JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+)-free and saturating Ca(2+) conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+)-saturated structure, the absence of regulatory Ca(2+) perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+), induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+) the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.
Related JoVE Video
Structural and kinetic effects of PAK3 phosphorylation mimic of cTnI(S151E) on the cTnC-cTnI interaction in the cardiac thin filament.
J. Mol. Biol.
PUBLISHED: 05-29-2010
Show Abstract
Hide Abstract
Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca(2+), but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca(2+)-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca(2+)-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca(2+) by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca(2+) dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI.
Related JoVE Video
Open conformation of ezrin bound to phosphatidylinositol 4,5-bisphosphate and to F-actin revealed by neutron scattering.
J. Biol. Chem.
Show Abstract
Hide Abstract
Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP(2). Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP(2) binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP(2) binding. The study provides the first structural view of the activated ezrin bound to PIP(2) and to F-actin.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.