JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Name changes in medically important fungi and their implications for clinical practice.
J. Clin. Microbiol.
PUBLISHED: 10-10-2014
Show Abstract
Hide Abstract
Recent changes in the Fungal Code of Nomenclature and developments in molecular phylogeny are about to lead to dramatic changes in the naming of medically important moulds and yeasts. In this article, we present a widely supported and simple proposal to prevent unnecessary nomenclatural instability.
Related JoVE Video
Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date.
Environ. Microbiol.
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
Xeromyces bisporus can grow on sugary substrates down to 0.61, an extremely low water activity. Its genome size is approximately 22?Mb. Gene clusters encoding for secondary metabolites were conspicuously absent; secondary metabolites were not detected experimentally. Thus, in its 'dry' but nutrient-rich environment, X.?bisporus appears to have relinquished abilities for combative interactions. Elements to sense/signal osmotic stress, e.g. HogA pathway, were present in X.?bisporus. However, transcriptomes at optimal (??0.89) versus low aw (0.68) revealed differential expression of only a few stress-related genes; among these, certain (not all) steps for glycerol synthesis were upregulated. Xeromyces bisporus increased glycerol production during hypo- and hyper-osmotic stress, and much of its wet weight comprised water and rinsable solutes; leaked solutes may form a protective slime. Xeromyces bisporus and other food-borne moulds increased membrane fatty acid saturation as water activity decreased. Such modifications did not appear to be transcriptionally regulated in X.?bisporus; however, genes modulating sterols, phospholipids and the cell wall were differentially expressed. Xeromyces bisporus was previously proposed to be a 'chaophile', preferring solutes that disorder biomolecular structures. Both X.?bisporus and the closely related xerophile, Xerochrysium xerophilum, with low membrane unsaturation indices, could represent a phylogenetic cluster of 'chaophiles'.
Related JoVE Video
Aspergillus pragensis sp. nov. discovered during molecular reidentification of clinical isolates belonging to Aspergillus section Candidi.
Med. Mycol.
PUBLISHED: 06-20-2014
Show Abstract
Hide Abstract
The identity of nine clinical isolates recovered from Czech patients and presumptively identified as Aspergillus sp. section Candidi based on colony morphology was revised using sequences of ?-tubulin, calmodulin gene sequence, and internal transcribed spacer rDNA. Six isolates were from suspected and proven onychomycosis, one from otitis externa, and two associated with probable invasive aspergillosis. The results showed that one Aspergillus candidus isolate was the cause of otitis externa, and both isolates obtained from sputa of patients with probable invasive aspergillosis were reidentified as A. carneus (sect. Terrei) and A. flavus (sect. Flavi). Three isolates from nail scrapings were identified as A. tritici, a verified agent of nondermatophyte onychomycosis. One isolate from toenail was determined to be A. candidus and the two isolates belonged to a hitherto undescribed species, Aspergillus pragensis sp. nov. This species is well supported by phylogenetic analysis based on ?-tubulin and calmodulin gene and is distinguishable from other members of sect. Candidi by red-brown reverse on malt extract agar, slow growth on Czapek-Dox agar and inability to grow at 37°C. A secondary metabolite analysis was also provided with comparison of metabolite spectrum to other species. Section Candidi now encompasses five species for which a dichotomous key based on colony characteristics is provided. All clinical isolates were tested for susceptibilities to selected antifungal agents using the Etest and disc diffusion method. Overall sect. Candidi members are highly susceptible to common antifungals.
Related JoVE Video
Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus.
Molecules
PUBLISHED: 06-16-2014
Show Abstract
Hide Abstract
Investigation of the chemical profile of the industrially important black filamentous fungus Aspergillus aculeatus by UHPLC-DAD-HRMS and subsequent dereplication has led to the discovery of several novel compounds. Isolation and extensive 1D and 2D NMR spectroscopic analyses allowed for structural elucidation of a dioxomorpholine, a unique okaramine, an aflavinine and three novel structures of mixed biosynthetic origin, which we have named aculenes A-C. Moreover, known analogues of calbistrins, okaramines and secalonic acids were detected. All novel compounds were tested for antifungal activity against Candida albicans, however all showed only weak or no activity. Aspergillus aculeatus IBT 21030 was additionally shown to be capable of producing sclerotia. Examination of the sclerotia revealed a highly regulated production of metabolites in these morphological structures.
Related JoVE Video
Brazil nuts are subject to infection with B and G aflatoxin-producing fungus, Aspergillus pseudonomius.
Int. J. Food Microbiol.
PUBLISHED: 03-27-2014
Show Abstract
Hide Abstract
The exploitation of the Brazil nut is one of the most important activities of the extractive communities of the Amazon rainforest. However, its commercialization can be affected by the presence of aflatoxins produced by fungi, namely Aspergillus section Flavi. In the present study, we investigated a collection of Aspergillus nomius strains isolated from Brazil nuts using different approaches, including morphological characters, RAPD and AFLP profiles, partial ?-tubulin and calmodulin nucleotide sequences, aflatoxin patterns, as well as tolerance to low water activity in cultured media. Results showed that most of the isolates do belong to A. nomius species, but a few were re-identified as Aspergillus pseudonomius, a very recently described species. The results of the analyses of molecular variance, as well as the high pairwise FST values between A. nomius and A. pseudonomius suggested the isolation between these two species and the inexistence of gene flow. Fixed interspecific nucleotide polymorphisms at ?-tubulin and calmodulin loci are presented. All A. pseudonomius strains analyzed produced aflatoxins AFB1, AFB2, AFG1 and AFG2. This study contains the first-ever report on the occurrence in Brazil nuts of A. pseudonomius. The G-type aflatoxins and the mycotoxin tenuazonic acid are reported here for the first time in A. pseudonomius.
