the future.
Related JoVE Video
Oxidative potential and chemical speciation of size-resolved particulate matter (PM) at near-freeway and urban background sites in the greater Beirut area.
Sci. Total Environ.
PUBLISHED: 06-01-2013
Show Abstract
Hide Abstract
To assess particle oxidative potential in the greater Beirut area, size-resolved PM10-2.5, PM2.5-0.25 and PM0.25 samples were collected at near-freeway and urban background sites. Metals and trace elements, including Mn, Cr, Cu, Ba, Mo and Sb, displayed increased levels and crustal enrichment factors at the roadway, indicating their vehicular origin. These elements in addition to Co, V, Ni and Zn were mostly distributed in PM2.5-0.25 and PM0.25 at both sites, with moderate-to-high water-solubility (>30%). The presence of these metals, mainly air toxics, in small size ranges constitutes an added health risk. Of particular concern are elements with strong correlations (R?0.70) with reactive oxygen species (ROS)-activity, measured by a cellular assay. In PM10-2.5, road dust component Mn and soil-related element Co were highly correlated with ROS-activity. In PM2.5-0.25, vehicular abrasion element Cu and soil-derived component Co were highly associated with ROS-activity. In PM0.25, V and Ni, originating from fuel oil combustion, strongly correlated with ROS formation. ROS-activity displayed a particle-size dependency, with lowest activity associated with PM10-2.5. On a per air volume basis, size-resolved ROS-activity was 1.5-2.8 times greater at the roadside than background location, indicating that exposure to redox-active species may be greatest near the freeway. Size-fractionated PM intrinsic activity (i.e. PM mass-normalized) was comparable at both sites, possibly suggesting a similarity in the sources of ROS-active species. Relative to other urban settings, while the intrinsic redox activity of PM10-2.5 in Beirut is comparable to that measured at an urban site in Los Angeles (LA), its PM0.25-induced ROS-activity is ~2.3-fold greater. Moreover, the intrinsic ROS-activity of ambient PM2.5 in Beirut is comparable to that reported in Milan-Italy, but 3.1-times PM2.5 activity in the heavily-polluted Lahore-Pakistan. Lastly, findings suggest a dominant role of transition metals in generating ROS compared to organic carbon in the LA area.
Related JoVE Video
Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM?.??) particles in the Los Angeles metropolitan area and characterization of their sources.
Environ. Pollut.
PUBLISHED: 03-19-2013
Show Abstract
Hide Abstract
Year-long sampling campaign of quasi-ultrafine particles (PM?.??) was conducted at 10 distinct locations across the Los Angeles south coast air basin and concentrations of trace elements and metals were quantified at each site using high-resolution inductively coupled plasma sector field mass spectrometry. In order to characterize sources of trace elements and metals, principal component analysis (PCA) was applied to the dataset. The major sources were identified as road dust (influenced by vehicular emissions as well as re-suspended soil), vehicular abrasion, residual oil combustion, cadmium sources and metal plating. These sources altogether accounted for approximately 85% of the total variance of quasi-ultrafine elemental content. The concentrations of elements originating from source and urban locations generally displayed a decline as we proceeded from the coast to the inland. Occasional concentration peaks in the rural receptor sites were also observed, driven by the dominant westerly/southwesterly wind transporting the particles to the receptor areas.
Related JoVE Video
Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel.
J Expo Sci Environ Epidemiol
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
Airborne particulate matter (PM) components from fossil fuel combustion can induce oxidative stress initiated by reactive oxygen species (ROS). Reported associations between worsening asthma and PM2.5 mass could be related to PM oxidative potential to induce airway oxidative stress and inflammation (hallmarks of asthma pathology). We followed 45 schoolchildren with persistent asthma in their southern California homes daily over 10 days with offline fractional exhaled nitric oxide (FENO), a biomarker of airway inflammation. Ambient exposures included daily average PM2.5, PM2.5 elemental and organic carbon (EC, OC), NO2, O3, and endotoxin. We assessed PM2.5 oxidative potential using both an abiotic and an in vitro bioassay on aqueous extracts of daily particle filters: (1) dithiothreitol (DTT) assay (abiotic), representing chemically produced ROS; and (2) ROS generated intracellularly in a rat alveolar macrophage model using the fluorescent probe 27-dicholorohidroflourescin diacetate. We analyzed relations of FENO to air pollutants in mixed linear regression models. FENO was significantly positively associated with lag 1-day and 2-day averages of traffic-related markers (EC, OC, and NO2), DTT and macrophage ROS, but not PM2.5 mass. DTT associations were nearly twice as strong as other exposures per interquartile range: median FENO increased 8.7-9.9% per 0.43 nmole/min/m(3) DTT. Findings suggest that future research in oxidative stress-related illnesses such as asthma and PM exposure would benefit from assessments of PM oxidative potential and composition.
Related JoVE Video
Exposure to Atmospheric Particulate Matter Enhances Th17 Polarization through the Aryl Hydrocarbon Receptor.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Lung diseases, including asthma, COPD, and other autoimmune lung pathologies are aggravated by exposure to particulate matter (PM) found in air pollution. IL-17 has been shown to exacerbate airway disease in animal models. As PM is known to contain aryl hydrocarbon receptor (AHR) ligands and the AHR has recently been shown to play a role in differentiation of Th17 T cells, the aim of this study was to determine whether exposure to PM could impact Th17 polarization in an AHR-dependent manner. This study used both cell culture techniques and in vivo exposure in mice to examine the response of T cells to PM. Initially experiments were conducted with urban dust particles from a standard reference material, and ultimately repeated with freshly collected samples of diesel exhaust and cigarette smoke. The readout for the assays was increased T cell differentiation as indicated by increased generation of IL-17A in culture, and increased populations of IL-17 producing cells by intracellular flow cytometry. The data illustrate that Th17 polarization was significantly enhanced by addition of urban dust in a dose dependent fashion in cultures of wild-type but not AHR(-/-) mice. The data further suggest that polycyclic aromatic hydrocarbons played a primary role in this enhancement. There was both an increase of Th17 cell differentiation, and also an increase in the amount of IL-17 secreted by the cells. In summary, this paper identifies a novel mechanism whereby PM can directly act on the AHR in T cells, leading to enhanced Th17 differentiation. Further understanding of the molecular mechanisms responsible for pathologic Th17 differentiation and autoimmunity seen after exposure to pollution will allow direct targeting of proteins involved in AHR activation and function for treatment of PM exposures.
Related JoVE Video
Mitochondrial genetic background modifies the relationship between traffic-related air pollution exposure and systemic biomarkers of inflammation.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Mitochondria are the main source of reactive oxygen species (ROS). Human mitochondrial haplogroups are linked to differences in ROS production and oxidative-stress induced inflammation that may influence disease pathogenesis, including coronary artery disease (CAD). We previously showed that traffic-related air pollutants were associated with biomarkers of systemic inflammation in a cohort panel of subjects with CAD in the Los Angeles air basin.
