JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
CD47 in the Tumor Microenvironment Limits Cooperation between Antitumor T-cell Immunity and Radiotherapy.
Cancer Res.
PUBLISHED: 10-08-2014
Show Abstract
Hide Abstract
Although significant advances in radiotherapy have increased its effectiveness in many cancer settings, general strategies to widen the therapeutic window between normal tissue toxicity and malignant tumor destruction would still offer great value. CD47 blockade has been found to confer radioprotection to normal tissues while enhancing tumor radiosensitivity. Here, we report that CD47 blockade directly enhances tumor immunosurveillance by CD8(+) T cells. Combining CD47 blockade with irradiation did not affect fibrosarcoma growth in T cell-deficient mice, whereas adoptive transfer of tumor-specific CD8(+) T cells restored combinatorial efficacy. Furthermore, ablation of CD8(+) T cells abolished radiotherapeutic response in immunocompetent syngeneic hosts. CD47 blockade in either target cells or effector cells was sufficient to enhance antigen-dependent CD8(+) CTL-mediated tumor cell killing in vitro. In CD47-deficient syngeneic hosts, engrafted B16 melanomas were 50% more sensitive to irradiation, establishing that CD47 expression in the microenvironment was sufficient to limit tumor radiosensitivity. Mechanistic investigations revealed increased tumor infiltration by cytotoxic CD8(+) T cells in a CD47-deficient microenvironment, with an associated increase in T cell-dependent intratumoral expression of granzyme B. Correspondingly, an inverse correlation between CD8(+) T-cell infiltration and CD47 expression was observed in human melanomas. Our findings establish that blocking CD47 in the context of radiotherapy enhances antitumor immunity by directly stimulating CD8(+) cytotoxic T cells, with the potential to increase curative responses. Cancer Res; 74(23); 1-13. ©2014 AACR.
Related JoVE Video
Selective Inhibition of Regulatory T Cells by Targeting the PI3K-Akt Pathway.
Cancer Immunol Res
PUBLISHED: 07-30-2014
Show Abstract
Hide Abstract
Despite the strides that immunotherapy has made in mediating tumor regression, the clinical effects are often transient, and therefore more durable responses are still needed. The temporary nature of the therapy-induced immune response can be attributed to tumor immune evasion mechanisms, mainly the effect of suppressive immune cells and, in particular, regulatory T cells (Treg). Although the depletion of Tregs has been shown to be effective in enhancing immune responses, selective depletion of these suppressive cells without affecting other immune cells has not been very successful, and new agents are sought. We found that PI3K-Akt pathway inhibitors selectively inhibit Tregs with minimal effect on conventional T cells (Tconv). Our results clearly show selective in vitro inhibition of activation (as represented by a decrease in downstream signaling) and proliferation of Tregs in comparison with Tconvs when treated with different Akt and PI3K inhibitors. This effect has been observed in both human and murine CD4 T cells. In vivo treatment with these inhibitors resulted in a significant and selective reduction in Tregs in both naïve and tumor-bearing mice. Furthermore, these PI3K-Akt inhibitors led to a significant therapeutic antitumor effect, which was shown to be Treg dependent. Here, we report the use of PI3K-Akt pathway inhibitors as potent agents for the selective depletion of suppressive Tregs. We show that these inhibitors are able to enhance the antitumor immune response and are therefore promising clinical reagents for Treg depletion. Cancer Immunol Res; 2(11); 1080-9. ©2014 AACR.
Related JoVE Video
Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques.
Clin. Immunol.
PUBLISHED: 06-13-2014
Show Abstract
Hide Abstract
To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.
Related JoVE Video
Episomal expression of truncated listeriolysin O in LmddA-LLO-E7 vaccine enhances antitumor efficacy by preferentially inducing expansions of CD4+FoxP3- and CD8+ T cells.
