JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Candida albicans colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity.
Cell. Microbiol.
PUBLISHED: 10-21-2014
Show Abstract
Hide Abstract
The ability of Candida albicans to cause disease is associated with its capacity to undergo morphological transition between yeast and filamentous forms, but the role of morphology in colonisation and dissemination from the gastrointestinal (GI) tract remains poorly defined. To explore this, we made use of wild type and morphological mutants of C. albicans in an established model of GI tract colonization, induced following antibiotic-treatment of mice. Our data reveal that GI tract colonization favours the yeast form of C.?albicans, that there is constitutive low level systemic dissemination in colonized mice that occurs irrespective of fungal morphology, and that colonization is not controlled by Th17 immunity in otherwise immunocompetent animals. These data provide new insights into the mechanisms of pathogenesis and commensalism of C. albicans, and have implications for our understanding of human disease.
Related JoVE Video
Homeostatic IL-23 receptor signaling limits Th17 response through IL-22-mediated containment of commensal microbiota.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-08-2014
Show Abstract
Hide Abstract
Mammalian hosts are colonized with commensal microbes in various mucosal and epithelial tissues, including the intestinal tract. In mice, the presence of segmented filamentous bacteria (SFB) promotes Th17 differentiation and the development of autoimmune disease. Here, we demonstrate that the IL-23 pathway dynamically regulates the abundance of SFB as well as mucosal barrier function in the adult animal. Genetic or pharmacological inactivation of the pathway selectively perturbs the abundance of a small group of commensals, including SFB, and results in an impaired mucosal barrier. Defective barrier function leads to systemic dissemination of microbial products, provoking induction of the IL-23 pathway with dual consequences: IL-23 drives IL-22 production to reinforce mucosal barrier function and elicit antimicrobial activities, and it also drives the differentiation of Th17 cells in an attempt to combat escaped microbes in the lamina propria and in distal tissues. Thus, barrier defects generate a systemic environment that facilitates Th17 development.
Related JoVE Video
Emerging and resistant infections.
Ann Am Thorac Soc
PUBLISHED: 08-23-2014
Show Abstract
Hide Abstract
The lungs are a major target for infection and a key battleground in the fight against the development of antimicrobial drug-resistant pathogens. Ventilator-associated pneumonia (VAP) is associated with mortality rates of 24-50%. The optimal duration of antibiotic therapy against VAP is unknown, but prolonged courses are associated with the emergence of bacterial resistance. De-escalation strategies in which treatment is discontinued based on signs of clinical resolution, fixed durations of therapy (generally 7-8 d), or serum procalcitonin responses have been shown to decrease antibiotic consumption. Outcomes are comparable to longer treatment courses, with the possible exception of VAP due to nonfermenting, gram-negative bacilli such as Pseudomonas aeruginosa. Staphylococcus aureus is a leading cause of VAP and other infections. Outcomes after S. aureus infection are shaped by the interplay between environmental, bacterial, and host genetic factors. It is increasingly clear that mechanisms of pathogenesis vary in different types of S. aureus infections. Genome-scale studies of S. aureus strains, host responses, and host genetics are redefining our understanding of the pathogenic mechanisms underlying VAP. Genome-sequencing technologies are also revolutionizing our understanding of the molecular epidemiology, evolution, and transmission of influenza. Deep sequencing using next-generation technology platforms is defining the remarkable genetic diversity of influenza strains within infected hosts. Investigators have demonstrated that antiviral drug-resistant influenza may be present prior to the initiation of treatment. Moreover, drug-resistant minor variant influenza strains can be transmitted from person to person in the absence of selection pressure. Studies of lung infections and the causative pathogens will remain at the cutting edge of clinical and basic medical research.
Related JoVE Video
IL-17A induces Pendrin expression and chloride-bicarbonate exchange in human bronchial epithelial cells.
PLoS ONE
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A), which is critical for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common to a number of inflammatory diseases. Using microarray analysis of normal human bronchial epithelial (HBE) cells treated with IL-17A, we identified the electroneutral chloride-bicarbonate exchanger Pendrin (SLC26A4) as a potential mediator of this effect. These data were verified by real-time, quantitative PCR that demonstrated a time-dependent increase in Pendrin mRNA expression in HBE cells treated with IL-17A up to 48 h. Using immunoblotting and immunofluorescence, we confirmed that Pendrin protein expression is increased in IL-17 treated HBE cells and that it is primarily localized to the mucosal surface of the cells. Functional studies using live-cell fluorescence to measure intracellular pH demonstrated that IL-17A induced chloride-bicarbonate exchange in HBE cells that was not present in the absence of IL-17A. Furthermore, HBE cells treated with short interfering RNA against Pendrin showed substantially reduced chloride-bicarbonate exchange. These data suggest that Pendrin is part of IL-17A-dependent epithelial changes and that Pendrin may therefore be a therapeutic target in IL-17A-dependent lung disease.
Related JoVE Video
Promotion of lung tumor growth by interleukin-17.
Am. J. Physiol. Lung Cell Mol. Physiol.
PUBLISHED: 07-18-2014
Show Abstract
Hide Abstract
Recent findings demonstrate that inhaled cigarette smoke, the predominant lung carcinogen, elicits a T helper 17 (Th17) inflammatory phenotype. Interleukin-17A (IL-17), the hallmark cytokine of Th17 inflammation, displays pro- and antitumorigenic properties in a manner that varies according to tumor type and assay system. To investigate the role of IL-17 in lung tumor growth, we used an autochthonous tumor model (K-Ras(LA1) mice) with lung delivery of a recombinant adenovirus that expresses IL-17A. Virus-mediated expression of IL-17A in K-Ras(LA1) mice at 8-10 wk of age doubled lung tumor growth in 3 wk relative to littermates that received a green fluorescent protein-expressing control adenovirus. IL-17 induced matrix metalloproteinase-9 (MMP-9) expression in vivo and in vitro. In accord with this finding, selective and specific inhibitors of MMP-9 repressed the increased motility and invasiveness of IL-17-treated lung tumor cells in culture. Knockdown or mutation of p53 promoted the motility of murine lung tumor cells and abrogated the promigratory role of IL-17. Coexpression of siRNA-resistant wild-type, but not mutant, human p53 rescued both IL-17-mediated migration and MMP-9 mRNA induction in p53 knockdown lung tumor cells. IL-17 increased MMP-9 mRNA stability by reducing interaction with the mRNA destabilizing serine/arginine-rich splicing factor 1 (SRSF1). Taken together, our results indicate that IL-17 stimulates lung tumor growth and regulates MMP-9 mRNA levels in a p53- and SRSF1-dependent manner.
Related JoVE Video
The liver is the major source of elevated serum lipocalin-2 levels after bacterial infection or partial hepatectomy: A critical role for IL-6/STAT3.
Hepatology
PUBLISHED: 06-30-2014
Show Abstract
Hide Abstract
Lipocalin-2 (LCN2) was originally isolated from neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte-specific Lcn2 knockout (Lcn2(Hep-/-) ) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2(Hep-/-) mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (˜62 ng/ml) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (˜6,000 ng/ml) post-infection and more than 60% post-PHx (˜700 ng/ml). Interestingly, both Lcn2(Hep-/-) and global Lcn2 knockout (Lcn2(-/-) ) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with IL-6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte-specific ablation of the IL-6 receptor or Stat3, a major downstream effector of IL-6, markedly abrogated LCN2 elevation in vivo. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL-6. In conclusion, hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL-6 activation of the STAT3 signaling pathway. Thus, hepatocyte-derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration. (Hepatology 2014;).
Related JoVE Video
Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner.
Infect. Immun.
PUBLISHED: 06-23-2014
Show Abstract
Hide Abstract
The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.
Related JoVE Video
Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense.
Immunol. Rev.
PUBLISHED: 06-20-2014
Show Abstract
Hide Abstract
Respiratory infections and diseases are among the leading causes of death worldwide, and effective treatments probably require manipulating the inflammatory response to pathogenic microbes or allergens. Here, we review mechanisms controlling the production and functions of interleukin-17 (IL-17) and IL-22, cytokines that direct several aspects of lung immunity. Innate lymphocytes (?? T cells, natural killer cells, innate lymphoid cells) are the major source of IL-17 and IL-22 during acute infections, while CD4(+) T-helper 17 (Th17) cells contribute to vaccine-induced immunity. The characterization of dendritic cell (DC) subsets has revealed their central roles in T-cell activation. CD11b(+) DCs stimulated with bacteria or fungi secrete IL-1? and IL-23, potent inducers of IL-17 and IL-22. On the other hand, recognition of viruses by plasmacytoid DCs inhibits IL-1? and IL-23 release, increasing susceptibility to bacterial superinfections. IL-17 and IL-22 primarily act on the lung epithelium, inducing antimicrobial proteins and neutrophil chemoattractants. Recent studies found that stimulation of macrophages and DCs with IL-17 also contributes to antibacterial immunity, while IL-22 promotes epithelial proliferation and repair following injury. Chronic diseases such as asthma and chronic obstructive pulmonary disease have been associated with IL-17 and IL-22 responses directed against innocuous antigens. Future studies will evaluate the therapeutic efficacy of targeting the IL-17/IL-22 pathway in pulmonary inflammation.
Related JoVE Video
Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection.
PLoS Pathog.
PUBLISHED: 05-01-2014
Show Abstract
Hide Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), infects one third of the world's population. Among these infections, clinical isolates belonging to the W-Beijing appear to be emerging, representing about 50% of Mtb isolates in East Asia, and about 13% of all Mtb isolates worldwide. In animal models, infection with W-Beijing strain, Mtb HN878, is considered "hypervirulent" as it results in increased mortality and causes exacerbated immunopathology in infected animals. We had previously shown the Interleukin (IL) -17 pathway is dispensable for primary immunity against infection with the lab adapted Mtb H37Rv strain. However, it is not known whether IL-17 has any role to play in protective immunity against infection with clinical Mtb isolates. We report here that lab adapted Mtb strains, such as H37Rv, or less virulent Mtb clinical isolates, such as Mtb CDC1551, do not require IL-17 for protective immunity against infection while infection with Mtb HN878 requires IL-17 for early protective immunity. Unexpectedly, Mtb HN878 induces robust production of IL-1? through a TLR-2-dependent mechanism, which supports potent IL-17 responses. We also show that the role for IL-17 in mediating protective immunity against Mtb HN878 is through IL-17 Receptor signaling in non-hematopoietic cells, mediating the induction of the chemokine, CXCL-13, which is required for localization of T cells within lung lymphoid follicles. Correct T cell localization within lymphoid follicles in the lung is required for maximal macrophage activation and Mtb control. Since IL-17 has a critical role in vaccine-induced immunity against TB, our results have far reaching implications for the design of vaccines and therapies to prevent and treat emerging Mtb strains. In addition, our data changes the existing paradigm that IL-17 is dispensable for primary immunity against Mtb infection, and instead suggests a differential role for IL-17 in early protective immunity against emerging Mtb strains.