Related JoVE Video
Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols.
Environ. Sci. Technol.
PUBLISHED: 12-02-2011
Show Abstract
Hide Abstract
We report on the development and application of an integrated set of analytical tools that enable accurate measurement of total, extractable, and, importantly, the oxidation state of vanadium in sub-milligram masses of environmental aerosols and solids. Through rigorous control of blanks, application of magnetic-sector-ICPMS, and miniaturization of the extraction/separation methods we have substantially improved upon published quantification limits. The study focused on the application of these methods to particulate matter (PM) emissions from diesel vehicles, both in baseline configuration without after-treatment and also equipped with advanced PM and NO(x) emission controls. Particle size-resolved vanadium speciation data were obtained from dynamometer samples containing total vanadium pools of only 0.2-2 ng and provide some of the first measurements of the oxidation state of vanadium in diesel vehicle PM emissions. The emission rates and the measured fraction of V(V) in PM from diesel engines running without exhaust after-treatment were both low (2-3 ng/mile and 13-16%, respectively). The V(IV) species was measured as the dominant vanadium species in diesel PM emissions. A significantly greater fraction of V(V) (76%) was measured in PM from the engine fitted with a prototype vanadium-based selective catalytic reductors (V-SCR) retrofit. The emission rate of V(V) determined for the V-SCR equipped vehicle (103 ng/mile) was 40-fold greater than that from the baseline vehicle. A clear contrast between the PM size-distributions of V(V) and V(IV) emissions was apparent, with the V(V) distribution characterized by a major single mode in the ultrafine (<0.25 ?m) size range and the V(IV) size distribution either flat or with a small maxima in the accumulation mode (0.5-2 ?m). The V(V) content of the V-SCR PM (6.6 ?g/g) was 400-fold greater than that in PM from baseline (0.016 ?g/g) vehicles, and among the highest of all environmental samples examined. Synchrotron based V 1s XANES spectroscopy of vanadium-containing fine-particle PM from the V-SCR identified V(2)O(5) as the dominant vanadium species.
Related JoVE Video
Chemical characterization and source apportionment of fine and coarse particulate matter inside the refectory of Santa Maria Delle Grazie Church, home of Leonardo Da Vincis "Last Supper".
Environ. Sci. Technol.
PUBLISHED: 11-29-2011
Show Abstract
Hide Abstract
The association between exposure to indoor particulate matter (PM) and damage to cultural assets has been of primary relevance to museum conservators. PM-induced damage to the "Last Supper" painting, one of Leonardo da Vincis most famous artworks, has been a major concern, given the location of this masterpiece inside a refectory in the city center of Milan, one of Europes most polluted cities. To assess this risk, a one-year sampling campaign was conducted at indoor and outdoor sites of the paintings location, where time-integrated fine and coarse PM (PM(2.5) and PM(2.5-10)) samples were simultaneously collected. Findings showed that PM(2.5) and PM(2.5-10) concentrations were reduced indoors by 88 and 94% on a yearly average basis, respectively. This large reduction is mainly attributed to the efficacy of the deployed ventilation system in removing particles. Furthermore, PM(2.5) dominated indoor particle levels, with organic matter as the most abundant species. Next, the chemical mass balance model was applied to apportion primary and secondary sources to monthly indoor fine organic carbon (OC) and PM mass. Results revealed that gasoline vehicles, urban soil, and wood-smoke only contributed to an annual average of 11.2 ± 3.7% of OC mass. Tracers for these major sources had minimal infiltration factors. On the other hand, fatty acids and squalane had high indoor-to-outdoor concentration ratios with fatty acids showing a good correlation with indoor OC, implying a common indoor source.
Related JoVE Video
Diurnal trends in coarse particulate matter composition in the Los Angeles Basin.
J Environ Monit
PUBLISHED: 10-25-2011
Show Abstract
Hide Abstract
To investigate the diurnal profile of the concentration and composition of ambient coarse particles, three sampling sites were set up in the Los Angeles Basin to collect coarse particulate matter (CPM) in four different time periods of the day (morning, midday, afternoon and overnight) in summer and winter. The samples were analyzed for total and water-soluble elements, inorganic ions and water-soluble organic carbon (WSOC). In summer, highest concentrations of CPM gravimetric mass, mineral and road dust, and WSOC were observed in midday and afternoon, when the prevailing onshore wind was stronger. In general, atmospheric dilution was lower in winter, contributing to the accumulation of air pollutants during stagnation conditions. Turbulences induced by traffic become a significant particle re-suspension mechanism, particularly during winter night time, when mixing height was lowest. This is evident by the high levels of CPM mass, mineral and road dust in winter overnight at the near-freeway sites located in urban Los Angeles, and to a lesser extent in Riverside. WSOC levels were higher in summer, with a similar diurnal profile with mineral and road dust, indicating that they either share common sources, or that WSOC may be adsorbed or absorbed onto the surfaces of these dust particles. In general, the contribution of inorganic ions to CPM mass was greater in the overnight sampling period at all sampling sites, suggesting that the prevailing meteorological conditions (lower temperature and higher relative humidity) favor the formation of these ions in the coarse mode. Nitrate, the most abundant CPM-bound inorganic species in this basin, is found to be predominantly formed by reactions with sea salt particles in summer. When the sea salt concentrations were low, the reaction with mineral dust particles and the condensation of ammonium nitrate on CPM surfaces also contributes to the formation of nitrate in the coarse mode.
Related JoVE Video
Chemical characterization and redox potential of coarse and fine particulate matter (PM) in underground and ground-level rail systems of the Los Angeles Metro.
Environ. Sci. Technol.
PUBLISHED: 07-18-2011
Show Abstract
Hide Abstract
A campaign was conducted to assess personal exposure of coarse (2.5 ?m < d(p) < 10 ?m) and fine (d(p) < 2.5 ?m) PM for two lines of the L.A. Metro-a subway (red) and light-rail (gold) line. Concurrent measurements were taken at University of Southern California (USC) to represent ambient conditions. A comprehensive chemical analysis was performed including total and water-soluble metals, inorganic ions, elemental and organic carbon, and organic compounds. Mass balance showed that in coarse PM, iron makes up 27%, 6%, and 2% of gravimetric mass for the red line, the gold line, and USC, respectively; in fine PM, iron makes up 32%, 3%, and 1%. Ambient air is the primary source of inorganic ions and organic compounds for both lines. Noncrustal metals, particularly Cr, Mn, Co, Ni, Mo, Cd, and Eu, were elevated for the red line and, to a lesser degree, the gold line. Mo exhibited the greatest crustal enrichment factors. The enriched species were less water-soluble on the red line than corresponding species on the gold line. Bivariate analysis showed that reactive oxygen species (ROS) activity is strongly correlated with water-soluble Fe (R(2) = 0.77), Ni (R(2 )= 0.95), and OC (R(2 )= 0.92). A multiple linear regression model (R(2) = 0.94, p < 0.001) using water-soluble Fe and OC as predictor variables was developed to explain the variance in ROS. In addition, PM from the red line generates 65% and 55% more ROS activity per m(3) of air than PM from USC and the gold line, respectively; however, one unit of PM mass from the gold line may be as intrinsically toxic as one unit of PM from the red line.