Cancer Immunol Res
PUBLISHED: 05-28-2014
Show Abstract
Hide Abstract
Studies have shown that Listeria monocytogenes (Lm)-based vaccine expressing a fusion protein comprising truncated listeriolysin O (LLO) and human papilloma virus (HPV) E7 protein (Lm-LLO-E7) induces a decrease in regulatory T cells (Treg) and complete regression of established, transplanted HPV-TC-1 tumors in mice. However, how the Lm-based vaccine causes a decrease in Tregs remains unclear. Using a highly attenuated Lm dal dat ?actA strain (LmddA)-based vaccine, we report here that the vector LmddA was sufficient to induce a decrease in the proportion of Tregs by preferentially expanding CD4(+)FoxP3(-) T cells and CD8(+) T cells by a mechanism dependent on and directly mediated by LLO. Episomal expression of a nonhemolytic truncated LLO in Lm (LmddA-LLO) significantly augmented the expansion, thus further decreasing Treg frequency. Although adoptive transfer of Tregs compromised the antitumor efficacy of the LmddA-LLO-E7 vaccine, a combination of LmddA-LLO and an Lm-based vaccine expressing E7 protein (Lm-E7) induced complete regression against established TC-1 tumors. An engineered LLO-minus Lm expressing perfringolysin O (PFO) that enables the recombinant bacteria to exit from the phagolysosome without LLO confirmed that the adjuvant effect was dependent on LLO. These results suggest that LLO may serve as a promising adjuvant by preferentially inducing the expansions of CD4(+)FoxP3(-) T cells and CD8(+) T cells, thus reducing the ratio of Tregs to CD4(+)FoxP3(-) T cells and to CD8(+) T cells favoring immune responses to eradicate tumor.
Related JoVE Video
Vaccine-induced myeloid cell population dampens protective immunity to SIV.
J. Clin. Invest.
PUBLISHED: 05-16-2014
Show Abstract
Hide Abstract
Vaccines are largely evaluated for their ability to promote adaptive immunity, with little focus on the induction of negative immune regulators. Adjuvants facilitate and enhance vaccine-induced immune responses and have been explored for mediating protection against HIV. Using a regimen of peptide priming followed by a modified vaccinia Ankara (MVA) boost in a nonhuman primate model, we found that an SIV vaccine incorporating molecular adjuvants mediated partial protection against rectal SIVmac251 challenges. Animals treated with vaccine and multiple adjuvants exhibited a reduced viral load (VL) compared with those treated with vaccine only. Surprisingly, animals treated with adjuvant alone had reduced VLs that were comparable to or better than those of the vaccine-treated group. VL reduction was greatest in animals with the MHC class I allele Mamu-A*01 that were treated with adjuvant only and was largely dependent on CD8+ T cells. Early VLs correlated with Ki67+CCR5+CD4+ T cell frequency, while set-point VL was associated with expansion of a myeloid cell population that was phenotypically similar to myeloid-derived suppressor cells (MDSCs) and that suppressed T cell responses in vitro. MDSC expansion occurred in animals receiving vaccine and was not observed in the adjuvant-only group. Collectively, these results indicate that vaccine-induced MDSCs inhibit protective cellular immunity and suggest that preventing MDSC induction may be critical for effective AIDS vaccination.
Related JoVE Video
Humoral immunity induced by mucosal and/or systemic SIV-specific vaccine platforms suggests novel combinatorial approaches for enhancing responses.
Clin. Immunol.
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in the bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest that combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies.
Related JoVE Video
The immunoregulatory role of type I and type II NKT cells in cancer and other diseases.
Cancer Immunol. Immunother.
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here, we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4(+)CD25(+)Foxp3(+) regulatory T cells.
Related JoVE Video
NKT cell networks in the regulation of tumor immunity.
Front Immunol
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8(+) and CD4(+) T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host's ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.
Related JoVE Video
Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGF?) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In advanced cancers, transforming growth factor-beta (TGF?) promotes tumor growth and metastases and suppresses host antitumor immunity. GC1008 is a human anti-TGF? monoclonal antibody that neutralizes all isoforms of TGF?. Here, the safety and activity of GC1008 was evaluated in patients with advanced malignant melanoma and renal cell carcinoma.
Related JoVE Video
Immune targeting of PD-1(hi) expressing cells during and after antiretroviral therapy in SIV-infected rhesus macaques.
Virology
PUBLISHED: 06-28-2013
Show Abstract
Hide Abstract
High-level T cell expression of PD-1 during SIV infection is correlated with impaired proliferation and function. We evaluated the phenotype and distribution of T cells and Tregs during antiretroviral therapy plus PD-1 modulation (using a B7-DC-Ig fusion protein) and post-ART. Chronically SIV-infected rhesus macaques received: 11 weeks of ART (Group A); 11 weeks of ART plus B7-DC-Ig (Group B); 11 weeks of ART plus B7-DC-Ig, then 12 weeks of B7-DC-Ig alone (Group C). Continuous B7-DC-Ig treatment (Group C) decreased rebound viremia post-ART compared to pre-ART levels, associated with decreased PD-1(hi) expressing T cells and Tregs in PBMCs, and PD-1(hi) Tregs in lymph nodes. It transiently decreased expression of Ki67 and ?4?7 in PBMC CD4(+) and CD8(+) Tregs for up to 8 weeks post-ART and maintained Ag-specific T-cell responses at low levels. Continued immune modulation targeting PD-1(hi) cells during and post-ART helps maintain lower viremia, keeps a favorable T cell/Treg repertoire and modulates antigen-specific responses.