Related JoVE Video
Novel pneumocystis antigen discovery using fungal surface proteomics.
Infect. Immun.
PUBLISHED: 03-31-2014
Show Abstract
Hide Abstract
Pneumonia due to the fungus Pneumocystis jirovecii is a life-threatening infection that occurs in immunocompromised patients. The inability to culture the organism as well as the lack of an annotated genome has hindered antigen discovery that could be useful in developing novel vaccine- or antibody-based therapies as well as diagnostics for this infection. Here we report a novel method of surface proteomics analysis of Pneumocystis murina that reliably detected putative surface proteins that are conserved in Pneumocystis jirovecii. This technique identified novel CD4(+) T-cell epitopes as well as a novel B-cell epitope, Meu10, which encodes a glycosylphosphatidylinositol (GPI)-anchored protein thought to be involved in ascospore assembly. The described technique should facilitate the discovery of novel target proteins for diagnostics and therapeutics for Pneumocystis infection.
Related JoVE Video
The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice.
Nat. Med.
PUBLISHED: 03-19-2014
Show Abstract
Hide Abstract
Neonatal colonization by microbes, which begins immediately after birth, is influenced by gestational age and the mother's microbiota and is modified by exposure to antibiotics. In neonates, prolonged duration of antibiotic therapy is associated with increased risk of late-onset sepsis (LOS), a disorder controlled by neutrophils. A role for the microbiota in regulating neutrophil development and susceptibility to sepsis in the neonate remains unclear. We exposed pregnant mouse dams to antibiotics in drinking water to limit transfer of maternal microbes to the neonates. Antibiotic exposure of dams decreased the total number and composition of microbes in the intestine of the neonates. This was associated with decreased numbers of circulating and bone marrow neutrophils and granulocyte/macrophage-restricted progenitor cells in the bone marrow of antibiotic-treated and germ-free neonates. Antibiotic exposure of dams reduced the number of interleukin-17 (IL-17)-producing cells in the intestine and production of granulocyte colony-stimulating factor (G-CSF). Granulocytopenia was associated with impaired host defense and increased susceptibility to Escherichia coli K1 and Klebsiella pneumoniae sepsis in antibiotic-treated neonates, which could be partially reversed by administration of G-CSF. Transfer of a normal microbiota into antibiotic-treated neonates induced IL-17 production by group 3 innate lymphoid cells (ILCs) in the intestine, increasing plasma G-CSF levels and neutrophil numbers in a Toll-like receptor 4 (TLR4)- and myeloid differentiation factor 88 (MyD88)-dependent manner and restored IL-17-dependent resistance to sepsis. Specific depletion of ILCs prevented IL-17- and G-CSF-dependent granulocytosis and resistance to sepsis. These data support a role for the intestinal microbiota in regulation of granulocytosis, neutrophil homeostasis and host resistance to sepsis in neonates.
Related JoVE Video
AIDS-related mycoses: the way forward.
Trends Microbiol.
PUBLISHED: 03-04-2014
Show Abstract
Hide Abstract
The contribution of fungal infections to the morbidity and mortality of HIV-infected individuals is largely unrecognized. A recent meeting highlighted several priorities that need to be urgently addressed, including improved epidemiological surveillance, increased availability of existing diagnostics and drugs, more training in the field of medical mycology, and better funding for research and provision of treatment, particularly in developing countries.
Related JoVE Video
Elevated CXCL10 (IP-10) in bronchoalveolar lavage fluid is associated with acute cellular rejection after human lung transplantation.
Transplantation
PUBLISHED: 02-22-2014
Show Abstract
Hide Abstract
CXCL10 (IP-10) is a potent chemoattractant for T cells that has been postulated to play a role in infection and acute cellular rejection (ACR) in animal models. We measured CXCL10 (IP-10) (and other cytokines previously implicated in the pathogenesis of ACR) in the bronchoalveolar lavage (BAL) of lung transplant recipients (LTRs) to determine the association between CXCL10 (IP-10) and ACR in LTRs.
Related JoVE Video
Vaccine approaches for multidrug resistant Gram negative infections.
Curr. Opin. Immunol.
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Multidrug resistant (MDR) Gram negative bacterial infections are increasing in frequency and are associated with significant financial costs, morbidity and mortality. Current antibiotic therapies are associated with unacceptably poor clinical outcomes and toxicity. Unfortunately, the development of novel antimicrobials is stagnant leaving a significant clinical need for alternative treatments of MDR Gram negative rod infections. Recent preclinical studies have identified Th17 cells as critical mediators of broadly protective adaptive immunity, including protection against MDR infections. Studies of Th17 eliciting antigens, adjuvants and routes of immunization have identified potential vaccine strategies that may confer long-lived adaptive immunity against MDR Gram negative bacterial infections.
Related JoVE Video
Acute alcohol intoxication impairs methicillin-resistant Staphylococcus aureus clearance in the lung by impeding epithelial production of Reg3?.
Infect. Immun.
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
The incidence of community-associated methicillin-resistant Staphylococcus aureus (MRSA) pneumonia in previously healthy individuals has increased in the past 5 years. Such infections are associated with bronchiectasis and high mortality rates, making them a significant public health concern. The mechanisms of host defense against this pathogen are not well characterized. However, patients diagnosed with MRSA, as opposed to methicillin-susceptible S. aureus (MSSA), are more likely to have abused alcohol in the past, and these patients are more likely to die from sepsis. In the United States, USA300 is the predominant strain that causes necrotizing pneumonia. To investigate whether acute ethanol exacerbates MRSA pneumonia, mice were intraperitoneally (i.p.) administered 2 or 4 g/kg of ethanol 30 min prior to oropharyngeal inoculation of 2 × 10(7) CFU of USA300. An increased pulmonary bacterial burden was observed in alcohol-intoxicated mice at 16 and 24 h and was associated with decreased levels of interleukin 6 (IL-6). IL-6 activates signal transducer and activator of transcription 3 (STAT3) as part of an acute-phase response of infection. Reg3? is an antimicrobial C-type lectin that is induced by STAT3 signaling in response to Gram-positive bacteria. Previously, in situ hybridization studies showed that Reg3g is highly expressed in lung epithelium. In the present study, we found that acute ethanol exacerbated USA300 in a murine model of USA300 pneumonia. This was associated with reduced IL-6 expression in vivo as well as inhibition of IL-6 induction of STAT3 signaling and Reg3g expression in mouse lung epithelial (MLE12) cells in vitro. Furthermore, recombinant Reg3? administration 4 h after MRSA infection in alcohol-intoxicated mice rescued USA300 clearance in vivo. Therefore, acute alcohol intoxication leads to decreased MRSA clearance in part by inhibiting IL-6/STAT3 induction of the antimicrobial protein Reg3? in the pulmonary epithelium.
Related JoVE Video
Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia.
Cancer Cell
PUBLISHED: 01-12-2014
Show Abstract
Hide Abstract
Many human cancers are dramatically accelerated by chronic inflammation. However, the specific cellular and molecular elements mediating this effect remain largely unknown. Using a murine model of pancreatic intraepithelial neoplasia (PanIN), we found that Kras(G12D) induces expression of functional IL-17 receptors on PanIN epithelial cells and also stimulates infiltration of the pancreatic stroma by IL-17-producing immune cells. Both effects are augmented by associated chronic pancreatitis, resulting in functional in vivo changes in PanIN epithelial gene expression. Forced IL-17 overexpression dramatically accelerates PanIN initiation and progression, while inhibition of IL-17 signaling using genetic or pharmacologic techniques effectively prevents PanIN formation. Together, these studies suggest that a hematopoietic-to-epithelial IL-17 signaling axis is a potent and requisite driver of PanIN formation.
Related JoVE Video
Immune modulatory effects of IL-22 on allergen-induced pulmonary inflammation.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma.
Related JoVE Video
Influenza A exacerbates Staphylococcus aureus pneumonia by attenuating IL-1? production in mice.
J. Immunol.
PUBLISHED: 10-02-2013
Show Abstract
Hide Abstract
Pneumonia is a leading cause of death worldwide. Staphylococcal aureus can be a cause of severe pneumonia alone or a common pathogen in secondary pneumonia following influenza. Recently, we reported that preceding influenza attenuated the Type 17 pathway, increasing the lungs susceptibility to secondary infection. IL-1? is known to regulate host defense, including playing a role in Th17 polarization. We examined whether IL-1? signaling is required for S. aureus host defense and whether influenza infection impacted S. aureus-induced IL-1? production and subsequent Type 17 pathway activation. Mice were challenged with S. aureus (USA 300), with or without preceding Influenza A/PR/8/34 H1N1 infection. IL-1R1(-/-) mice had significantly higher S. aureus burden, increased mortality, and decreased Type 17 pathway activation following S. aureus challenge. Coinfected mice had significantly decreased IL-1? production versus S. aureus infection alone at early time points following bacterial challenge. Preceding influenza did not attenuate S. aureus-induced inflammasome activation, but there was early suppression of NF-?B activation, suggesting an inhibition of NF-?B-dependent transcription of pro-IL-1?. Furthermore, overexpression of IL-1? in influenza and S. aureus-coinfected mice rescued the induction of IL-17 and IL-22 by S. aureus and improved bacterial clearance. Finally, exogenous IL-1? did not significantly rescue S. aureus host defense during coinfection in IL-17RA(-/-) mice or in mice in which IL-17 and IL-22 activity were blocked. These data reveal a novel mechanism by which Influenza A inhibits S. aureus-induced IL-1? production, resulting in attenuation of Type 17 immunity and increased susceptibility to bacterial infection.
Related JoVE Video
Influenza A Virus Exacerbates Staphylococcus aureus Pneumonia in Mice by Attenuating Antimicrobial Peptide Production.