Related JoVE Video
Indoor air pollution and blood pressure in adult women living in rural China.
Environ. Health Perspect.
PUBLISHED: 07-01-2011
Show Abstract
Hide Abstract
Almost half of the worlds population uses coal and biomass fuels for domestic energy. Limited evidence suggests that exposure to air pollutants from indoor biomass combustion may be associated with elevated blood pressure (BP).
Related JoVE Video
Climate sensitivity of gaseous elemental mercury dry deposition to plants: impacts of temperature, light intensity, and plant species.
Environ. Sci. Technol.
PUBLISHED: 12-13-2010
Show Abstract
Hide Abstract
Foliar accumulations of gaseous elemental mercury (GEM) were measured in three plant species between nominal temperatures of 10 and 30 °C and nominal irradiances of 0, 80, and 170 W m(-2) (300 nm-700 nm) in a 19 m(3) controlled environment chamber. The plants exposed were as follows: White Ash (Fraxinus americana; WA); White Spruce (Picea glauca; WS); and Kentucky Bluegrass (Poa partensis; KYBG). Foliar enrichments in the mercury stable isotope ((198)Hg) were used to measure mercury accumulation. Exposures lasted for 1 day after which the leaves were digested in hot acid and the extracted mercury was analyzed with ICPMS. Resistances to accumulative uptake by leaves were observed to be dependent on both light and temperature, reaching minima at optimal growing conditions (20 °C; 170 W m(-2) irradiance between 300-700 nm). Resistances typically increased at lower (10 °C) and higher (30 °C) temperatures and decreased with higher intensities of irradiance. Published models were modified and used to interpret the trends in stomatal and leaf interior resistances to GEM observed in WA. The model captured the experimental trends well and revealed that stomatal and internal resistances were both important across much of the temperature range. At high temperatures, however, stomatal resistance dominated due to increased water vapor pressure deficits. The resistances measured in this study were used to model foliar accumulations of GEM at a northern US deciduous forest using atmospheric mercury and climate measurements made over the 2003 growing season. The results were compared to modeled accumulations for GEM, RGM, and PHg using published deposition velocities. Predictions of foliar GEM accumulation were observed to be a factor of 5-10 lower when the temperature and irradiance dependent resistances determined in this study were used in place of previously published data. GEM uptake by leaves over the growing season was shown to be an important deposition pathway (2.3-3.7 ?g m(-2) of one-sided leaf area; OSLA) when compared to total mercury wet deposition (1.2 ?g m(-2) OSLA) and estimates of reactive mercury dry deposition (0.1-6 ?g m(-2) OSLA). Resistance-Temperature-Irradiance relationships are provided for use in models.
Related JoVE Video
Spatial variability of carbonaceous aerosol concentrations in East and West Jerusalem.
Environ. Sci. Technol.
PUBLISHED: 12-12-2010
Show Abstract
Hide Abstract
Carbonaceous aerosol concentrations and sources were compared during a year long study at two sites in East and West Jerusalem that were separated by a distance of approximately 4 km. One in six day 24-h PM(2.5) elemental and organic carbon concentrations were measured, along with monthly average concentrations of particle-phase organic compound tracers for primary and secondary organic aerosol sources.Tracer compounds were used in a chemical mass balance ICMB) model to determine primary and secondary source contributions to organic carbon. The East Jerusalem sampling site at Al Quds University experienced higher concentrations of organic carbon (OC) and elemental carbon (EC) compared to the West Jerusalem site at Hebrew University. The annual average concentrations of OC and EC at the East Jerusalem site were 5.20 and 2.19 ?g m(-3), respectively, and at the West Jerusalem site were 4.03 and 1.14 ?g m(-3), respectively. Concentrations and trends of secondary organic aerosol and vegetative detritus were similar at both sites, but large differences were observed in the concentrations of organic aerosol from fossil fuel combustion and biomass burning, which was the cause of the large differences in OC and EC concentrations observed at the two sites.
Related JoVE Video
Temporal trends in motor vehicle and secondary organic tracers using in situ methylation thermal desorption GCMS.
Environ. Sci. Technol.
PUBLISHED: 11-24-2010
Show Abstract
Hide Abstract
Organic aerosol measurements with high temporal resolution can differentiate primary organic carbon (POC) from secondary organic carbon (SOC) and can be used to distinguish morning rush hour traffic emissions and subsequent photo-oxidation. In the current study, five hour filter samples were collected during the Summer Study for Organic Aerosols at Riverside (SOAR-1 in CA, USA) for analysis of organic molecular markers. To achieve the low detection limits required for the high temporal resolution data, a laboratory-based in situ methylation thermal desorption gas chromatography-mass spectrometry method was developed. This enabled the measurement of potential markers of SOC, including phthalic acid, along with markers for traffic emissions, including norhopane. The aromatic acids correlated well with unapportioned OC from a molecular marker chemical mass balance model (SOC-cmb; r(2) = 0.46-0.70) and SOC from the elemental carbon tracer method (SOC-ec; r(2) = 0.40-0.56). The aromatic acid/norhopane ratio increased substantially over the course of each day. The average mid-day phthalic acid ratio compared to previously published roadway emissions was a factor of 4 times higher, while the average 1,2,3-benzenetricarboxylic acid ratio was a factor of 40 times higher than roadway emissions. Using correlation plots of SOC-cmb and phthalic acid, it was estimated that 2.9 ± 0.6 ?g m(-3) SOC was associated with mid-day aromatic acid production in Riverside.
Related JoVE Video
Improved source apportionment and speciation of low-volume particulate matter samples.