Related JoVE Video
?-mannosylceramide activates type I natural killer t cells to induce tumor immunity without inducing long-term functional anergy.
Clin. Cancer Res.
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
Most studies characterizing antitumor properties of invariant natural killer T (iNKT) cells have used the agonist, ?-galactosylceramide (?-GalCer). However, ?-GalCer induces strong, long-lasting anergy of iNKT cells, which could be a major detriment for clinical therapy. A novel iNKT cell agonist, ?-mannosylceramide (?-ManCer), induces strong antitumor immunity through a mechanism distinct from that of ?-GalCer. The objective of this study was to determine whether ?-ManCer induces anergy of iNKT cells.
Related JoVE Video
Oral vaccines: directed safe passage to the front line of defense.
Gut Microbes
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Oral vaccines are safe and easy to administer and convenient for all ages. They have been successfully developed to protect from many infectious diseases acquired through oral transmission. We recently found in animal models that formulation of oral vaccines in a nanoparticle-releasing microparticle delivery system is a viable approach for selectively inducing large intestinal protective immunity against infections at rectal and genital mucosae. These large-intestine targeted oral vaccines are a potential substitute for the intracolorectal immunization, which has been found to be effective against rectogenital infections but is not feasible for mass vaccination. Moreover, the newly developed delivery system can be modified to selectively target either the small or large intestine for immunization and accordingly revealed a regionalized immune system in the gut. Future applications and research endeavors suggested by the findings are discussed.
Related JoVE Video
IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells.
J. Exp. Med.
PUBLISHED: 03-04-2013
Show Abstract
Hide Abstract
Here, we show that interleukin-1 (IL-1) enhances antigen-driven CD8 T cell responses. When administered to recipients of OT-I T cell receptor transgenic CD8 T cells specific for an ovalbumin (OVA) peptide, IL-1 results in an increase in the numbers of wild-type but not IL1R1(-/-) OT-I cells, particularly in spleen, liver, and lung, upon immunization with OVA and lipopolysaccharide. IL-1 administration also results in an enhancement in the frequency of antigen-specific cells that are granzyme B(+), have cytotoxic activity, and/ or produce interferon ? (IFN-?). Cells primed in the presence of IL-1 display enhanced expression of granzyme B and increased capacity to produce IFN-? when rechallenged 2 mo after priming. In three in vivo models, IL-1 enhances the protective value of weak immunogens. Thus, IL-1 has a marked enhancing effect on antigen-specific CD8 T cell expansion, differentiation, migration to the periphery, and memory.
Related JoVE Video
Balance is a key for happiness.
Oncoimmunology
PUBLISHED: 02-27-2013
Show Abstract
Hide Abstract
Eliminating one immunosuppressive mechanism is rarely sufficient to overcome cancer. One of reasons underlying this fact is that whether regulatory T cells (Tregs) or type II natural killer T (NKT) cells dominate immunosuppression depends on the mutual interactions between the latter and their type I counterparts. Thus, the balance among three immunomodulatory cell types dictates whether eliminating Tregs relieves or not immunosuppression.
Related JoVE Video
Delicate balance among three types of T cells in concurrent regulation of tumor immunity.
Cancer Res.
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
The nature of the regulatory cell types that dominate in any given tumor is not understood at present. Here, we addressed this question for regulatory T cells (Treg) and type II natural killer T (NKT) cells in syngeneic models of colorectal and renal cancer. In mice with both type I and II NKT cells, or in mice with neither type of NKT cell, Treg depletion was sufficient to protect against tumor outgrowth. Surprisingly, in mice lacking only type I NKT cells, Treg blockade was insufficient for protection. Thus, we hypothesized that type II NKT cells may be neutralized by type I NKT cells, leaving Tregs as the primary suppressor, whereas in mice lacking type I NKT cells, unopposed type II NKT cells could suppress tumor immunity even when Tregs were blocked. We confirmed this hypothesis in 3 ways by reconstituting type I NKT cells as well as selectively blocking or activating type II NKT cells with antibody or the agonist sulfatide, respectively. In this manner, we showed that blockade of both type II NKT cells and Tregs is necessary to abrogate suppression of tumor immunity, but a third cell, the type I NKT cell, determines the balance between these regulatory mechanisms. As patients with cancer often have deficient type I NKT cell function, managing this delicate balance among 3 T-cell subsets may be critical for the success of immunotherapy for human cancer.