J. Infect. Dis.
PUBLISHED: 09-26-2013
Show Abstract
Hide Abstract
Influenza A represents a significant cause of morbidity and mortality worldwide. Bacterial complications of influenza A confer the greatest risk to patients. TH17 pathway inhibition has been implicated as a mechanism by which influenza A alters bacterial host defense. Here we show that preceding influenza causes persistent Staphylococcus aureus infection and suppression of TH17 pathway activation in mice. Influenza does not inhibit S. aureus binding and uptake by phagocytic cells but instead attenuates S. aureus induced TH17 related antimicrobial peptides necessary for bacterial clearance in the lung. Importantly, exogenous lipocalin 2 rescued viral exacerbation of S. aureus infection and decreased free iron levels in the bronchoalveolar lavage from mice coinfected with S. aureus and influenza. These findings indicate a novel mechanism by which influenza A inhibits TH17 immunity and increases susceptibility to secondary bacterial pneumonia. Identification of new mechanisms in the pathogenesis of bacterial pneumonia could lead to future therapeutic targets.
Related JoVE Video
S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 09-20-2013
Show Abstract
Hide Abstract
A hallmark of pulmonary tuberculosis (TB) is the formation of granulomas. However, the immune factors that drive the formation of a protective granuloma during latent TB, and the factors that drive the formation of inflammatory granulomas during active TB, are not well defined.
Related JoVE Video
Requirement of TPO/c-mpl for IL-17A-induced granulopoiesis and megakaryopoiesis.
J. Leukoc. Biol.
PUBLISHED: 08-29-2013
Show Abstract
Hide Abstract
IL-17A is a critical, proinflammatory cytokine essential to host defense and is induced in response to microbial invasion. It stimulates granulopoiesis, leading to neutrophilia, neutrophil activation, and mobilization. TPO synergizes with other cytokines in stimulating and expanding hematopoietic progenitors, also leading to granulopoiesis and megakryopoiesis, and is required for thrombocytopoiesis. We investigated the effects of in vivo expression of IL-17A on granulopoiesis and megakaryopoisis in TPO receptor c-mpl-/- mice. IL-17A expression expanded megakaryocytes by 2.5-fold in normal mice but had no such effect in c-mpl-/- mice. The megakaryocyte expansion did not result in increased peripheral platelet counts. IL-17A expression did not impact bone marrow precursors in c-mpl-/- mice; however, it expanded splenic precursors, although to a lesser extent compared with normal controls (CFU-HPP). No peripheral neutrophil expansion was observed in c-mpl-/- mice. Moreover, in c-mpl-/- mice, release of IL-17A downstream cytokines was reduced significantly (KC, MIP-2, GM-CSF). The data suggest that IL-17A requires the presence of functional TPO/c-mpl to exert its effects on granulopoiesis and megakaryopoiesis. Furthermore, IL-17A and its downstream cytokines are important regulators and synergistic factors for the physiologic function of TPO/c-mpl on hematopoiesis.
Related JoVE Video
Dectin immunoadhesins and pneumocystis pneumonia.
Infect. Immun.
PUBLISHED: 07-08-2013
Show Abstract
Hide Abstract
The opportunistic pathogen Pneumocystis jirovecii is a significant cause of disease in HIV-infected patients and others with immunosuppressive conditions. Pneumocystis can also cause complications in treatment following antiretroviral therapy or reversal of immunosuppressive therapy, as the newly reconstituted immune system can develop a pathological inflammatory response to remaining antigens or a previously undetected infection. To target ?-(1,3)-glucan, a structural component of the Pneumocystis cell wall with immune-stimulating properties, we have developed immunoadhesins consisting of the carbohydrate binding domain of Dectin-1 fused to the Fc regions of the 4 subtypes of murine IgG (mIgG). These immunoadhesins bind ?-glucan with high affinity, and precoating the surface of zymosan with Dectin-1:Fc can reduce cytokine production by macrophages in an in vitro stimulation assay. All Dectin-1:Fc variants showed specificity of binding to the asci of Pneumocystis murina, but effector activity of the fusion molecules varied depending on Fc subtype. Dectin-1:mIgG2a Fc was able to reduce the viability of P. murina in culture through a complement-dependent mechanism, whereas previous studies have shown the mIgG1 Fc fusion to increase macrophage-dependent killing. In an in vivo challenge model, systemic expression of Dectin-1:mIgG1 Fc significantly reduced ascus burden in the lung. When administered postinfection in a model of immune reconstitution inflammatory syndrome (IRIS), both Dectin-1:mIgG1 and Dectin-1:mIgG2a Fc reduced hypoxemia despite minimal effects on fungal burden in the lung. Taken together, these data indicate that molecules targeting ?-glucan may provide a mechanism for treatment of fungal infection and for modulation of the inflammatory response to Pneumocystis and other pathogens.
Related JoVE Video
Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling.
J. Exp. Med.
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
Nitric oxide (NO) is a ubiquitous mediator of inflammation and immunity, involved in the pathogenesis and control of infectious diseases, autoimmunity, and cancer. We observed that the expression of nitric oxide synthase-2 (NOS2/iNOS) positively correlates with Th17 responses in patients with ovarian cancer (OvCa). Although high concentrations of exogenous NO indiscriminately suppress the proliferation and differentiation of Th1, Th2, and Th17 cells, the physiological NO concentrations produced by patients’ myeloid-derived suppressor cells (MDSCs) support the development of ROR?t(Rorc)+IL-23R?IL-17? Th17 cells. Moreover, the development of Th17 cells from naive-, memory-, or tumor-infiltrating CD4+ T cells, driven by IL-1?/IL-6/IL-23/NO-producing MDSCs or by recombinant cytokines (IL-1?/IL-6/IL-23), is associated with the induction of endogenous NOS2 and NO production, and critically depends on NOS2 activity and the canonical cyclic guanosine monophosphate (cGMP)–cGMP-dependent protein kinase (cGK) pathway of NO signaling within CD4? T cells. Inhibition of NOS2 or cGMP–cGK signaling abolishes the de novo induction of Th17 cells and selectively suppresses IL-17 production by established Th17 cells isolated from OvCa patients. Our data indicate that, apart from its previously recognized role as an effector mediator of Th17-associated inflammation, NO is also critically required for the induction and stability of human Th17 responses, providing new targets to manipulate Th17 responses in cancer, autoimmunity, and inflammatory diseases.
Related JoVE Video
Mucosal pre-exposure to th17-inducing adjuvants exacerbates pathology after influenza infection.
Am. J. Pathol.
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
Mucosal vaccines are thought to confer superior protection against mucosal infectious diseases. In addition, mucosal routes of vaccine delivery preferentially induce the generation of T helper 17 (Th17) cells, which produce the cytokine IL-17. Th17 cells are critical in mediating vaccine-induced immunity against several mucosal infectious diseases. However, IL-17 is also a potent proinflammatory cytokine, and we recently showed that IL-17 mediates immunopathology and lung injury after influenza infection in mice. In the present study, we tested the hypothesis that mucosal pre-exposure to Th17-inducing adjuvants can promote disease exacerbation upon subsequent infection with influenza virus. Mice mucosally pre-exposed to Th17-inducing adjuvants, such as type II heat-labile enterotoxin or cholera toxin, resulted in increased morbidity and exacerbated lung inflammation upon subsequent infection with influenza virus. Furthermore, the increased morbidity was accompanied by increased expression of inflammatory chemokines and increased accumulation of neutrophils. Importantly, blockade of the IL-17 pathway in mice pre-exposed to Th17-inducing adjuvants resulted in attenuation of the inflammatory phenotype seen in influenza-infected mice. Our findings indicate that, before mucosal Th17-inducing adjuvants can be used in vaccine strategies, the short- and long-term detrimental effects of such adjuvants on disease exacerbation and lung injury in response to infections, such as influenza, should be carefully studied.
Related JoVE Video
Dysregulation in lung immunity - The protective and pathologic Th17 response in infection.
Eur. J. Immunol.
PUBLISHED: 05-16-2013
Show Abstract
Hide Abstract
Th17 cytokines can play both protective and pathologic roles in the airways. An emerging theme in Th17 cytokine biology is that these responses can mediate tissue pathology when downstream effector cells are dysfunctional, such as neutrophils lacking functional NADPH oxidase in the case of chronic granulomatous disease, or epithelial cells lacking appropriate ion transport as in the case of cystic fibrosis. In this Mini-Review we highlight recent advances in the protective and pathologic roles of Th17 cytokines in the context of infection at the pulmonary barrier.
Related JoVE Video
T cell-mediated host immune defenses in the lung.
Annu. Rev. Immunol.
PUBLISHED: 03-23-2013
Show Abstract
Hide Abstract
Evidence has increasingly shown that the lungs are a major site of immune regulation. A robust and highly regulated immune response in the lung protects the host from pathogen infection, whereas an inefficient or deleterious response can lead to various pulmonary diseases. Many cell types, such as epithelial cells, dendritic cells, macrophages, neutrophils, eosinophils, and B and T lymphocytes, contribute to lung immunity. This review focuses on the recent advances in understanding how T lymphocytes mediate pulmonary host defenses against bacterial, viral, and fungal pathogens.
Related JoVE Video
Th17 cell based vaccines in mucosal immunity.
Curr. Opin. Immunol.
PUBLISHED: 03-20-2013
Show Abstract
Hide Abstract
Vaccination is proven to be effective in controlling many infections including small pox, influenza and hepatitis, but strain-specific factors may limit vaccine efficacy. All of these vaccines work through the generation of neutralizing antibodies but for some pathogens there may be roles for serotype-independent immunity. Recently several groups using murine vaccine models have shown that induced T helper cell responses including Th17 responses have shown the potential for CD4+ T-cell dependent vaccine responses. Th17 mediated protective responses involve the recruitment of neutrophils, release of anti-microbial peptides and IL-17-driven Th1 immunity. These effector mechanisms provide immunity against a range of pathogens including the recently described antibiotic-resistant metallo-beta-lactamase 1 Klebsiella pneumoniae. Continued elucidation of the mechanism of Th17 responses and identification of effective adjuvants for inducing robust non pathogenic Th17 responses may lead to successful Th17 based vaccines. Here we summarize the recent advances in understanding the role of Th17 in vaccine induced immunity. We also discuss the current status and future challenges in Th17-based mucosal vaccine development.