Res Rep Health Eff Inst
PUBLISHED: 10-12-2010
Show Abstract
Hide Abstract
New chemical analysis methods for the characterization of atmospheric particulate matter (PM)* samples were developed and demonstrated in order to expand the number of such methods for use in future health studies involving PM. Three sets of methods were, developed, for the analysis (1) of organic tracer compounds in low-volume personal exposure samples (for source apportionment), (2) of trace metals and other trace elements in low-volume personal exposure samples, and (3) of the speciation of the oxidation states of water-soluble iron (Fe), manganese (Mn), and chromium (Cr) in PM samples. The development of the second set of methods built on previous work by the project team, which had in the past used similar methods in atmospheric source apportionment studies. The principal challenges in adapting these methods to the analysis of personal exposure samples were the improvement of detection limits (DLs) and control of the low-level contamination that can compromise personal exposure samples. A secondary goal of our development efforts was to reduce the cost and complexity of the three sets of methods in order to help facilitate their broader use in future health studies. The goals of the project were achieved, and the ability to integrate the methods into existing health studies was demonstrated by way of conducting two pilot studies. The first study involved analysis of trace elements in size-resolved PM samples that had been collected to represent study subjects personal exposures along with simultaneous measures of indoor and outdoor PM concentrations. The second study involved analysis of the speciation of organic tracer compounds in personal exposure samples, indoor samples, and outdoor samples in order to understand the diesel PM exposure of study subjects in various job classifications in an occupational setting. Both pilot studies used existing samples from. large multi-year health studies and were intended to demonstrate the feasibility and value of using the new chemical analysis methods to better characterize the personal exposure samples. Analysis of the health data and the broader implications of the exposure assessments were not evaluated as part of the present study, but our pilot-study measurements are expected to contribute to investigators future analyses in the large multi-year health studies. The methods we developed for the low-cost measurement of the oxidation states of Fe, Mn, and Cr in atmospheric PM samples are extremely sensitive and well suited for use in health studies. To demonstrate the utility of these methods, small-scale studies were conducted to characterize the redox cycling of Fe in PM on the time scale of atmospheric transport from source to personal exposure and to provide preliminary data on the atmospheric concentrations of soluble forms of the target metals in selected urban environments (in order to help focus future research seeking to understand the role of metals in human exposure to PM and its adverse health effects). The present report summarizes the methods that were developed and demonstrated to be suitable for use in health studies and provides pilot-scale data that can be used to develop hypotheses and experimental strategies to further enhance the ability of future health studies to elucidate the role of PM, PM sources, and PM components in the observed associations between atmospheric PM and adverse human health outcomes.
Related JoVE Video
Stability, preservation, and quantification of hormones and estrogenic and androgenic activities in surface water runoff.
Environ. Toxicol. Chem.
PUBLISHED: 09-25-2010
Show Abstract
Hide Abstract
Degradation of hormones that may occur during storage of surface water samples can lead to underestimations in estrogenic and androgenic activities and inaccuracies in hormone concentrations. The current study investigated the use of sodium azide, hydrochloric acid (HCl), and sulfuric acid (H?SO?) to inhibit the degradation of hormones and estrogenic and androgenic activities in samples of surface water runoff from cattle manure-amended fields during storage at 4°C. Hormones and hormone metabolites were extracted using solid-phase extraction and analyzed using high-performance liquid chromatography (HPLC) with tandem MS. Estrogenic and androgenic activities were assessed by E-screen and A-screen, respectively. Results of the current study indicate significant degradation of estrogenic, androgenic, and progestogenic hormones and activities, which is likely attributable to microbial activity, within hours of sample collection. The inclusion of internal standards provides a means to account for hormone losses caused by extraction inefficiency and to some extent degradation. However, internal standards are unable to adequately account for significant losses and are not available for E-screen and A-screen. Sodium azide did not adequately inhibit androgen degradation at the concentration used (1 g/L). Acid preservation (HCl or H?SO?, pH 2) stabilized the estrogenic and androgenic activities, and coupling acid preservation with the use of internal standards resulted in reliable and accurate recovery of a suite of androgens, estrogens, and progestogens for up to 14 d of storage at 4°C.
Related JoVE Video
Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort.
Epidemiology
PUBLISHED: 09-03-2010
Show Abstract
Hide Abstract
Exposure-response information about particulate air-pollution constituents is needed to protect sensitive populations. Particulate matter <2.5 mm (PM2.5) components may induce oxidative stress through reactive-oxygen-species generation, including primary organics from combustion sources and secondary organics from photochemically oxidized volatile organic compounds. We evaluated differences in airway versus systemic inflammatory responses to primary versus secondary organic particle components, particle size fractions, and the potential of particles to induce cellular production of reactive oxygen species.
Related JoVE Video
Assessing the impact of industrial source emissions on atmospheric carbonaceous aerosol concentrations using routine monitoring networks.
J Air Waste Manag Assoc
PUBLISHED: 03-13-2010
Show Abstract
Hide Abstract
Industrial sources can have a significant but poorly defined impact on ambient particulate matter concentrations in select areas. Detailed emission profiles are often not available and are hard to develop because of the diversity of emissions across time and space at large industrial complexes. A yearlong study was conducted in an industrial area in Detroit, MI, which combined real-time particle mass (tapered element oscillating microbalance) and black carbon (aetholometer) measurements with molecular marker measurements of monthly average concentrations as well as daily concentrations of select high pollution days. The goal of the study was to use the real-time data to define days in which the particulate matter concentration in the atmosphere was largely impacted by local source emissions and to use daily speciation data to derive emission profiles for the industrial source. When combined with motor vehicle exhaust, wood smoke and road dust profiles, the industrial source profile was used to determine the contribution of the local industrial source to the total organic carbon (OC) concentrations using molecular marker-chemical mass balance modeling (MM-CMB). The MM-CMB analysis revealed that the industrial source had minimal impact on the monthly average carbonaceous aerosol concentration, but contributed approximately 2 microg m(-3), or a little over one-third of the total OC, on select high-impact days.
Related JoVE Video
Association of biomarkers of systemic inflammation with organic components and source tracers in quasi-ultrafine particles.
Environ. Health Perspect.
PUBLISHED: 02-02-2010
Show Abstract
Hide Abstract
Evidence is needed regarding the air pollutant components and their sources responsible for associations between particle mass concentrations and human cardiovascular outcomes. We previously found associations between circulating biomarkers of inflammation and mass concentrations of quasi-ultrafine particles
Related JoVE Video
Toxic metals in the atmosphere in Lahore, Pakistan.
Sci. Total Environ.
PUBLISHED: 01-18-2010
Show Abstract
Hide Abstract
Aerosol mass (PM(10) and PM(2.5)) and detailed elemental composition were measured in monthly composites during the calendar year of 2007 at a site in Lahore, Pakistan. Elemental analysis revealed extremely high concentrations of Pb (4.4microg m(-3)), Zn (12microg m(-3)), Cd (0.077microg m(-3)), and several other toxic metals. A significant fraction of the concentration of Pb (84%), Zn (98%), and Cd (90%) was contained in the fine particulate fraction (PM(2.5) and smaller); in addition, Zn and Cd were largely (>or=60%) water soluble. The 2007 annual average PM(10) mass concentration was 340microg m(-3), which is well above the WHO guideline of 20microg m(-3). Dust sources were found to contribute on average (maximum) 41% (70%) of PM(10) mass and 14% (29%) of PM(2.5) mass on a monthly basis. Seasonally, concentrations were found to be lowest during the monsoon season (July-September). Principle component analysis identified seven factors, which combined explained 91% of the variance of the measured components of PM(10). These factors included three industrial sources, re-suspended soil, mobile sources, and two regional secondary aerosol sources likely from coal and/or biomass burning. The majority of the Pb was found to be associated with one industrial source, along with a number of other toxic metals including As and Cr. Cadmium, another toxic metal, was found at concentrations 16 times higher than the maximum exposure level recommended by the World Health Organization, and was concentrated in one industrial source that was also associated with Zn. These results highlight the importance of focusing control strategies not only on reducing PM mass concentration, but also on the reduction of toxic components of the PM as well, to most effectively protect human health and the environment.
