JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney.
PUBLISHED: 02-26-2009
Show Abstract
Hide Abstract
The mammalian kidney is organized into a cortex where primary filtration occurs, and a medullary region composed of elongated tubular epithelia where urine is concentrated. We show that the cortico-medullary axis of kidney organization and function is regulated by Wnt7b signaling. The future collecting duct network specifically expresses Wnt7b. In the absence of Wnt7b, cortical epithelial development is normal but the medullary zone fails to form and urine fails to be concentrated normally. The analysis of cell division planes in the collecting duct epithelium of the emerging medullary zone indicates a bias along the longitudinal axis of the epithelium. By contrast, in Wnt7b mutants, cell division planes in this population are biased along the radial axis, suggesting that Wnt7b-mediated regulation of the cell cleavage plane contributes to the establishment of a cortico-medullary axis. The removal of beta-catenin from the underlying Wnt-responsive interstitium phenocopies the medullary deficiency of Wnt7b mutants, suggesting a paracrine role for Wnt7b action through the canonical Wnt pathway. Wnt7b signaling is also essential for the coordinated growth of the loop of Henle, a medullary extension of the nephron that elongates in parallel to the collecting duct epithelium. These findings demonstrate that Wnt7b is a key regulator of the tissue architecture that establishes a functional physiologically active mammalian kidney.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.