Related JoVE Video
IL-22 is essential for lung epithelial repair following influenza infection.
Am. J. Pathol.
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22(-/-) mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22(-/-) mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22(-/-) animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease.
Related JoVE Video
Vitamin D regulation of OX40 ligand in immune responses to Aspergillus fumigatus.
Infect. Immun.
PUBLISHED: 02-25-2013
Show Abstract
Hide Abstract
OX40 ligand (OX40L) is a costimulatory molecule involved in Th2 allergic responses. It has been shown that vitamin D deficiency is associated with increased OX40L expression in peripheral CD11c(+) cells and controls Th2 responses to Aspergillus fumigatus in vitro in cystic fibrosis (CF) patients with allergic bronchopulmonary aspergillosis (ABPA). To investigate if vitamin D deficiency regulated OX40L and Th2 responses in vivo, we examined the effect of nutritional vitamin D deficiency on costimulatory molecules in CD11c(+) cells and A. fumigatus-induced Th2 responses. Vitamin D-deficient mice showed increased expression of OX40L on lung CD11c(+) cells, and OX40L was critical for enhanced Th2 responses to A. fumigatus in vivo. In in vitro assays, vitamin D treatment led to vitamin D receptor (VDR) binding in the promoter region of OX40L and significantly decreased the promoter activity of the OX40L promoter. In addition, vitamin D altered NF-?B p50 binding in the OX40L promoter that may be responsible for repression of OX40L expression. These data show that vitamin D can act directly on OX40L, which impacts Th2 responses and supports the therapeutic use of vitamin D in diseases regulated by OX40L.
Related JoVE Video
IL-17A inhibits airway reactivity induced by respiratory syncytial virus infection during allergic airway inflammation.
Thorax
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
Viral infections are the most frequent cause of asthma exacerbations and are linked to increased airway reactivity (AR) and inflammation. Mice infected with respiratory syncytial virus (RSV) during ovalbumin (OVA)-induced allergic airway inflammation (OVA/RSV) had increased AR compared with OVA or RSV mice alone. Furthermore, interleukin 17A (IL-17A) was only increased in OVA/RSV mice.
Related JoVE Video
Can the SBIR and STTR programs advance research goals?
Nat. Immunol.
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
With diminishing grant support for traditional funding in immunology, can the small-business program leverage a research program? The small-business grants programs offered by the US National Institutes of Health and other organizations support high-risk, early-stage technology commercialization at small businesses.
Related JoVE Video
CD4(+) T-cell subsets and host defense in the lung.
Immunol. Rev.
PUBLISHED: 02-15-2013
Show Abstract
Hide Abstract
CD4(+) T-helper subsets are lineages of T cells that have effector function in the lung and control critical aspects of lung immunity. Depletion of these cells experimentally or by drugs or human immunodeficiency virus (HIV) infection in humans leads to the development of opportunistic infections as well as increased rates of bacteremia with certain bacterial pneumonias. Recently, it has been proposed that CD4(+) T-cell subsets may also be excellent targets for mucosal vaccination to prevent pulmonary infections in susceptible hosts. Here, we review recent findings that increase our understanding of T-cell subsets and their effector cytokines in the context of pulmonary infection.
Related JoVE Video
Src-mediated morphology transition of lung cancer cells in three-dimensional organotypic culture.
Cancer Cell Int.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
A fribotic tumor microenvironment promotes progression of cancer. In this study, we utilize a reconstituted basement membrane mimics Matrigel based three-dimensional organotypic culture (rBM 3-D) to investigate the mechanisms that mediate the tumor promoting effects of the fibrogenic mediators TGF-?1 and type I collagen (Col-1) on lung adenocarcinoma cells. Similar to normal alveolar epithelial cells, the well-differentiated lung adenocarcinoma cells in rBM 3-D culture undergo acinar morphogeneis that features polarized epithelial cell spheres with a single central lumen. Either TGF-?1 or Col-1 modestly distorts acinar morphogenesis. On the other hand, TGF-?1 and Col-1 synergistically induce a transition from acinar morphology into stellate morphology that is characteristic of invasive and metastatic cancer cells. Inhibition of the Src kinase activity abrogates induction of stellate morphology, activation of Akt and mTOR, and the expression of tumor promoting genes by TGF-?1 and Col-1. To a similar extent, pharmacological inhibition of mTOR abrogates the cellular responses to TGF-?1 and Col-1. In summary, we demonstrate that TGF-?1 and Col-1 promote stellate morphogenesis of lung cancer cells. Our findings further suggest that the Src-Akt-mTOR axis mediates stellate morphogenesis. These findings also indicate that rBM 3-D culture can serve as an ideal platform for swift and cost-effective screening of therapeutic candidates at the interface of the tumor and its microenvironment.
Related JoVE Video
Innate Stat3-mediated induction of the antimicrobial protein Reg3? is required for host defense against MRSA pneumonia.
J. Exp. Med.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
Pulmonary Staphylococcus aureus (SA) infections are a public health concern and a major complication of hyper-IgE syndrome, caused by mutations in STAT3. In contrast to previous findings of skin infection, we observed that clearance of SA from the lung did not require T, B, or NK cells but did require Stat3 activation. Immunohistochemistry showed robust Stat3 phosphorylation in the lung epithelium. We identified that a critical Stat3 target gene in lung epithelium is Reg3g (regenerating islet-derived 3 ?), a gene which is highly expressed in gastrointestinal epithelium but whose role in pulmonary host defense is uncharacterized. Stat3 regulated Reg3g transcription through direct binding at the Reg3g promoter region. Recombinant Reg3? bound to SA and had both bacteriostatic and bactericidal activity in a dose-dependent fashion. Stat3 inhibition in vivo reduced Reg3g transcripts in the lung, and more importantly, recombinant Reg3? rescued mice from defective SA clearance. These findings reveal an antibacterial function for lung epithelium through Stat3-mediated induction of Reg3?.
Related JoVE Video
IL-17A induces signal transducers and activators of transcription-6-independent airway mucous cell metaplasia.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 02-09-2013
Show Abstract
Hide Abstract
Mucous cell metaplasia is a hallmark of asthma, and may be mediated by signal transducers and activators of transcription (STAT)-6 signaling. IL-17A is increased in the bronchoalveolar lavage fluid of patients with severe asthma, and IL-17A also increases mucus production in airway epithelial cells. Asthma therapeutics are being developed that inhibit STAT6 signaling, but the role of IL-17A in inducing mucus production in the absence of STAT6 remains unknown. We hypothesized that IL-17A induces mucous cell metaplasia independent of STAT6, and we tested this hypothesis in two murine models in which increased IL-17A protein expression is evident. In the first model, ovalbumin (OVA)-specific D011.10 Th17 cells were adoptively transferred into wild-type (WT) or STAT6 knockout (KO) mice, and the mice were challenged with OVA or PBS. WT-OVA and STAT6 KO-OVA mice demonstrated increased airway IL-17A and IL-13 protein expression and mucous cell metaplasia, compared with WT-PBS or STAT6 KO-PBS mice. In the second model, WT, STAT1 KO, STAT1/STAT6 double KO (DKO), or STAT1/STAT6/IL-17 receptor A (RA) triple KO (TKO) mice were challenged with respiratory syncytial virus (RSV) or mock viral preparation, and the mucous cells were assessed. STAT1 KO-RSV mice demonstrated increased airway mucous cell metaplasia compared with WT-RSV mice. STAT1 KO-RSV and STAT1/STAT6 DKO-RSV mice also demonstrated increased mucous cell metaplasia, compared with STAT1/STAT6/IL17RA TKO-RSV mice. We also treated primary murine tracheal epithelial cells (mTECs) from WT and STAT6 KO mice. STAT6 KO mTECs showed increased periodic acid-Schiff staining with IL-17A but not with IL-13. Thus, asthma therapies targeting STAT6 may increase IL-17A protein expression, without preventing IL-17A-induced mucus production.
Related JoVE Video
ADCYAP1R1 and asthma in Puerto Rican children.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
Epigenetic and/or genetic variation in the gene encoding the receptor for adenylate-cyclase activating polypeptide 1 (ADCYAP1R1) has been linked to post-traumatic stress disorder in adults and anxiety in children. Psychosocial stress has been linked to asthma morbidity in Puerto Rican children.
Related JoVE Video
A novel outbred mouse model of 2009 pandemic influenza and bacterial co-infection severity.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Influenza viruses pose a significant health risk and annually impose a great cost to patients and the health care system. The molecular determinants of influenza severity, often exacerbated by secondary bacterial infection, are largely unclear. We generated a novel outbred mouse model of influenza virus, Staphylococcus aureus, and co-infection utilizing influenza A/CA/07/2009 virus and S. aureus (USA300). Outbred mice displayed a wide range of pathologic phenotypes following influenza virus or co-infection ranging broadly in severity. Influenza viral burden positively correlated with weight loss although lung histopathology did not. Inflammatory cytokines including IL-6, TNF-?, G-CSF, and CXCL10 positively correlated with both weight loss and viral burden. In S. aureus infection, IL-1?, G-CSF, TNF-?, and IL-6 positively correlated with weight loss and bacterial burden. In co-infection, IL-1? production correlated with decreased weight loss suggesting a protective role. The data demonstrate an approach to identify biomarkers of severe disease and to understand pathogenic mechanisms in pneumonia.
Related JoVE Video
IL-13 regulates Th17 secretion of IL-17A in an IL-10-dependent manner.
J. Immunol.
PUBLISHED: 12-30-2011
Show Abstract
Hide Abstract
IL-13 is a central mediator of airway hyperresponsiveness and mucus expression, both hallmarks of asthma. IL-13 is found in the sputum of patients with asthma; therefore, IL-13 is an attractive drug target for treating asthma. We have shown previously that IL-13 inhibits Th17 cell production of IL-17A and IL-21 in vitro. Th17 cells are associated with autoimmune diseases, host immune responses, and severe asthma. In this study, we extend our in vitro findings and determine that IL-13 increases IL-10 production from Th17-polarized cells and that IL-13-induced IL-10 production negatively regulates the secretion of IL-17A and IL-21. To determine if IL-13 negatively regulates lung IL-17A expression via an IL-10-dependent mechanism in vivo, we used a model of respiratory syncytial virus (RSV) strain A2 infection in STAT1 knockout (KO) mice that increases lung IL-17A and IL-13 expression, cytokines not produced during RSV infection in wild-type mice. To test the hypothesis that IL-13 negatively regulates lung IL-17A expression, we created STAT1/IL-13 double KO (DKO) mice. We found that RSV-infected STAT1/IL-13 DKO mice had significantly greater lung IL-17A expression compared with that of STAT1 KO mice and that increased IL-17A expression was abrogated by anti-IL-10 Ab treatment. RSV-infected STAT1/IL-13 DKO mice also had increased neutrophil infiltration compared with that of RSV-infected STAT1 KO mice. Neutralizing IL-10 increased the infiltration of inflammatory cells into the lungs of STAT1 KO mice but not STAT1/IL-13 DKO mice. These findings are vital to understanding the potential side effects of therapeutics targeting IL-13. Inhibiting IL-13 may decrease IL-10 production and increase IL-17A production, thus potentiating IL-17A-associated diseases.