Related JoVE Video
Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from Lahore, Pakistan: an important role for transition metals.
J Environ Monit
PUBLISHED: 12-23-2009
Show Abstract
Hide Abstract
In this study a sensitive macrophage-based in vitro reactive oxygen species (ROS) assay was coupled with chemical fractionation tools and a year-long sampling program to further our understanding of the role of water-soluble metals in aerosol toxicity. The location is the polluted urban environment of Lahore, Pakistan, where we collected 24 h PM10 and PM2.5 samples every 6(th) day from January 2007 through January 2008. The intrinsic (i.e. particulate matter (PM) mass-normalized) toxicity of the Lahore aerosol, representative of highly polluted developing nations, is compared with toxicity of aerosols from several urban environments in the USA. The monthly patterns of PM2.5 and PM10 water-soluble aerosol ROS-activity were similar with maxima in fall and mid-late winter, and minima over the period April through August and in early winter. Coarse PM ROS-activity was a consistent and significant component (42 +/- 13%) of total activity. The intrinsic activity of the PM2.5 and coarse PM was remarkably similar in a given month. Chelex treatment of the Lahore PM extracts removed a very large and consistent fraction of the water-soluble ROS-activity (96.5 +/- 2.8% for the PM10). Desferrioxamine (DFO) treatment of these extracts also removed a large and relatively consistent fraction of the water-soluble ROS-activity (87.8 +/- 5.3%). Taken together, the DFO and Chelex data imply that transition metals, particularly iron, are major factors mediating ROS-activity of water extracts of the Lahore PM. Statistical modeling (step-wise linear regression and cluster analysis) identified a small subset of metals (Mn, Co, Fe, Ni) as the potential ROS-active species. Several water-soluble "trace" metals present at very high concentrations in the PM extracts (Zn, Pb, Cd), that were effectively removed on Chelex, but are not redox-active, exhibited relatively poor correlations with ROS. The median intrinsic water-soluble ROS-activity measured in the Lahore PM was more than an order-of-magnitude greater than that measured in aerosols from the Long Beach/Los Angeles region and approximately 4-fold greater than the activity of Denver area PM.
Related JoVE Video
Sensitivity and bias of molecular marker-based aerosol source apportionment models to small conltibutions of coal combustion soot.
Environ. Sci. Technol.
PUBLISHED: 11-20-2009
Show Abstract
Hide Abstract
Carbonaceous atmospheric particulate matter (PM25) collected in the midwestern United States revealed that soot emissions from incomplete coal combustion were important sources of several organic molecular markers used in source apportionment studies. Despite not constituting a major source of organic carbon in the PM25, coal soot was an important source of polyaromatic hydrocarbons, hopanes, and elemental carbon. These marker compounds are becoming widely used for source apportionment of atmospheric organic PM, meaning that significant emissions of these marker compounds from unaccounted sources such as coal soot could bias apportionment results. This concept was demonstrated using measurements of atmospheric PM collected on a 1-in-6 day schedule at three monitoring sites in Ohio: Mingo Junction (near Steubenville), Cincinnati, and Cleveland. Impacts of coal sootwere measured to be significant at Mingo Junction and small at Cleveland and Cincinnati. As a result, biases in apportionment results were substantial at Mingo Junction and insignificant at Cleveland and Cincinnati. Misapportionments of organic carbon mass at Mingo Junction were significant when coal soot was detected in the particulate samples as identified bythe presence of picene, but when coal soot was not included in the model: gasoline engines (+8% to +58% of OC), smoking engines (0% to -17% of OC), biomass combustion (+1% to +11% of OC), diesel engines (-1% to -2% of OC), natural gas combustion (0% to -2% of OC), and unapportioned OC (0% to -47% of OC). These results suggest that the role of coal soot in source apportionment studies needs to be better examined in many parts of the United States and other parts of the world.
Related JoVE Video
PM(2.5) Characterization for Time Series Studies: Pointwise Uncertainty Estimation and Bulk Speciation Methods Applied in Denver.
Atmos Environ (1994)
PUBLISHED: 10-31-2009
Show Abstract
Hide Abstract
Many studies have identified associations between adverse health effects and short-term exposure to particulate matter less than 2.5 microns in diameter (PM(2.5)). These effects, however, are not consistent across geographical regions. This may be due in part to variations in the chemical make-up of PM(2.5) resulting from unique combinations of sources, both primary and secondary, in different regions. The Denver Aerosol Sources and Health (DASH) study is a multi-year time series study designed to characterize the daily chemical composition of PM(2.5) in Denver, identify the major contributing sources, and investigate associations between sources and a broad array of adverse health outcomes.Measurement methodology, field blank correction, pointwise uncertainty estimation and detection limit consideration are discussed in the context of bulk speciation for the DASH study. Results are presented for the first 4.5 years of mass, inorganic ion and bulk carbon speciation. The derived measurement uncertainties were propagated using the root sum of squares method and show good agreement with precision estimates derived from bi-weekly duplicate samples collected on collocated samplers. Gravimetric mass has the most uncertainty of any measurement and reconstructed mass generated from the sum of the individual species shows less uncertainty than measured mass on average. The methods discussed provide a good framework for PM(2.5) speciation measurements and are generalizable to analysis of other environmental measures.
Related JoVE Video
Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies.
Environ. Sci. Technol.
PUBLISHED: 08-14-2009
Show Abstract
Hide Abstract
A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control technologies, the particle bound organics-to-OC ratios (microg/g) decreased considerably for PAHs, while the reduction was insignificant for hopanes and steranes, implying that fuel and lubricating oil have substantially different contributions to the total OC emitted by vehicles operating with after-treatment control devices compared to the baseline vehicle since these control technologies had a much larger impact on PAH OC than hopanes and steranes OC.
Related JoVE Video
Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies.
Environ. Sci. Technol.