Related JoVE Video
Identification and enhancement of HLA-A2.1-restricted CTL epitopes in a new human cancer antigen-POTE.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Identification of CD8(+) T cell epitopes that can induce T cells to kill tumor cells is a fundamental step for development of a peptide cancer vaccine. POTE protein is a newly identified cancer antigen that was found to be expressed in a wide variety of human cancers, including prostate, colon, lung, breast, ovary and pancreas. Here, we determined HLA-A2.1-restricted cytotoxic T lymphocyte (CTL) epitopes in the POTE protein, and also designed enhanced epitopes by amino acid (AA) substitutions. Five 9-mer peptides were first selected and their binding affinity to HLA-A2 molecules was measured by the T2 binding assay. POTE 272-280 and POTE 323-331 showed the strongest HLA-A2 binding affinity. AA substituted peptides POTE 252-9V (with valine at position 9), POTE 553-1Y (with tyrosine at position 1) and POTE 323-3F (with phenylalanine at position 3) conferred higher affinity for HLA-A2, and induced CTL responses cross-reactive with wild type antigens. While POTE 252-9V was the strongest in this respect, POTE 323-3F had the greatest increase in immunogenicity compared to wild type. Importantly, two modified epitopes (POTE-553-1Y and POTE-323-3F) induced CTLs that killed NCI-H522, a POTE-expressing HLA-A2(+) human non-small cell lung cancer cell line, indicating natural endogenous processing of these epitopes. In conclusion, the immunogenicity of POTE epitopes can be enhanced by peptide modification to induce T cells that kill human cancer cells. A combination of POTE 553-1Y and POTE 323-3F epitopes might be an attractive vaccine strategy for HLA-A2 cancer patients to overcome tolerance induced by tumors and prevent escape.
Related JoVE Video
A novel combination immunotherapy for cancer by IL-13R?2-targeted DNA vaccine and immunotoxin in murine tumor models.
J. Immunol.
PUBLISHED: 10-17-2011
Show Abstract
Hide Abstract
Optimum efficacy of therapeutic cancer vaccines may require combinations that generate effective antitumor immune responses, as well as overcome immune evasion and tolerance mechanisms mediated by progressing tumor. Previous studies showed that IL-13R?2, a unique tumor-associated Ag, is a promising target for cancer immunotherapy. A targeted cytotoxin composed of IL-13 and mutated Pseudomonas exotoxin induced specific killing of IL-13R?2(+) tumor cells. When combined with IL-13R?2 DNA cancer vaccine, surprisingly, it mediated synergistic antitumor effects on tumor growth and metastasis in established murine breast carcinoma and sarcoma tumor models. The mechanism of synergistic activity involved direct killing of tumor cells and cell-mediated immune responses, as well as elimination of myeloid-derived suppressor cells and, consequently, regulatory T cells. These novel results provide a strong rationale for combining immunotoxins with cancer vaccines for the treatment of patients with advanced cancer.
Related JoVE Video
Lack of IL-7 and IL-15 signaling affects interferon-? production by, more than survival of, small intestinal intraepithelial memory CD8+ T cells.
Eur. J. Immunol.
PUBLISHED: 09-20-2011
Show Abstract
Hide Abstract
Survival of antigen-specific CD8(+) T cells in peripheral lymphoid organs during viral infection is known to be dependent predominantly on IL-7 and IL-15. However, little is known about a possible influence of tissue environmental factors on this process. To address this question, we studied survival of memory antigen-specific CD8(+) T cells in the small intestine. Here, we show that 2 months after vaccinia virus infection, B8R(20-27) /H2-K(b) tetramer(+) CD8(+) T cells in the small intestinal intraepithelial (SI-IEL) layer are found in mice deficient in IL-15 expression. Moreover, SI-IEL and lamina propria lymphocytes do not express the receptor for IL-7 (IL-7R?/CD127). In addition, after in vitro stimulation with B8R(20-27) peptide, SI-IEL cells do not produce high amounts of IFN-? neither at 5 days nor at 2 months postinfection (p.i.). Importantly, the lack of IL-15 was found to shape the functional activity of antigen-specific CD8(+) T cells, by narrowing the CTL avidity repertoire. Taken together, these results reveal that survival factors, as well as the functional activity, of antigen-specific CD8(+) T cells in the SI-IEL compartments may markedly differ from their counterparts in peripheral lymphoid tissues.
Related JoVE Video
A gynecologic oncology group phase II trial of two p53 peptide vaccine approaches: subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients.
Cancer Immunol. Immunother.