Related JoVE Video
Interleukin-23-mediated inflammation in Pseudomonas aeruginosa pulmonary infection.
Infect. Immun.
PUBLISHED: 10-24-2011
Show Abstract
Hide Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is capable of causing acute and chronic pulmonary infection in the immunocompromised host. In the case of cystic fibrosis (CF), chronic P. aeruginosa infection causes increased mortality by promoting overly exuberant airway inflammation and cumulative lung damage. Identifying the key regulators of this inflammation may lead to the development of new therapies that improve P. aeruginosa-related mortality. We report here that interleukin-23 (IL-23), the cytokine most clearly tied to IL-17-mediated inflammation, also promotes IL-17-independent inflammation during P. aeruginosa pulmonary infection. During the early innate immune response, prior to IL-17 induction, IL-23 acts synergistically with IL-1? to promote early neutrophil (polymorphonuclear leukocyte [PMN]) recruitment. However, at later time points, IL-23 also promoted IL-17 production by lung ?? T cells, which was greatly augmented in the presence of IL-1?. These studies show that IL-23 controls two independent phases of neutrophil recruitment in response to P. aeruginosa infection: early PMN emigration that is IL-17 independent and later PMN emigration regulated by IL-17.
Related JoVE Video
IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung.
J. Immunol.
PUBLISHED: 10-14-2011
Show Abstract
Hide Abstract
IL-23 is required for the IL-17 response to infection with Mycobacterium tuberculosis, but is not required for the early control of bacterial growth. However, mice deficient for the p19 component of IL-23 (Il23a(-/-)) exhibit increased bacterial growth late in infection that is temporally associated with smaller B cell follicles in the lungs. Cxcl13 is required for B cell follicle formation and immunity during tuberculosis. The absence of IL-23 results in decreased expression of Cxcl13 within M. tuberculosis-induced lymphocyte follicles in the lungs, and this deficiency was associated with increased cuffing of T cells around the vessels in the lungs of these mice. Il23a(-/-) mice also poorly expressed IL-17A and IL-22 mRNA. These cytokines were able to induce Cxcl13 in mouse primary lung fibroblasts, suggesting that these cytokines are likely involved in B cell follicle formation. Indeed, IL-17RA-deficient mice generated smaller B cell follicles early in the response, whereas IL-22-deficient mice had smaller B cell follicles at an intermediate time postinfection; however, only Il23a(-/-) mice had a sustained deficiency in B cell follicle formation and reduced immunity. We propose that in the absence of IL-23, expression of long-term immunity to tuberculosis is compromised due to reduced expression of Cxcl13 in B cell follicles and reduced ability of T cells to migrate from the vessels and into the lesion. Further, although IL-17 and IL-22 can both contribute to Cxcl13 production and B cell follicle formation, it is IL-23 that is critical in this regard.
Related JoVE Video
Role of interleukin-23-dependent antifungal immune responses in dendritic cell-vaccinated mice.
Infect. Immun.
PUBLISHED: 07-11-2011
Show Abstract
Hide Abstract
CD40 ligand (CD40L) transduction of antigen-pulsed dendritic cells (DCs) can result in antigen-specific humoral immune responses even in CD4(+) T-cell-depleted settings. Here, we show that CD40L transduction of DCs results in the induction of interleukin-12p40 (IL-12p40), IL-12p70, and IL-23. Using DCs that were deficient in IL-12p40, IL-12p35, or IL-23p19, we show that these molecules are dispensable for primary IgG1 responses to Pneumocystis, but IgG2c was dependent on IL-12p40 and IL-23p19 but not IL-12p35. Antigen-specific recall responses in CD4-deficient mice were critically dependent on IL-12p40 and IL-23p19 expression in DCs and were not affected by the lack of IL-12p35. To confirm that this defect in recall was due to IL-23, transduction of IL-12p40(-/-) DCs with a recombinant adenovirus expressing functional IL-23 restored recall responses in DC-vaccinated CD4-deficient mice. These data show that DC-produced IL-23 is critical for vaccine-induced antigen-specific IgG2c and recall antibody responses in the setting of CD4(+) T-cell depletion.
Related JoVE Video
Th17 cells mediate clade-specific, serotype-independent mucosal immunity.
Immunity
PUBLISHED: 07-01-2011
Show Abstract
Hide Abstract
The interleukin-17 (IL-17) family of cytokines phylogenetically predates the evolution of T cells in jawed vertebrates, suggesting that the ontogeny of the Th17 cell lineage must have arisen to confer an evolutionary advantage to the host over innate sources of IL-17. Utilizing a model of mucosal immunization with the encapsulated bacteria Klebsiella pneumoniae, we found that B cells, which largely recognized polysaccharide capsular antigens, afforded protection to only the vaccine strain. In contrast, memory Th17 cells proliferated in response to conserved outer membrane proteins and conferred protection against several serotypes of K. pneumoniae, including the recently described multidrug resistant New Dehli metallolactamase strain. Notably, this heterologous, clade-specific protection was antibody independent, demonstrating the Th17 cell lineage confers a host advantage by providing heterologous mucosal immunity independent of serotype-specific antibody.
Related JoVE Video
Antimicrobial activity of PLUNC protects against Pseudomonas aeruginosa infection.
J. Immunol.
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
Epithelial antimicrobial activity may protect the lung against inhaled pathogens. The bactericidal/permeability-increasing protein family has demonstrated antimicrobial activity in vitro. PLUNC (palate, lung, and nasal epithelium associated) is a 25-kDa secreted protein that shares homology with bactericidal/permeability-increasing proteins and is expressed in nasopharyngeal and respiratory epithelium. The objective of this study was to determine whether PLUNC can limit Pseudomonas aeruginosa infection in mice. Transgenic mice (Scgb1a1-hPLUNC) were generated in which human PLUNC (hPLUNC) was directed to the airway epithelium with the Scgb1a1 promoter. The hPLUNC protein (hPLUNC) was detected in the epithelium throughout the trachea and bronchial airways and in bronchoalveolar lavage fluid. Bronchoalveolar lavage fluid from transgenic mice exhibited higher antibacterial activity than that from wild type littermates in vitro. After in vivo P. aeruginosa challenge, Scgb1a1-hPLUNC transgenic mice displayed enhanced bacterial clearance. This was accompanied by a decrease in neutrophil infiltration and cytokine levels. More importantly, the overexpressed hPLUNC in Scgb1a1-hPLUNC transgenic mouse airway significantly enhanced mouse survival against P. aeruginosa-induced respiratory infection. These data indicate that PLUNC is a novel antibacterial protein that likely plays a critical role in airway epithelium-mediated innate immune response.
Related JoVE Video
Control of TH17 cells occurs in the small intestine.
Nature
PUBLISHED: 05-19-2011
Show Abstract
Hide Abstract
Interleukin (IL)-17-producing T helper cells (T(H)17) are a recently identified CD4(+) T cell subset distinct from T helper type 1 (T(H)1) and T helper type 2 (T(H)2) cells. T(H)17 cells can drive antigen-specific autoimmune diseases and are considered the main population of pathogenic T cells driving experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis. The factors that are needed for the generation of T(H)17 cells have been well characterized. However, where and how the immune system controls T(H)17 cells in vivo remains unclear. Here, by using a model of tolerance induced by CD3-specific antibody, a model of sepsis and influenza A viral infection (H1N1), we show that pro-inflammatory T(H)17 cells can be redirected to and controlled in the small intestine. T(H)17-specific IL-17A secretion induced expression of the chemokine CCL20 in the small intestine, facilitating the migration of these cells specifically to the small intestine via the CCR6/CCL20 axis. Moreover, we found that T(H)17 cells are controlled by two different mechanisms in the small intestine: first, they are eliminated via the intestinal lumen; second, pro-inflammatory T(H)17 cells simultaneously acquire a regulatory phenotype with in vitro and in vivo immune-suppressive properties (rT(H)17). These results identify mechanisms limiting T(H)17 cell pathogenicity and implicate the gastrointestinal tract as a site for control of T(H)17 cells.
Related JoVE Video
Mechanisms controlling Th17 cytokine expression and host defense.
J. Leukoc. Biol.
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
Th17 cells contribute to mucosal immunity by stimulating epithelial cells to induce antimicrobial peptides, granulopoiesis, neutrophil recruitment, and tissue repair. Recent studies have identified important roles for commensal microbiota and Ahr ligands in stabilizing Th17 gene expression in vivo, linking environmental cues to CD4 T cell polarization. Epigenetic changes that occur during the transition from naïve to effector Th17 cells increase the accessibility of il17a, il17f, and il22 loci to transcription factors. In addition, Th17 cells maintain the potential for expressing T-bet, Foxp3, or GATA-binding protein-3, explaining their plastic nature under various cytokine microenvironments. Although CD4 T cells are major sources of IL-17 and IL-22, innate cell populations, including ?? T cells, NK cells, and lymphoid tissue-inducer cells, are early sources of these cytokines during IL-23-driven responses. Epithelial cells and fibroblasts are important cellular targets for IL-17 in vivo; however, recent data suggest that macrophages and B cells are also stimulated directly by IL-17. Thus, Th17 cells interact with multiple populations to facilitate protection against intracellular and extracellular pathogens.
Related JoVE Video
The development of inducible bronchus-associated lymphoid tissue depends on IL-17.
Nat. Immunol.