PUBLISHED: 06-24-2009
Show Abstract
Hide Abstract
Advanced exhaust after-treatment devices for diesel vehicles are less effective in controlling semivolatile species than the refractory PM fractions. This study investigated the oxidative potential (OP) of PM from vehicles with six retrofitted technologies (vanadium and zeolite based selective catalytic reduction (V-SCRT, Z-SCRT), Continuously regenerating technology (CRT), catalyzed DPX filter, catalyzed continuously regenerating trap (CCRT), and uncatalyzed Horizon filter) in comparison to a "baseline" vehicle (without any control device). Vehicles were tested on a chassis dynamometer atthree driving conditions, i.e., cruise, transient urban dynamometer driving schedule (UDDS), and idle. The consumption rate of dithiothreitol (DTT), one of the surrogate measures of OP, was determined for PM samples collected at ambient and elevated temperatures (thermally denuded of semivolatile species). Control devices reduced the OP expressed per vehicle distance traveled by 60-98%. The oxidative potential per unit mass of PM however, was highest for the Horizon followed by CRT, DPX -Idle, SCRTs, and baseline vehicles. Significant reduction in OP (by 50-100%) was observed forthermally denuded PM from vehicles with retrofitted technologies (PM with significant semivolatile fraction), whereas particles emitted bythe baseline vehicle (with insignificant semivolatile fraction) did not demonstrate any measurable changes in oxidative activity. This suggests that the semivolatile fraction of particles are far more oxidative in nature than refractory particles-a conclusion further supported by previous tunnel and ambient studies, demonstrating a decline in PM oxidative activity with increasing atmospheric dilution. Correlation analysis performed between all the species, showed that OP is moderately associated (R = 0.76) with organic carbon (OC) and strongly associated (R = 0.94) with the water-soluble organic carbon (WSOC).
Related JoVE Video
A comparison of summertime secondary organic aerosol source contributions at contrasting urban locations.
Environ. Sci. Technol.
PUBLISHED: 06-24-2009
Show Abstract
Hide Abstract
Primary and secondary sources contributing to atmospheric organic aerosol during the months of July and August were quantitatively assessed in three North American urban areas: Cleveland, Ohio, and Detroit, Michigan, in the Midwest region and Riverside, California, in the Los Angeles Air Basin. Organic molecular marker species unique to primary aerosol sources and secondarytracers derived from isoprene, alpha-pinene, beta-caryophyllene, and toluene were measured using gas chromatography-mass spectrometry. Source contributions from motor vehicles, biomass burning, vegetative detritus, and secondary organic aerosol (SOA) were estimated using chemical mass balance (CMB) modeling. In Cleveland, primary sources accounted for 37 +/- 2% of ambient organic carbon, measured biogenic and anthropogenic secondary sources contributed 46 +/- 6%, and other unknown sources contributed 17 +/- 4%. Similarly, Detroit aerosol was determined to be 44 +/- 5% primary and 37 +/- 3% secondary, while 19 +/- 7% was unaccounted for by measured sources. In Riverside, 21 +/- 3% of organic carbon came from primary sources, 26 +/- 5% was attributed to measured secondary sources, and 53 +/- 3% came from other sources that were expected to be secondary in nature. The comparison of samples across these two regions demonstrated that summertime SOA in the Midwestern United States was substantially different from the summertime SOA in the Los Angeles Air Basin and indicated the need to exert caution when generalizing about the sources and nature of SOA across different urban areas. Furthermore, the results of this study suggestthatthe contemporary understanding of SOA sources and formation mechanisms is satisfactory to explainthe majority of SOA in the Midwest Additional SOA sources and mechanisms of formation are needed to explain the majority of SOA in the Los Angeles Air Basin.
Related JoVE Video
Tracking personal exposure to particulate diesel exhaust in a diesel freight terminal using organic tracer analysis.
J Expo Sci Environ Epidemiol
PUBLISHED: 06-16-2009
Show Abstract
Hide Abstract
Personal exposure to particle-phase molecular markers was measured at a trucking terminal in St Louis, MO, as part of a larger epidemiologic project aimed at assessing carbonaceous fine particulate matter (PM) exposure in this occupational setting. The integration of parallel personal exposure, ambient worksite area and ambient urban background (St Louis Supersite) measurements provided a unique opportunity to track the work-related exposure to carbonaceous fine PM in a freight terminal. The data were used to test the proposed personal exposure model in this occupational setting: To accurately assess the impact of PM emission sources, particularly motor vehicle exhaust, and organic elemental carbon (OCEC) analysis and nonpolar organic molecular marker analysis by thermal desorption-gas chromatography/mass spectrometry (TD-GCMS) were conducted on all of the PM samples. EC has been used as a tracer for diesel exhaust in urban areas, however, the emission profile for diesel exhaust is dependent upon the operating conditions of the vehicle and can vary considerably within a fleet. Hopanes, steranes, polycyclic aromatic hydrocarbons and alkanes were measured by TD-GCMS. Hopanes are source-specific organic molecular markers for lubricating oil present in motor vehicle exhaust. The concentrations of OC, EC and the organic tracers were averaged to obtain average profiles to assess differences in the personal, worksite area and urban background samples, and were also correlated individually by sample time to evaluate the exposure model presented above. Finally, a chemical mass balance model was used to apportion the motor vehicle and cigarette-smoke components of the measured OC and EC for the average personal exposure, worksite area and urban background samples.
Related JoVE Video
New technique for online measurement of water-soluble Fe(II) in atmospheric aerosols.
Environ. Sci. Technol.
PUBLISHED: 05-21-2009
Show Abstract
Hide Abstract
A prototype instrument has been developed for online analysis of water-soluble Fe(II) (WS_Fe(II)) in atmospheric aerosols using a particle-into-liquid-sampler (PILS), which concentrates particles into a small flow of purified water, coupled with a liquid waveguide capillary cell (LWCC) and absorbance spectrophotometryto detect iron-ferrozine colored complexes. The analytical method is highly precise (<3% RSD), and the overall measurement uncertainty and limit of detection for the complete PILS-LWCC system are estimated at 12% and 4.6 ng m(-3), respectively. The online measurements compared well with those of 24 h integrated filter samples collected at two different sampling sites (n=27, R2 = 0.82, slope 0.90 +/- 0.08, and intercept 3.08 +/- 1.99 ng m(-3)). In urban Atlanta, fine particle WS_Fe(II) concentrations measured every 12 min exhibited large variability, ranging from below the detection limit (4.6) to 370 ng m(-3) during a 24 day period in June 2008. This instrument provides new capabilities for investigating the sources and atmospheric processing of fine particle WS_Fe(II) and may prove useful in studies ranging from effects of particle WS_Fe(II) on human health to effects of particle WS_Fe(II) on atmospheric chemistry and ocean biogeochemistry.
Related JoVE Video
The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential.
Environ. Health Perspect.
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
It has been demonstrated that ambient particulate matter (PM) can act as an adjuvant for allergic sensitization. Redox-active organic chemicals on the particle surface play an important role in PM adverse health effects and may determine the adjuvant effect of different particle types according to their potential to perturb redox equilibrium in the immune system.
Related JoVE Video
Physicochemical and toxicological profiles of particulate matter in Los Angeles during the October 2007 southern California wildfires.
Environ. Sci. Technol.