PUBLISHED: 06-21-2011
Show Abstract
Hide Abstract
Peptide antigens have been administered by different approaches as cancer vaccine therapy, including direct injection or pulsed onto dendritic cells; however, the optimal delivery method is still debatable. In this study, we describe the immune response elicited by two vaccine approaches using the wild-type (wt) p53 vaccine.
Related JoVE Video
A push-pull vaccine strategy using Toll-like receptor ligands, IL-15, and blockade of negative regulation to improve the quality and quantity of T cell immune responses.
Vaccine
PUBLISHED: 06-14-2011
Show Abstract
Hide Abstract
We have developed a strategy to optimize the efficacy of vaccines to induce T-cell immunity against chronic viral infections and cancer based on a "push-pull" approach in which we first optimize the antigen structure by increasing the affinity of epitopes for major histocompatibility complex molecules ("epitope enhancement"), then push the response not only in magnitude but also in quality toward the desired response phenotype, using synergistic combinations of cytokines, Toll-like receptor ligands, and costimulatory molecules, and then pull the response by removing the brakes exerted by negative regulatory mechanisms, including regulatory cells, cell surface molecules, and cytokines. Components of this approach show promise in macaque models of AIDS virus infection and in murine models of cancer, and are being developed for human clinical trials.
Related JoVE Video
TLR agonists and/or IL-15 adjuvanted mucosal SIV vaccine reduced gut CD4? memory T cell loss in SIVmac251-challenged rhesus macaques.
Vaccine
PUBLISHED: 06-06-2011
Show Abstract
Hide Abstract
Adjuvant plays an important role in increasing and directing vaccine-induced immune responses. In a previous study, we found that a mucosal SIV vaccine using a combination of IL-15 and TLR agonists as adjuvant mediated partial protection against SIVmac251 rectal challenge, whereas neither IL-15 nor TLR agonists alone as an adjuvant impacted the plasma viral loads. In this study, dissociation of CD4(+) T cell preservation with viral loads was observed in the animals vaccinated with adjuvants. Significantly higher levels of memory CD4(+) T cell numbers were preserved after SIVmac251 infection in the colons of the animals vaccinated with vaccine containing any of these adjuvants compared to no adjuvant. When we measured the viral-specific CD8(+) tetramer responses in the colon lamina propria, we found significantly higher levels of gag, tat, and pol epitope tetramer(+) T cell responses in these animals compared to ones without adjuvant, even if some of the animals had similarly high viral loads. Furthermore, this CD4(+) T preservation was positively correlated with increased levels of gag and Tat, but not pol tetramer(+) T cell responses, and inversely correlated with beta-chemokine expression. The pre-challenged APOBEC3G expression level, which has previously been shown inversely associated with viral loads, was further found positively correlated with CD4(+) T cell number preservation. Overall, these data highlight one unrecognized role of adjuvant in HIV vaccine development, and show that vaccines can produce a surprising discordance between CD4(+) T cell levels and SIV viral load.
Related JoVE Video
KLF13 sustains thymic memory-like CD8(+) T cells in BALB/c mice by regulating IL-4-generating invariant natural killer T cells.
J. Exp. Med.
PUBLISHED: 04-11-2011
Show Abstract
Hide Abstract
"Memory-like T cells" are a subset of thymic cells that acquire effector function through the maturation process rather than interaction with specific antigen. Disruption of genes encoding T cell signaling proteins or transcription factors have provided insights into the differentiation of such cells. In this study, we show that in BALB/c, but not C57BL/6, mice, a large portion of thymic CD4(-)CD8(+) T cells exhibit a memory-like phenotype. In BALB/c mice, IL-4 secreted by invariant natural killer T (iNKT) cells is both essential and sufficient for the generation of memory-like T cells. In C57BL/6 mice, iNKT cells are less abundant, producing IL-4 that is insufficient to induce thymic memory-like CD8(+) T cells. BALB/c mice deficient in the transcription factor Kruppel-like factor (KLF) 13 have comparable numbers of iNKT cells to C57BL/6 mice and extremely low levels of thymic memory-like CD8(+) T cells. This work documents the impact of a small number of KLF13-dependent iNKT cells on the generation of memory-like CD8(+) T cells.
Related JoVE Video
IL-15 ex vivo overcomes CD4+ T cell deficiency for the induction of human antigen-specific CD8+ T cell responses.