PUBLISHED: 04-07-2011
Show Abstract
Hide Abstract
Ectopic or tertiary lymphoid tissues, such as inducible bronchus-associated lymphoid tissue (iBALT), form in nonlymphoid organs after local infection or inflammation. However, the initial events that promote this process remain unknown. Here we show that iBALT formed in mouse lungs as a consequence of pulmonary inflammation during the neonatal period. Although we found CD4(+)CD3(-) lymphoid tissue-inducer cells (LTi cells) in neonatal lungs, particularly after inflammation, iBALT was formed in mice that lacked LTi cells. Instead, we found that interleukin 17 (IL-17) produced by CD4(+) T cells was essential for the formation of iBALT. IL-17 acted by promoting lymphotoxin-?-independent expression of the chemokine CXCL13, which was important for follicle formation. Our results suggest that IL-17-producing T cells are critical for the development of ectopic lymphoid tissues.
Related JoVE Video
Trp53 negatively regulates autoimmunity via the STAT3-Th17 axis.
FASEB J.
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
Emerging evidence suggests that the tumor suppressor p53 is also a crucial regulator for many physiological processes. Previous observations indicate that p53 suppresses inflammation by inhibiting inflammatory antigen-presenting cells. To investigate the potential role of p53 in autoimmune effector T cells, we generated p53(null)CD45.1 mice by crossing p53(null)CD45.2 and CD45.1 mice. We demonstrate that p53(null)CD45.1 mice spontaneously developed autoimmunity, with a significant increase in IL-17-producing Th17 effectors in their lymph nodes (4.7 ± 1.0%) compared to the age-matched counterparts (1.9 ± 0.8% for p53(null)CD45.2, 1.1 ± 0.2% for CD45.1, and 0.5 ± 0.1% for CD45.2 mice). Likewise, p53(null)CD45.1 mice possess highly elevated serum levels of inflammatory cytokines IL-17 and IL-6. This enhanced Th17 response results largely from an increased sensitivity of p53(null)CD45.1 T cells to IL-6-induced STAT3 phosphorylation. Administration of STAT3 inhibitor S31-201 (IC50 of 38.0 ± 7.2 ?M for IL-6-induced STAT3 phosphorylation), but not PBS control, to p53(null)CD45.1 mice suppressed Th17 effectors and alleviated autoimmune pathology. This is the first report revealing that p53 activity in T cells suppresses autoimmunity by controlling Th17 effectors. This study suggests that p53 serves as a guardian of immunological functions and that the p53-STAT3-Th17 axis might be a therapeutic target for autoimmunity.
Related JoVE Video
TNF-alpha from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
Aspergillus fumigatus is commonly associated with allergic bronchopulmonary aspergillosis in patients with severe asthma in which chronic airway neutrophilia predicts a poor outcome. We were able to recapitulate fungus-induced neutrophilic airway inflammation in a mouse model in our efforts to understand the underlying mechanisms. However, neutrophilia occurred in a mouse strain-selective fashion, providing us with an opportunity to perform a comparative study to elucidate the mechanisms involved. Here we show that TNF-?, largely produced by Ly6c(+)CD11b(+) dendritic cells (DCs), plays a central role in promoting IL-17A from CD4(+) T cells and collaborating with it to induce airway neutrophilia. Compared with C57BL/6 mice, BALB/c mice displayed significantly more TNF-?-producing DCs and macrophages in the lung. Lung TNF-? levels were drastically reduced in CD11c-DTR BALB/c mice depleted of CD11c+ cells, and TNF-?-producing Ly6c(+)CD11b(+) cells were abolished in Dectin-1(-/-) and MyD88(-/-) BALB/c mice. TNF-? deficiency itself blunted accumulation of inflammatory Ly6c(+)CD11b(+) DCs. Also, lack of TNF-? decreased IL-17A but promoted IL-5 levels, switching inflammation from a neutrophil to eosinophil bias resembling that in C57BL/6 mice. The TNF-?(low) DCs in C57BL/6 mice contained more NF-?B p50 homodimers, which are strong repressors of TNF-? transcription. Functionally, collaboration between TNF-? and IL-17A triggered significantly higher levels of the neutrophil chemoattractants keratinocyte cytokine and macrophage inflammatory protein 2 in BALB/c mice. Our study identifies TNF-? as a molecular switch that orchestrates a sequence of events in DCs and CD4 T cells that promote neutrophilic airway inflammation.
Related JoVE Video
?? T cells attenuate bleomycin-induced fibrosis through the production of CXCL10.
Am. J. Pathol.
PUBLISHED: 03-02-2011
Show Abstract
Hide Abstract
?? T cells are a subset of T cells associated with epithelial mucosal tissues and play a prominent role in both promoting and dampening inflammatory responses to pathogens; in addition, they strongly mediate epithelial repair. By using a bleomycin model of pulmonary fibrosis, we found that ?? T-cell populations dramatically increased after bleomycin administration. To determine the importance of these cells, we exposed mice lacking the ? chain of the ?? T-cell receptor (?? knockout [KO]) to bleomycin. Pulmonary fibrosis was more severe in ?? KO mice, as measured by collagen deposition (hydroxyproline) and histopathological features. Furthermore, there was no evidence of resolution of the fibrotic response up to 45 days after bleomycin therapy. In contrast to control mice, ?? KO mice had decreased concentrations of IL-6, granulocyte colony stimulating factor, chemokine CXC ligand (CXCL) 1, and interferon inducible protein 10/CXCL10. In vitro culture of ?? T cells purified from lungs 17 days after bleomycin exposure (a time of peak influx of these cells) demonstrated that ?? T cells produced substantial quantities of all four of these cytokines, suggesting that ?? T cells are a predominant source of these proteins. To demonstrate that ?? T cells are effector cells in the fibrotic response, we performed adoptive transfer experiments with ?? T cells sorted from bleomycin-treated lungs; these cells were sufficient to resolve fibrosis in ?? KO mice and restore CXCL10 levels comparable to wild-type mice. Furthermore, overexpression of CXCL10 in the lung decreased the severity of fibrosis seen in the ?? KO mice. Finally, adoptive transfer of ?? T cells from CXCL10(-/-) mice failed to reverse the severe fibrosis in ?? KO mice. These results indicate that ?? T cells promote the resolution of fibrosis through the production of CXCL10.
Related JoVE Video
Anti-CXCL5 therapy ameliorates IL-17-induced arthritis by decreasing joint vascularization.
Angiogenesis
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
IL-17-induced joint inflammation is associated with increased angiogenesis. However, the mechanism by which IL-17 mediates angiogenesis is undefined. Therefore, the pathologic role of CXCL1 and CXCL5 was investigated in arthritis mediated by local expression of IL-17, employing a neutralizing antibody to each chemokine. Next, endothelial chemotaxis was utilized to examine whether endothelial migration was differentially mediated by CXCL1 and CXCL5. Our results demonstrate that IL-17-mediated disease activity was not affected by anti-CXCL1 treatment alone. In contrast, mice receiving anti-CXCL5 demonstrated significantly reduced clinical signs of arthritis, compared to the mice treated with IgG control. Consistently, while inflammation, synovial lining thickness, bone erosion and vascularization were markedly reduced in both the anti-CXCL5 and combination anti-CXCL1 and 5 treatment groups, mice receiving anti-CXCL1 antibody had clinical scores similar to the control group. In contrast to joint FGF2 and VEGF levels, TNF-? was significantly reduced in mice receiving anti-CXCL5 or combination of anti-CXCL1 and 5 therapies compared to the control group. We found that, like IL-17, CXCL1-induced endothelial migration is mediated through activation of PI3K. In contrast, activation of NF-?B pathway was essential for endothelial chemotaxis induced by CXCL5. Although CXCL1 and CXCL5 can differentially mediate endothelial trafficking, blockade of CXCR2 can inhibit endothelial chemotaxis mediated by either of these chemokines. These results suggest that blockade of CXCL5 can modulate IL-17-induced inflammation in part by reducing joint blood vessel formation through a non-overlapping IL-17 mechanism.
Related JoVE Video
IL-17RA is required for CCL2 expression, macrophage recruitment, and emphysema in response to cigarette smoke.
PLoS ONE
PUBLISHED: 02-17-2011
Show Abstract
Hide Abstract
Chronic Obstructive Pulmonary Disease (COPD) is characterized by airspace enlargement and peribronchial lymphoid follicles; however, the immunological mechanisms leading to these pathologic changes remain undefined. Here we show that cigarette smoke is a selective adjuvant that augments in vitro and in vivo Th17, but not Th1, cell differentiation via the aryl hydrocarbon receptor. Smoke exposed IL-17RA(-/-) mice failed to induce CCL2 and MMP12 compared to WT mice. Remarkably, in contrast to WT mice, IL-17RA(-/-) mice failed to develop emphysema after 6 months of cigarette smoke exposure. Taken together, these data demonstrate that cigarette smoke is a potent Th17 adjuvant and that IL-17RA signaling is required for chemokine expression necessary for MMP12 induction and tissue emphysema.
Related JoVE Video
Epigallocatechin-3-gallate reduces airway inflammation in mice through binding to proinflammatory chemokines and inhibiting inflammatory cell recruitment.
J. Immunol.
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
One major activity of chemokines is the recruitment of immune cells to sites of infection and inflammation. CD4(+) Th1 cells play critical roles in host defense against pathogens and in the pathogenesis of many immune-mediated diseases. It was reported that epigallocatechin-3-gallate (EGCG) exhibits anti-inflammatory properties, but the mechanisms have not been completely defined. In this study, we found that EGCG markedly decreased recruitment of murine OVA-specific Th1 cells and other inflammatory cells into the airways in a Th1 adoptive-transfer mouse model. In vitro analysis revealed that EGCG inhibited CXCR3 ligand-driven chemotaxis of murine and human cells. Surface plasmon resonance studies revealed that EGCG bound directly to chemokines CXCL9, CXCL10, and CXCL11. These results indicated that one anti-inflammatory mechanism of EGCG is binding of proinflammatory chemokines and limiting their biological activities. These findings support further development of EGCG as a potent therapeutic for inflammatory diseases.
Related JoVE Video
Role of IL-17A on resolution of pulmonary C. neoformans infection.