PUBLISHED: 02-28-2009
Show Abstract
Hide Abstract
To characterize the impact of the October 2007 wildfires on the air quality of Los Angeles, integrated ambient particulate matter (PM) samples were collected near the University of Southern California between October 24 and November 14, 2007. Samples were analyzed for different chemical species (i.e.,water-soluble organic carbon, water-soluble elements, and several organic compounds), and the redox activity of PM was evaluated using two different assays: the dithiothreitol (DTT) and macrophage reactive oxygen species (ROS) assays. Tracers of biomass burning such as potassium and levoglucosan were elevated by 2-fold during the fire period (October 24-28), compared to the postfire period (November 1-14). Water-soluble organic carbon (WSOC) concentrations were also higher during the fire event (170 and 78 microg/mg of PM, during fire and postfire, respectively). While the DTT activity (on a per PM mass basis) increased for samples collected during the fire event (0.024 nmol DTT/min x microg on October 24) compared to the postfire samples (0.005 nmol DTT/min x microg on November 14), the ROS activity appears to be unaffected by the wildfires, probably because these two assays are driven by different PM species. While the DTT assay reflected the redox potential of polar organic compounds, which are abundant in wood-smoke, the ROS assay was mainly influenced by transition metals (e.g., Fe, Cu, Cr, Zn, Ni, and V), emitted mostly by vehicular traffic and other combustion sources, but not by the wildfires.
Related JoVE Video
Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode.
Environ. Sci. Technol.
PUBLISHED: 02-26-2009
Show Abstract
Hide Abstract
Size-resolved samples of airborne particulate matter (PM) collected during a severe winter pollution episode at three sites in the San Joaquin Valley of California were extracted with organic solvents and analyzed for detailed organic compounds using GC-MS. Six particle size fractions were characterized with diameter (Dp) < 1.8 microm; the smallest size fraction was 0.056 < Dp < 0.1 microm which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Source profiles for ultrafine particles developed during previous studies were applied to the measurements at each sampling site to calculate source contributions to organic carbon (OC) and elemental carbon (EC) concentrations. Ultrafine EC concentrations ranged from 0.03 microg m(-3) during the daytime to 0.18 microg m(-3) during the nighttime. Gasoline fuel, diesel fuel, and lubricating oil combustion products accounted for the majority of the ultrafine EC concentrations, with relatively minor contributions from biomass combustion and meat cooking. Ultrafine OC concentrations ranged from 0.2 microg m(-3) during the daytime to 0.8 microg m(-3) during the nighttime. Wood combustion was found to be the largest source of ultrafine OC. Meat cooking was also identified as a significant potential source of PM0.1 mass but further study is required to verify the contributions from this source. Gasoline fuel, diesel fuel, and lubricating oil combustion products made minor contributions to PM0.1 OC mass. Total ultrafine particulate matter concentrations were dominated by contributions from wood combustion and meat cooking during the current study. Future inhalation exposure studies may wish to target these sources as potential causes of adverse health effects.
Related JoVE Video
Seasonal variations of elemental carbon in urban aerosols as measured by two common thermal-optical carbon methods.
Sci. Total Environ.
PUBLISHED: 01-26-2009
Show Abstract
Hide Abstract
Two commonly employed laboratory-based elemental carbon (EC) and organic carbon (OC) thermal/optical methods for the analysis of ambient particulate matter were used to analyze 709 twenty-four hour integrated PM(2.5) samples along with 76 field blanks from the St. Louis-Midwest Supersite in East St. Louis, Illinois. The two laboratory ECOC methods were the Aerosol Characterization Experiment-Asia (ACE-Asia) method based on National Institute of Occupational Safety and Health (NIOSH 5040) method and the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol. As in previous intercomparisons between these two methods, there was excellent agreement for total carbon (i.e. sum of EC and OC), but significant differences were observed in the split between the measured EC and OC. The 709 daily PM(2.5) samples spanned a time series of two years that allowed an assessment of seasonal relationships between the EC reported by the two methods. Seasonal average ACE-Asia and IMPROVE EC concentration values were highest in the fall and lowest in the spring. Differences between the seasonal average IMPROVE and ACE-Asia EC concentration values were about 40% greater in summer compared to winter. While IMPROVE EC values were always larger than ACE-Asia EC, the EC difference between these methods exhibited a strong seasonal variation with largest differences occurring in the spring and especially summer with the smallest differences in the fall and winter. Seasonal average EC differences (IMPROVE-ACE-Asia) were anti-correlated with molecular markers for biomass burning and mobile source emissions that had wintertime maximum concentrations. The EC difference between methods did have a moderate positive correlation with indicators of secondary organic aerosol and sulfate suggesting that oxidized organic aerosol associated with atmospheric processing or other secondary components of ambient aerosol could be associated with the seasonal differences between these EC measurements.
Related JoVE Video
The distribution between the dissolved and the particulate forms of 49 metals across the Tigris River, Baghdad, Iraq.
ScientificWorldJournal
Show Abstract
Hide Abstract
The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world) within Baghdad city and in its major tributary (Diyala River) from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt) in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40) > Th(35) > Fe(15) > Al(13) > Pb(4.5)] ? 10(6)?L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270?mg/L). A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris.
Related JoVE Video
Positive matrix factorization of PM(2.5): comparison and implications of using different speciation data sets.
Environ. Sci. Technol.
Show Abstract
Hide Abstract
To evaluate the utility and consistency of different speciation data sets in source apportionment of PM(2.5), positive matrix factorization (PMF) coupled with a bootstrap technique for uncertainty assessment was applied to four different 1-year data sets composed of bulk species, bulk species and water-soluble elements (WSE), bulk species and organic molecular markers (OMM), and all species. The five factors resolved by using only the bulk species best reproduced the observed concentrations of PM(2.5) components. Combining WSE with bulk species as PMF inputs also produced five factors. Three of them were linked to soil, road dust, and processed dust, and together contributed 26.0% of reconstructed PM(2.5) mass. A 7-factor PMF solution was identified using speciated OMM and bulk species. The EC/sterane and summertime/selective aliphatic factors had the highest contributions to EC (39.0%) and OC (53.8%), respectively. The nine factors resolved by including all species as input data are consistent with those from the previous two solutions (WSE and bulk species, OMM and bulk species) in both factor profiles and contributions (r = 0.88-1.00). The comparisons across different solutions indicate that the selection of input data set may depend on the PM components or sources of interest for specific source-oriented health study.
Related JoVE Video
Characterization of organic, metal and trace element PM2.5 species and derivation of freeway-based emission rates in Los Angeles, CA.
Sci. Total Environ.