J. Leukoc. Biol.
PUBLISHED: 04-07-2011
Show Abstract
Hide Abstract
CD4(+) Th cells are important for the induction and maintenance of antigen-specific CD8(+) T cell function, so their loss or dysfunction in HIV-infected or cancer patients could reduce the patients ability to control viral infection. Previous work in murine systems indicated that IL-15 codelivered with vaccines could overcome CD4(+) Th cell deficiency for induction of functionally efficient CD8(+) T cells and maintenance of viral-specific CTLs, but its efficacy in helping primary human CD8(+) T cell responses is unknown. In the present study, a peptide-pulsed, DC-based human coculture ex vivo system was used to study the role of IL-15 in overcoming CD4(+) Th deficiency to elicit CD8(+) T cell responses in CD4-depleted PBMCs from healthy individuals and PBMCs from HIV-1-infected patients. We found that IL-15 could overcome CD4(+) Th deficiency to induce primary and recall memory CD8(+) T cell responses in healthy individuals. Moreover, in CD4-deficient, HIV-1-infected patients with diminished CD8(+) T cell responses, IL-15 greatly enhanced CD8(+) T cell responses to alloantigen. These results suggest that IL-15 may be useful in the development of therapeutic and preventive vaccines against cancers and viral infections in patients defective in CD4(+) Th cell.
Related JoVE Video
Mouse and human iNKT cell agonist ?-mannosylceramide reveals a distinct mechanism of tumor immunity.
J. Clin. Invest.
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Type 1 or invariant NKT (iNKT) cell agonists, epitomized by ?-galactosylceramide, protect against cancer largely by IFN-?-dependent mechanisms. Here we describe what we believe to be a novel IFN-?-independent mechanism induced by ?-mannosylceramide, which also defines a potentially new class of iNKT cell agonist, with an unusual ?-linked sugar. Like ?-galactosylceramide, ?-mannosylceramide directly activates iNKT cells from both mice and humans. In contrast to ?-galactosylceramide, protection by ?-mannosylceramide was completely dependent on NOS and TNF-?, neither of which was required to achieve protection with ?-galactosylceramide. Moreover, at doses too low for either alone to protect, ?-mannosylceramide synergized with ?-galactosylceramide to protect mice against tumors. These results suggest that treatment with ?-mannosylceramide provides a distinct mechanism of tumor protection that may allow efficacy where other agonists have failed. Furthermore, the ability of ?-mannosylceramide to synergize with ?-galactosylceramide suggests treatment with this class of iNKT agonist may provide protection against tumors in humans.
Related JoVE Video
Multiple antigen peptide vaccines against Plasmodium falciparum malaria.
Infect. Immun.
PUBLISHED: 09-07-2010
Show Abstract
Hide Abstract
The multiple antigen peptide (MAP) approach is an effective method to chemically synthesize and deliver multiple T-cell and B-cell epitopes as the constituents of a single immunogen. Here we report on the design, chemical synthesis, and immunogenicity of three Plasmodium falciparum MAP vaccines that incorporated antigenic epitopes from the sporozoite, liver, and blood stages of the life cycle. Antibody and cellular responses were determined in three inbred (C57BL/6, BALB/c, and A/J) strains, one congenic (HLA-A2 on the C57BL/6 background) strain, and one outbred strain (CD1) of mice. All three MAPs were immunogenic and induced both antibody and cellular responses, albeit in a somewhat genetically restricted manner. Antibodies against MAP-1, MAP-2, and MAP-3 had an antiparasite effect that was also dependent on the mouse major histocompatibility complex background. Anti-MAP-1 (CSP-based) antibodies blocked the invasion of HepG2 liver cells by P. falciparum sporozoites (highest, 95.16% in HLA-A2 C57BL/6; lowest, 11.21% in BALB/c). Furthermore, antibodies generated following immunizations with the MAP-2 (PfCSP, PfLSA-1, PfMSP-1(42), and PfMSP-3b) and MAP-3 (PfRAP-1, PfRAP-2, PfSERA, and PfMSP-1(42)) vaccines were able to reduce the growth of blood stage parasites in erythrocyte cultures to various degrees. Thus, MAP-based vaccines remain a viable option to induce effective antibody and cellular responses. These results warrant further development and preclinical and clinical testing of the next generation of candidate MAP vaccines that are based on the conserved protective epitopes from Plasmodium antigens that are widely recognized by populations of divergent HLA types from around the world.