PLoS ONE
PUBLISHED: 01-25-2011
Show Abstract
Hide Abstract
The current studies evaluated the role of interleukin (IL)-17A in the induction of protective immunity against pulmonary cryptococcosis in mice. Protection against pulmonary infection with C. neoformans strain H99? was associated with increased IL-17A production. Signaling through the IFN-? receptor (R) was required for increased IL-17A production, however, a Th17-type cytokine profile was not observed. Neutrophils were found to be the predominant leukocytic source of IL-17A, rather than T cells, suggesting that the IL-17A produced was not part of a T cell-mediated Th17-type immune response. Depletion of IL-17A in mice during pulmonary infection with C. neoformans strain H99? resulted in an initial increase in pulmonary fungal burden, but had no effect on cryptococcal burden at later time points. Also, depletion of IL-17A did not affect the local production of other cytokines. IL-17RA?/? mice infected with C. neoformans strain H99? survived the primary infection as well as a secondary challenge with wild-type cryptococci. However, dissemination of the wild-type strain to the brain was noted in the surviving IL-17RA?/? mice. Altogether, our results suggested that IL-17A may be important for optimal protective immune responsiveness during pulmonary C. neoformans infection, but protective Th1-type immune responses are sufficient for protection against cryptococcal infection.
Related JoVE Video
Human TH17 cells express a functional IL-13 receptor and IL-13 attenuates IL-17A production.
J. Allergy Clin. Immunol.
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
IL-13 is a central mediator of airway responsiveness and mucus expression in patients with allergic airway inflammation, and IL-13 is currently a therapeutic target for asthma. However, little is known about how IL-13 regulates human CD4(+) T-cell lineages because IL-13 receptor (IL-13R) ?1, a subunit of IL-13R, has not previously been reported to exist on human T cells.
Related JoVE Video
Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice.
J. Immunol.
PUBLISHED: 12-22-2010
Show Abstract
Hide Abstract
Staphylococcus aureus is a significant cause of hospital and community acquired pneumonia and causes secondary infection after influenza A. Recently, patients with hyper-IgE syndrome, who often present with S. aureus infections of the lung and skin, were found to have mutations in STAT3, required for Th17 immunity, suggesting a potential critical role for Th17 cells in S. aureus pneumonia. Indeed, IL-17R(-/-) and IL-22(-/-) mice displayed impaired bacterial clearance of S. aureus compared with that of wild-type mice. Mice challenged with influenza A PR/8/34 H1N1 and subsequently with S. aureus had increased inflammation and decreased clearance of both virus and bacteria. Coinfection resulted in greater type I and II IFN production in the lung compared with that with virus infection alone. Importantly, influenza A coinfection resulted in substantially decreased IL-17, IL-22, and IL-23 production after S. aureus infection. The decrease in S. aureus-induced IL-17, IL-22, and IL-23 was independent of type II IFN but required type I IFN production in influenza A-infected mice. Furthermore, overexpression of IL-23 in influenza A, S. aureus-coinfected mice rescued the induction of IL-17 and IL-22 and markedly improved bacterial clearance. These data indicate a novel mechanism by which influenza A-induced type I IFNs inhibit Th17 immunity and increase susceptibility to secondary bacterial pneumonia.
Related JoVE Video
Interleukin-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection.
Infect. Immun.
PUBLISHED: 12-13-2010
Show Abstract
Hide Abstract
Interleukin 17 (IL-17) contributes to development of Th1 immunity and neutrophil influx during Chlamydia muridarum pulmonary infection, but its role during C. muridarum genital tract infection has not been described. We detected similar numbers of Chlamydia-specific Th17 and Th1 cells in iliac nodes of wild-type mice early during genital C. muridarum infection, while Th1 cells predominated later. il17ra(-/-) mice exhibited a reduced chlamydia-specific Th1 response in draining iliac nodes and decreased local IFN-? production. Neutrophil influx into the genital tract was also decreased. However, il17ra(-/-) mice resolved infection normally, and no difference in pathology was observed compared to the wild type. Macrophage influx and tumor necrosis factor alpha (TNF-?) production were increased in il17ra(-/-) mice, providing a compensatory mechanism to effectively control chlamydial genital tract infection despite a reduced Th1 response. In ifn?(-/-) mice, a marked increase in cellular infiltrates and chronic pathology was associated with an increased Th17 response. Although neutralization of IL-17 in ifn?(-/-) mice decreased neutrophil influx, macrophage infiltration remained intact and the bacterial burden was not increased. Collectively, these results indicate that IL-17 contributes to the generation of Th1 immunity and neutrophil recruitment but is not required for macrophage influx or normal resolution of C. muridarum genital infection. These data highlight the redundant immune mechanisms operative at this mucosal site and the importance of examining site-specific responses to mucosal pathogens.
Related JoVE Video
Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina.
J. Exp. Med.
PUBLISHED: 12-13-2010
Show Abstract
Hide Abstract
Host defense against opportunistic fungi requires coordination between innate and adaptive immunity for resolution of infection. Antibodies generated in mice vaccinated with the fungus Pneumocystis prevent growth of Pneumocystis organisms within the lungs, but the mechanisms whereby antibodies enhance antifungal host defense are poorly defined. Nearly all species of fungi contain the conserved carbohydrates ?-glucan and chitin within their cell walls, which may be targets of innate and adaptive immunity. In this study, we show that natural IgM antibodies targeting these fungal cell wall carbohydrates are conserved across many species, including fish and mammals. Natural antibodies bind fungal organisms and enhance host defense against Pneumocystis in early stages of infection. IgM antibodies influence recognition of fungal antigen by dendritic cells, increasing their migration to draining pulmonary lymph nodes. IgM antibodies are required for adaptive T helper type 2 (Th2) and Th17 cell differentiation and guide B cell isotype class-switch recombination during host defense against Pneumocystis. These experiments suggest a novel role for the IgM isotype in shaping the earliest steps in recognition and clearance of this fungus. We outline a mechanism whereby serum IgM, containing ancient specificities against conserved fungal antigens, bridges innate and adaptive immunity against fungal organisms.
Related JoVE Video
Integral role of integrins in Th17 development.
J. Clin. Invest.
PUBLISHED: 11-22-2010
Show Abstract
Hide Abstract
A lineage of CD4+ T cells known as Th17 cells, which are derived by exposure of naive CD4+ T cells to IL-6 and TGF-?, have been implicated in several autoimmune diseases. In this issue of the JCI, studies by Acharya et al. and Melton et al. show that TGF-? is activated at the DC/CD4+ T cell synapse by ?v integrins and that this activation is required for Th17 differentiation and autoimmunity in the central nervous system. Thus, these studies offer a potential therapeutic target in fighting autoimmune diseases.
Related JoVE Video
The role of Th17 cytokines in primary mucosal immunity.
Cytokine Growth Factor Rev.
PUBLISHED: 11-20-2010
Show Abstract
Hide Abstract
The T helper type 17 (Th17) lineage of CD4+ T-cells produce several effector molecules including IL-17A, IL-17F, IL-21, and IL-22. In addition to CD4+, ?? T-cells, these cytokines can be produced by natural killer and ?? T-cells. These effector cytokines can be produced rapidly upon infection at mucosal sites and evidence to date strongly implicates that this arm of the immune system plays a critical role in mucosal immunity to many extracellular pathogens. Moreover these cytokines can also coordinate adaptive immunity to some intracellular pathogens. In this review, we will highlight recent progress in our understanding of these cytokines, and mechanisms of their effector function in the mucosa.
Related JoVE Video
CXCL1 regulates pulmonary host defense to Klebsiella Infection via CXCL2, CXCL5, NF-kappaB, and MAPKs.
J. Immunol.
PUBLISHED: 10-11-2010
Show Abstract
Hide Abstract
Pulmonary bacterial infections are a leading cause of death. Since the introduction of antibiotics, multidrug-resistant Klebsiella pneumoniae became an escalating threat. Therefore, development of methods to augment antibacterial defense is warranted. Neutrophil recruitment is critical to clear bacteria, and neutrophil migration in the lung requires the production of ELR(+) CXC chemokines. Although lung-specific CXCL1/keratinocyte cell-derived chemokine (KC) transgene expression causes neutrophil-mediated clearance of K. pneumoniae, the mechanisms underlying KC-mediated host defense against K. pneumoniae have not been explored. In this study, we delineated the host defense functions of KC during pulmonary K. pneumoniae infection using KC(-/-) mice. Our findings demonstrate that KC is important for expression of CXCL2/MIP-2 and CXCL5/LPS-induced CXC chemokine, and activation of NF-?B and MAPKs in the lung. Furthermore, KC derived from both hematopoietic and resident cells contributes to host defense against K. pneumoniae. Neutrophil depletion in mice before K. pneumoniae infection reveals no differences in the production of MIP-2 and LPS-induced CXC chemokine or activation of NF-?B and MAPKs in the lung. Using murine bone marrow-derived and alveolar macrophages, we confirmed KC-mediated upregulation of MIP-2 and activation of NF-?B and MAPKs on K. pneumoniae infection. Moreover, neutralizing KC in bone marrow-derived macrophages before K. pneumoniae challenge decreases bacteria-induced production of KC and MIP-2, and activation of NF-?B and MAPKs. These findings reveal the importance of KC produced by hematopoietic and resident cells in regulating pulmonary host defense against a bacterial pathogen via the activation of transcription factors and MAPKs, as well as the expression of cell adhesion molecules and other neutrophil chemoattractants.
Related JoVE Video
Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection.
Infect. Immun.
PUBLISHED: 10-04-2010
Show Abstract
Hide Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes disease in individuals with suppressed cell-mediated immunity. Recent studies in our laboratory have shown that increases in pulmonary Th1-type and interleukin-17A (IL-17A) cytokine production, classical macrophage activation, and sterilizing immunity are elicited in response to infection with a gamma interferon (IFN-?)-producing C. neoformans strain, H99?. IL-17A-treated macrophages, compared to IL-4-treated macrophages, have been demonstrated to exhibit increased microbicidal activity in vitro, a characteristic consistent with classical macrophage activation. The purpose of these studies is to determine the role of IL-17A in the induction of classically activated macrophages following infection with C. neoformans. Immunohistochemistry and real-time PCR were used to characterize the macrophage activation phenotype in lung tissues of mice treated with isotype control or anti-IL-17A antibodies and given an experimental pulmonary infection with C. neoformans strain H99?. The pulmonary fungal burden was resolved, albeit more slowly, in mice depleted of IL-17A compared to the fungal burden in isotype control-treated mice. Nonetheless, no difference in classical macrophage activation was observed in IL-17A-depleted mice. Similarly, classical macrophage activation was evident in mice deficient in IL-17A or the IL-17 receptor A, which mediates IL-17A signaling, following pulmonary infection with wild-type C. neoformans strain H99 or H99?. These studies suggest that IL-17A may play a role in the early immune response to C. neoformans but is not required for classical macrophage activation in mice experimentally infected with C. neoformans.