Show Abstract
Hide Abstract
On-road particulate matter (PM) was collected during a sampling campaign in March-April of 2011 on two major Los Angeles freeways, I-710 and Route 110. I-710 is a major route for heavy-duty vehicles (HDVs) traveling to and from the Ports of Long Beach and Los Angeles, while Route 110 has a much lower HDV fraction -3.9% versus 11.4%. Two sets of samples were collected for each roadway, each set representing approximately 50°h of on-road sampling. Concurrent sampling at a fixed site at the University of Southern Californias (USC) downtown Los Angeles campus provided estimates of urban background levels. Chemical analysis was performed for elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes, and metals and trace elements. Freeway-based emission rates (ERs) - mass per kilometer of freeway per hour - were calculated using mass concentrations, fuel characteristics, and traffic flow rates. These ERs are presented such that freeways could be treated as a line source of emissions for use in predictive models of population exposure for nearby communities. This data could also be used to assess the exposure of commuters to traffic-related PM2.5 emissions. ERs are compared to data from a previous fixed-site roadside study of I-710 as well as to reconstructed values from a tunnel study. ERs were generally lower (or comparable) on the gasoline-vehicle dominated freeway (Route 110) than the freeway with more diesel trucks (I-710), with EC and pyrene being notably lower on Route 110, findings consistent with the Route 110s lower HDV fraction. We found EC emission rates decreased over time suggesting that efforts to reduce diesel emissions from HDVs at the Ports of Los Angeles and Long Beach have been successful. While ERs for most of the organic species were within the range of values reported by previous studies, the present study found much higher ERs for metals and trace elements. This suggests that the sampling methods employed in this campaign are more efficient at capturing particles from sources such as resuspended road dust and wear from tires and brakes, which are usually not included in traditional sampling methodologies for assessing vehicular emissions (e.g. dynamometer studies).
Related JoVE Video
Historical trends in the mass and chemical species concentrations of coarse particulate matter in the Los Angeles Basin and relation to sources and air quality regulations.
J Air Waste Manag Assoc
Show Abstract
Hide Abstract
To assess the impact of past, current and proposed air quality regulations on coarse particulate matter (CPM), the concentrations of CPM mass and its chemical constituents were examined in the Los Angeles Basin from 1986 to 2009 using PM data acquired from peer-reviewed journals and regulatory agency database. PM10 mass levels decreased by approximately half from 1988 to 2009 at the three sampling sites examined- located in downtown Los Angeles, Long Beach and Riverside. Annual CPM mass concentrations were calculated from the difference between daily PM10 and PM2.5 from 1999 to 2009. High CPM episodes driven by high wind speed/stagnant condition caused year-to-year fluctuations in the 99th/98th percentile CPM levels. The reductions of average CPM levels were lower than those of PM10 in the same period, therefore the decrease of PM10 level was mainly driven by reductions in the emission levels of PM2.5 (or fine) particles, as demonstrated by the higher annual reduction of average PM2.5 (0.92 microg/m3) compared with CPM (0.39 microg/m3) from 1999 to 2009 in downtown Los Angeles despite their comparable concentrations. This is further confirmed by the significant decrease of Ni, Cr, V and EC in the coarse fraction after 1995. On the other hand, the levels of several inorganic ions (sulfate, chloride and to a lesser extent nitrate) remained comparable. From 1995 to 2008, levels of Cu, a tracer of brake wear, either remained similar or decreased at a smaller rate compared with elements of combustion origins. This differential reduction of CPM components suggests that past and current regulations may have been more effective in reducing fugitive dust (Al, Fe and Si) and combustion emissions (Ni, Cr, V, and EC) rather than CPM from vehicular abrasion (Cu) and inorganic ions (NO3(-), SO4(2-) and Cl(-)) in urban areas. Implications: Limited information is currently available to provide the scientific basis for understanding the sources and physical and chemical variations of CPM, and their relations to air quality regulations and adverse health effects. This study investigates the historical trends of CPM mass and its chemical components in the Los Angeles Basin to advance our understanding on the impact of past and current air quality regulations on the coarse fraction of PM. The results of this study will aid policy makers to design more targeted regulations to control CPM sources to ensure substantial protection of public health from CPM exposure. Supplemental Materials: Supplemental materials are available for this article. Go to the publishers online edition of the Journal of the Air & Waste Management Association for (1) details of the sampling sites and (2) the daily concentrations of high CPM/PM10 episodes.
Related JoVE Video
Primary sources and secondary formation of organic aerosols in Beijing, China.
Environ. Sci. Technol.
Show Abstract
Hide Abstract
Ambient aerosol samples were collected at an urban site and an upwind rural site of Beijing during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region) summer field campaign. Contributions of primary particles and secondary organic aerosols (SOA) were estimated by chemical mass balance (CMB) modeling and tracer-yield method. The apportioned primary and secondary sources explain 73.8% ± 9.7% and 79.6% ± 10.1% of the measured OC at the urban and rural sites, respectively. Secondary organic carbon (SOC) contributes to 32.5 ± 15.9% of the organic carbon (OC) at the urban site, with 17.4 ± 7.6% from toluene, 9.7 ± 5.4% from isoprene, 5.1 ± 2.0% from ?-pinene, and 2.3 ± 1.7% from ?-caryophyllene. At the rural site, the secondary sources are responsible for 38.4 ± 14.4% of the OC, with the contributions of 17.3 ± 6.9%, 13.9 ± 9.1%, 5.6 ± 1.9%, and 1.7 ± 1.0% from toluene, isoprene, ?-pinene, and ?-caryophyllene, respectively. Compared with other regions in the world, SOA in Beijing is less aged, but the concentrations are much higher; between the sites, SOA is more aged and affected by regional transport at the urban site. The high SOA loading in Beijing is probably attributed to the high regional SOC background (~2 ?g m(-3)). The toluene SOC concentration is high and comparable at the two sites, implying that some anthropogenic components, at least toluene SOA, are widespread in Beijing and represents a major factor in affecting the regional air quality. The aerosol gaseous precursor concentrations and temperature correlate well with SOA, both affecting SOA formation. The significant SOA enhancement with increasing water uptake and acidification indicates that the aqueous-phase reactions are largely responsible SOA formation in Beijing.
Related JoVE Video
Diurnal trends in oxidative potential of coarse particulate matter in the Los Angeles Basin and their relation to sources and chemical composition.
Environ. Sci. Technol.
Show Abstract
Hide Abstract
To investigate the relationship among sources, chemical composition, and redox activity of coarse particulate matter (CPM), three sampling sites were set up up in the Los Angeles Basin to collect ambient coarse particles at four time periods (morning, midday, afternoon, and overnight) in summer 2009 and winter 2010. The generation of reactive oxygen species (ROS) was used to assess the redox activity of these particles. Our results present distinct diurnal profiles of CPM-induced ROS formation in the two seasons, with much higher levels in summer than winter. Higher ROS activity was observed in the midday/afternoon during summertime, while the peak activity occurred in the overnight period in winter. Crustal materials, the major component of CPM, demonstrated very low water-solubility, in contrast with the modestly water-soluble anthropogenic metals, including Ba and Cu. The water-soluble fraction of four elements (V, Pd, Cu, and Rh) with primary anthropogenic origins displayed the highest associations with ROS activity (R(2) > 0.60). Our results show that coarse particles generated by anthropogenic activities, despite their low contribution to CPM mass, are important to the biological activity of CPM, and that a more targeted control strategy may be needed to protect the public health from these toxic CPM sources.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.