Related JoVE Video
Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-10-2010
Show Abstract
Hide Abstract
Adjuvant effects on innate as well as adaptive immunity may be critical for inducing protection against mucosal HIV and simian immunodeficiency virus (SIV) exposure. We therefore studied effects of Toll-like receptor agonists and IL-15 as mucosal adjuvants on both innate and adaptive immunity in a peptide/poxvirus HIV/SIV mucosal vaccine in macaques, and made three critical observations regarding both innate and adaptive correlates of protection: (i) adjuvant-alone without vaccine antigen impacted the intrarectal SIVmac251 challenge outcome, correlating with surprisingly long-lived APOBEC3G (A3G)-mediated innate immunity; in addition, even among animals receiving vaccine with adjuvants, viral load correlated inversely with A3G levels; (ii) a surprising threshold-like effect existed for vaccine-induced adaptive immunity control of viral load, and only antigen-specific polyfunctional CD8(+) T cells correlated with protection, not tetramer(+) T cells, demonstrating the importance of T-cell quality; (iii) synergy was observed between Toll-like receptor agonists and IL-15 for driving adaptive responses through the up-regulation of IL-15Ralpha, which can present IL-15 in trans, as well as for driving the innate A3G response. Thus, strategic use of molecular adjuvants can provide better mucosal protection through induction of both innate and adaptive immunity.
Related JoVE Video
A pilot clinical trial testing mutant von Hippel-Lindau peptide as a novel immune therapy in metastatic renal cell carcinoma.
J Transl Med
PUBLISHED: 01-28-2010
Show Abstract
Hide Abstract
Due to the lack of specific tumor antigens, the majority of tested cancer vaccines for renal cell carcinoma (RCC) are based on tumor cell lysate. The identification of the von Hippel-Lindau (VHL) gene mutations in RCC patients provided the potential for developing a novel targeted vaccine for RCC. In this pilot study, we tested the feasibility of vaccinating advanced RCC patients with the corresponding mutant VHL peptides.
Related JoVE Video
Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice.
J. Clin. Invest.
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
TLR ligands are promising candidates for the development of novel vaccine adjuvants that can elicit protective immunity against emerging infectious diseases. Adjuvants have been used most frequently to increase the quantity of an immune response. However, the quality of a T cell response can be more important than its quantity. Stimulating certain pairs of TLRs induces a synergistic response in terms of activating dendritic cells and eliciting/enhancing T cell responses through clonal expansion, which increases the number of responding T cells. Here, we have found that utilizing ligands for 3 TLRs (TLR2/6, TLR3, and TLR9) greatly increased the protective efficacy of vaccination with an HIV envelope peptide in mice when compared with using ligands for only any 2 of these TLRs; surprisingly, increased protection was induced without a marked increase in the number of peptide-specific T cells. Rather, the combination of these 3 TLR ligands augmented the quality of the T cell responses primarily by amplifying their functional avidity for the antigen, which was necessary for clearance of virus. The triple combination increased production of DC IL-15 along with its receptor, IL-15Ralpha, which contributed to high avidity, and decreased expression of programmed death-ligand 1 and induction of Tregs. Therefore, selective TLR ligand combinations can increase protective efficacy by increasing the quality rather than the quantity of T cell responses.
Related JoVE Video
Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-beta monoclonal antibody.
Clin. Cancer Res.
PUBLISHED: 10-27-2009
Show Abstract
Hide Abstract
Transforming growth factor-beta (TGF-beta) is an immunosuppressive cytokine, having direct suppressive activity against conventional CD4(+) and CD8(+)T cells and natural killer cells, thereby inhibiting tumor immunosurveillance. Here, we investigated possible synergy between anti-TGF-beta (1D11) and a peptide vaccine on induction of antitumor immunity, and the mechanisms accounting for synergistic efficacy.
Related JoVE Video
The contrasting roles of NKT cells in tumor immunity.
Curr. Mol. Med.
PUBLISHED: 08-20-2009
Show Abstract
Hide Abstract
NKT cells are true T cells that serve as a bridge between the innate and adaptive immune system, acting as first responders. They recognize lipid antigens rather than peptides, and respond to these when presented by a non-classical class I MHC molecule, CD1d. NKT cells can play a pathogenic role in asthma or a protective role against several autoimmune diseases, in part based on their cytokine profile. In cancer, they can play opposite roles, contributing to anti-tumor immunity or suppressing it. The protective NKT cells were found to be primarily type I NKT cells defined by use of a semi-invariant T cell receptor involving Valpha14Jalpha18 in mice and Valpha24Jalpha18 in humans and responding to alpha-galactosylceramide, and the most protective were among the minority that are CD4-. The suppressive NKT cells were found to be CD4+ and to be primarily type II NKT cells, that have diverse T-cell receptors and respond to other lipids. Further, the type I and type II NKT cells were found to counter-regulate each other, forming a new immunoregulatory axis. This axis may have broad implications beyond cancer, as NKT cells play a role in steering other adaptive immune responses. The balance along this axis could affect immunity to tumors and infectious diseases and responses to vaccines.