Related JoVE Video
Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3.
Hepatology
PUBLISHED: 09-16-2010
Show Abstract
Hide Abstract
Interleukin-22 (IL-22), a recently identified member of the IL-10 family of cytokines that is produced by Th17 and natural killer cells, plays an important role in controlling bacterial infection, homeostasis, and tissue repair. Here, we tested the effect of IL-22 on alcohol-induced liver injury in a murine model of chronic-binge ethanol feeding. Feeding male C57BL/6 mice with a Lieber-DeCarli diet containing 5% ethanol for 10 days, followed by a single dose of ethanol (5 g/kg body weight) by gavage, induces significant fatty liver and liver injury with peak serum levels of approximately 250 IU/L alanine aminotransferase and 420 IU/L aspartate aminotransferase 9 hours after gavage. Moreover, chronic-binge ethanol administration increases expression of hepatic and serum inflammatory cytokines and hepatic oxidative stress. Using this model, we demonstrate that treatment with IL-22 recombinant protein activates hepatic signal transducer and activator of transcription 3 (STAT3) and ameliorates alcoholic fatty liver, liver injury, and hepatic oxidative stress. Administration with IL-22 adenovirus also prevents alcohol-induced steatosis and liver injury. Deletion of STAT3 in hepatocytes abolishes the hepatoprotection provided by IL-22 in alcoholic liver injury. In addition, IL-22 treatment down-regulates the hepatic expression of fatty acid transport protein, but up-regulates several antioxidant, antiapoptotic, and antimicrobial genes. Finally, expression of IL-22 receptor 1 is up-regulated whereas IL-22 is undetectable in the livers from mice with chronic-binge ethanol feeding or patients with alcoholic hepatitis.
Related JoVE Video
Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy.
Lab. Invest.
PUBLISHED: 08-09-2010
Show Abstract
Hide Abstract
Patients with acute kidney injury (AKI) frequently suffer from extra-renal complications including hepatic dysfunction and systemic inflammation. We aimed to determine the mechanisms of AKI-induced hepatic dysfunction and systemic inflammation. Mice subjected to AKI (renal ischemia reperfusion (IR) or nephrectomy) rapidly developed acute hepatic dysfunction and suffered significantly worse hepatic IR injury. After AKI, rapid peri-portal hepatocyte necrosis, vacuolization, neutrophil infiltration and pro-inflammatory mRNA upregulation were observed suggesting an intestinal source of hepatic injury. Small intestine histology after AKI showed profound villous lacteal capillary endothelial apoptosis, disruption of vascular permeability and epithelial necrosis. After ischemic or non-ischemic AKI, plasma TNF-?, IL-17A and IL-6 increased significantly. Small intestine appears to be the source of IL-17A, as IL-17A levels were higher in the portal circulation and small intestine compared with the levels measured from the systemic circulation and liver. Wild-type mice treated with neutralizing antibodies against TNF-?, IL-17A or IL-6 or mice deficient in TNF-?, IL-17A, IL-17A receptor or IL-6 were protected against hepatic and small intestine injury because of ischemic or non-ischemic AKI. For the first time, we implicate the increased release of IL-17A from small intestine together with induction of TNF-? and IL-6 as a cause of small intestine and liver injury after ischemic or non-ischemic AKI. Modulation of the inflammatory response and cytokine release in the small intestine after AKI may have important therapeutic implications in reducing complications arising from AKI.
Related JoVE Video
Proinflammatory T helper type 17 cells are effective B-cell helpers.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-26-2010
Show Abstract
Hide Abstract
T helper type 17 (TH17) cells are highly proinflammatory effector T cells that are characterized by the production of high amounts of IL-17A, IL-17F, IL-21, and IL-22. Furthermore, TH17 cells have been associated with a number of autoimmune diseases. However, it is not clear whether TH17 cells can also serve as effective helper cells. Here we show that TH17 cells can function as B-cell helpers in that they not only induce a strong proliferative response of B cells in vitro but also trigger antibody production with class switch recombination in vivo. Transfer of TH17 cells into WT or T-cell receptor alpha-deficient mice, which lack endogenous T cells, induces a pronounced antibody response with preferential isotype class switching to IgG1, IgG2a, IgG2b, and IgG3, as well as the formation of germinal centers. Conversely, blockade of IL-17 signaling results in a significant reduction in both number and size of germinal centers. Whereas IL-21 is known to help B cells, IL-17 on its own drives B cells to undergo preferential isotype class switching to IgG2a and IgG3 subtypes. These observations provide insights into the unappreciated role of TH17 cells and their signature cytokines in mediating B-cell differentiation and class switch recombination.
Related JoVE Video
IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail.
J. Immunol.
PUBLISHED: 06-16-2010
Show Abstract
Hide Abstract
IL-17 mediates essential inflammatory responses in host defense and autoimmunity. The IL-17A-IL-17F signaling complex is composed of IL-17RA and IL-17RC, both of which are necessary for signal transduction. To date, the specific contribution of IL-17RC to downstream signaling remains poorly understood. To define the regions within the IL-17RC cytoplasmic tail required for signal transduction, we assayed signaling by a panel of IL-17RC deletion mutants. These findings reveal that IL-17RC inducibly associates with a specific glycosylated IL-17RA isoform, in a manner independent of the IL-17RC cytoplasmic tail. Using expression of the IL-17 target genes IL-6 and 24p3/lipocalin-2 as a readout, functional reconstitution of signaling in IL-17RC(-/-) fibroblasts required the SEF/IL-17R signaling domain (SEFIR), a conserved motif common to IL-17R family members. Unexpectedly, the IL-17RC SEFIR alone was not sufficient to reconstitute IL-17-dependent signaling. Rather, an additional sequence downstream of the SEFIR was also necessary. We further found that IL-17RC interacts directly with the adaptor/E3 ubiquitin ligase Act1, and that the functional IL-17RC isoforms containing the extended SEFIR region interact specifically with a phosphorylated isoform of Act1. Finally, we show that IL-17RC is required for in vivo IL-17-dependent responses during oral mucosal infections caused by the human commensal fungus Candida albicans. These results indicate that IL-17RC is vital for IL-17-dependent signaling both in vitro and in vivo. Insight into the mechanisms by which IL-17RC signals helps shed light on IL-17-dependent inflammatory responses and may ultimately provide an avenue for therapeutic intervention in IL-17-mediated diseases.
Related JoVE Video
IL-17 is a potent synergistic factor with GM-CSF in mice in stimulating myelopoiesis, dendritic cell expansion, proliferation, and functional enhancement.
Exp. Hematol.
PUBLISHED: 05-06-2010
Show Abstract
Hide Abstract
Interleukin (IL)-17, which now defines the Th(17) immune response, is a critical cytokine expressed and required for stress granulopoiesis during microbial invasion. Dendritic cells (DC) can instigate this response by inducing IL-17 expression in CD4(+) T cells. Besides IL-17, microbial invasion also stimulates production of the DC growth factor granulocyte-macrophage colony-stimulating factor (GM-CSF). The objective was the in vitro and in vivo investigation of IL-17 on DC proliferation and function in mice.
Related JoVE Video
Ethanol upregulates glucocorticoid-induced leucine zipper expression and modulates cellular inflammatory responses in lung epithelial cells.
J. Immunol.
PUBLISHED: 04-09-2010
Show Abstract
Hide Abstract
Alcohol abuse is associated with immunosuppressive and infectious sequelae. Particularly, alcoholics are more susceptible to pulmonary infections. In this report, gene transcriptional profiles of primary human airway epithelial cells exposed to varying doses of alcohol (0, 50, and 100 mM) were obtained. Comparison of gene transcription levels in 0 mM alcohol treatments with those in 50 mM alcohol treatments resulted in 2 genes being upregulated and 16 genes downregulated by at least 2-fold. Moreover, 0 mM and 100 mM alcohol exposure led to the upregulation of 14 genes and downregulation of 157 genes. Among the upregulated genes, glucocorticoid-induced leucine zipper (GILZ) responded to alcohol in a dose-dependent manner. Moreover, GILZ protein levels also correlated with this transcriptional pattern. Lentiviral expression of GILZ small interfering RNA in human airway epithelial cells diminished the alcohol-induced upregulation, confirming that GILZ is indeed an alcohol-responsive gene. Gene silencing of GILZ in A549 cells resulted in secretion of significantly higher amounts of inflammatory cytokines in response to IL-1beta stimulation. The GILZ-silenced cells were more resistant to alcohol-mediated suppression of cytokine secretion. Further data demonstrated that the glucocorticoid receptor is involved in the regulation of GILZ by alcohol. Because GILZ is a key glucocorticoid-responsive factor mediating the anti-inflammatory and immunosuppressive actions of steroids, we propose that similar signaling pathways may play a role in the anti-inflammatory and immunosuppressive effects of alcohol.
Related JoVE Video
Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice.
Circulation
PUBLISHED: 04-05-2010
Show Abstract
Hide Abstract
T cells play an important role during the immune response that accompanies atherosclerosis. To date, the role for interleukin (IL)-17A in atherogenesis is not well defined. Here, we tested the hypothesis that atherosclerosis-prone conditions induce the differentiation of IL-17A-producing T cells, which in turn promote atherosclerosis.
Related JoVE Video
Pharmacologic advances in the treatment and prevention of respiratory syncytial virus.
Clin. Infect. Dis.
PUBLISHED: 03-19-2010
Show Abstract
Hide Abstract
Currently, only 2 drugs have been approved for the treatment of respiratory syncytial virus (RSV). Palivizumab is a monoclonal antibody for the prevention of RSV in high-risk children. Ribavirin is approved for treatment of severe RSV disease; however, its effectiveness in improving outcomes is questionable. During the past 40 years, many obstacles have delayed the development of safe and effective vaccines and treatment regimens. This article reviews these obstacles and presents the novel development strategies used to overcome many of them. Also discussed are promising new antiviral treatment candidates and their associated mechanism of action, the significant advances made in vaccine development, and exciting, new studies directed at improving outcomes through pharmacologic manipulation of the host response to RSV disease.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.