Related JoVE Video
Pathogenic roles of CD14, galectin-3, and OX40 during experimental cerebral malaria in mice.
PLoS ONE
PUBLISHED: 04-06-2009
Show Abstract
Hide Abstract
An in-depth knowledge of the host molecules and biological pathways that contribute towards the pathogenesis of cerebral malaria would help guide the development of novel prognostics and therapeutics. Genome-wide transcriptional profiling of the brain tissue during experimental cerebral malaria (ECM ) caused by Plasmodium berghei ANKA parasites in mice, a well established surrogate of human cerebral malaria, has been useful in predicting the functional classes of genes involved and pathways altered during the course of disease. To further understand the contribution of individual genes to the pathogenesis of ECM, we examined the biological relevance of three molecules -- CD14, galectin-3, and OX40 that were previously shown to be overexpressed during ECM. We find that CD14 plays a predominant role in the induction of ECM and regulation of parasite density; deletion of the CD14 gene not only prevented the onset of disease in a majority of susceptible mice (only 21% of CD14-deficient compared to 80% of wildtype mice developed ECM, p<0.0004) but also had an ameliorating effect on parasitemia (a 2 fold reduction during the cerebral phase). Furthermore, deletion of the galectin-3 gene in susceptible C57BL/6 mice resulted in partial protection from ECM (47% of galectin-3-deficient versus 93% of wildtype mice developed ECM, p<0.0073). Subsequent adherence assays suggest that galectin-3 induced pathogenesis of ECM is not mediated by the recognition and binding of galectin-3 to P. berghei ANKA parasites. A previous study of ECM has demonstrated that brain infiltrating T cells are strongly activated and are CD44(+)CD62L(-) differentiated memory T cells [1]. We find that OX40, a marker of both T cell activation and memory, is selectively upregulated in the brain during ECM and its distribution among CD4(+) and CD8(+) T cells accumulated in the brain vasculature is approximately equal.
Related JoVE Video
Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection.
Nat. Med.
Show Abstract
Hide Abstract
Both rectal and vaginal mucosal surfaces serve as transmission routes for pathogenic microorganisms. Vaccination through large intestinal mucosa, previously proven protective for both of these mucosal sites in animal studies, can be achieved successfully by direct intracolorectal (i.c.r.) administration, but this route is clinically impractical. Oral vaccine delivery seems preferable but runs the risk of the vaccines destruction in the upper gastrointestinal tract. Therefore, we designed a large intestine-targeted oral delivery with pH-dependent microparticles containing vaccine nanoparticles, which induced colorectal immunity in mice comparably to colorectal vaccination and protected against rectal and vaginal viral challenge. Conversely, vaccine targeted to the small intestine induced only small intestinal immunity and provided no rectal or vaginal protection, demonstrating functional compartmentalization within the gut mucosal immune system. Therefore, using this oral vaccine delivery system to target the large intestine, but not the small intestine, may represent a feasible new strategy for immune protection of rectal and vaginal mucosa.
Related JoVE Video
Strategies to use immune modulators in therapeutic vaccines against cancer.
Semin. Oncol.
Show Abstract
Hide Abstract
Cancers so much resemble self that they prove difficult for the immune system to eliminate, and those that have already escaped natural immunosurveillance have gotten past the natural immune barriers to malignancy. A successful therapeutic cancer vaccine must overcome these escape mechanisms. Our laboratory has focused on a multistep "push-pull" approach in which we combine strategies to overcome each of the mechanisms of escape. If tumor epitopes are insufficiently immunogenic, we increase their immunogenicity by epitope enhancement, improving their binding affinity to major histocompatibility complex (MHC) molecules. If the anti-tumor response is too weak or of the wrong phenotype, we use cytokines, costimulatory molecules, Toll-like receptor ligands, and other molecular adjuvants to increase not only the quantity of the response but also its quality, to push the response in the right direction. Finally, the tumor invokes multiple immunosuppressive mechanisms to defend itself, so we need to overcome those as well, including blocking or depleting regulatory cells or inhibiting regulatory molecules, to pull the response by removing the brakes. Some of these strategies individually have now been translated into human clinical trials in cancer patients. Combinations of these in a push-pull approach are promising for the successful immunotherapy of cancer.
Related JoVE Video
Improving immunotherapy: revisiting the immunologists little secret.
Sci Transl Med
Show Abstract
Hide Abstract
Synergy between intracellular and extracellular sensing mechanisms of the innate immune system improves adaptive immune responses to cancer vaccines and clearance of tumors.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.