Related JoVE Video
Isolation, structural analyses and biological activity assays against chronic lymphocytic leukemia of two novel cytochalasins - sclerotionigrin A and B.
Molecules
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
Two new cytochalasins, sclerotionigrin A (1) and B (2) were isolated together with the known proxiphomin (3) from the filamentous fungus Aspergillus sclerotioniger. The structures and relative stereochemistry of 1 and 2 were determined based on comparison with 3, and from extensive 1D and 2D NMR spectroscopic analysis, supported by high resolution mass spectrometry (HRMS). Compounds 2 and 3 displayed cytotoxic activity towards chronic lymphocytic leukemia cells in vitro, with 3 being the most active.
Related JoVE Video
Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library.
Mar Drugs
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
In drug discovery, reliable and fast dereplication of known compounds is essential for identification of novel bioactive compounds. Here, we show an integrated approach using ultra-high performance liquid chromatography-diode array detection-quadrupole time of flight mass spectrometry (UHPLC-DAD-QTOFMS) providing both accurate mass full-scan mass spectrometry (MS) and tandem high resolution MS (MS/HRMS) data. The methodology was demonstrated on compounds from bioactive marine-derived strains of Aspergillus, Penicillium, and Emericellopsis, including small polyketides, non-ribosomal peptides, terpenes, and meroterpenoids. The MS/HRMS data were then searched against an in-house MS/HRMS library of ~1300 compounds for unambiguous identification. The full scan MS data was used for dereplication of compounds not in the MS/HRMS library, combined with ultraviolet/visual (UV/Vis) and MS/HRMS data for faster exclusion of database search results. This led to the identification of four novel isomers of the known anticancer compound, asperphenamate. Except for very low intensity peaks, no false negatives were found using the MS/HRMS approach, which proved to be robust against poor data quality caused by system overload or loss of lock-mass. Only for small polyketides, like patulin, were both retention time and UV/Vis spectra necessary for unambiguous identification. For the ophiobolin family with many structurally similar analogues partly co-eluting, the peaks could be assigned correctly by combining MS/HRMS data and m/z of the [M + Na]+ ions.
Related JoVE Video
Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites.
Anal Bioanal Chem
PUBLISHED: 01-18-2014
Show Abstract
Hide Abstract
In natural-product drug discovery, finding new compounds is the main task, and thus fast dereplication of known compounds is essential. This is usually performed by manual liquid chromatography-ultraviolet (LC-UV) or visible light-mass spectroscopy (Vis-MS) interpretation of detected peaks, often assisted by automated identification of previously identified compounds. We used a 15 min high-performance liquid chromatography-diode array detection (UHPLC-DAD)-high-resolution MS method (electrospray ionization (ESI)(+) or ESI(-)), followed by 10-60 s of automated data analysis for up to 3000 relevant elemental compositions. By overlaying automatically generated extracted-ion chromatograms from detected compounds on the base peak chromatogram, all major potentially novel peaks could be visualized. Peaks corresponding to compounds available as reference standards, previously identified compounds, and major contaminants from solvents, media, filters etc. were labeled to differentiate these from compounds only identified by elemental composition. This enabled fast manual evaluation of both known peaks and potential novel-compound peaks, by manual verification of: the adduct pattern, UV-Vis, retention time compared with log D, co-identified biosynthetic related compounds, and elution order. System performance, including adduct patterns, in-source fragmentation, and ion-cooler bias, was investigated on reference standards, and the overall method was used on extracts of Aspergillus carbonarius and Penicillium melanoconidium, revealing new nitrogen-containing biomarkers for both species.
Related JoVE Video
Formation of sclerotia and production of indoloterpenes by Aspergillus niger and other species in section Nigri.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Several species in Aspergillus section Nigri have been reported to produce sclerotia on well-known growth media, such as Czapek yeast autolysate (CYA) agar, with sclerotia considered to be an important prerequisite for sexual development. However Aspergillus niger sensu stricto has not been reported to produce sclerotia, and is thought to be a purely asexual organism. Here we report, for the first time, the production of sclerotia by certain strains of Aspergillus niger when grown on CYA agar with raisins, or on other fruits or on rice. Up to 11 apolar indoloterpenes of the aflavinine type were detected by liquid chromatography and diode array and mass spectrometric detection where sclerotia were formed, including 10,23-dihydro-24,25-dehydroaflavinine. Sclerotium induction can thus be a way of inducing the production of new secondary metabolites from previously silent gene clusters. Cultivation of other species of the black aspergilli showed that raisins induced sclerotium formation by A. brasiliensis, A. floridensis A. ibericus, A. luchuensis, A. neoniger, A. trinidadensis and A. saccharolyticus for the first time.
Related JoVE Video
Bio-activity and dereplication-based discovery of ophiobolins and other fungal secondary metabolites targeting leukemia cells.
Molecules
PUBLISHED: 10-12-2013
Show Abstract
Hide Abstract
The purpose of this study was to identify and characterize fungal natural products (NPs) with in vitro bioactivity towards leukemia cells. We based our screening on a combined analytical and bio-guided approach of LC-DAD-HRMS dereplication, explorative solid-phase extraction (E-SPE), and a co-culture platform of CLL and stromal cells. A total of 289 fungal extracts were screened and we tracked the activity to single compounds in seven of the most active extracts. The novel ophiobolin U was isolated together with the known ophiobolins C, H, K as well as 6-epiophiobolins G, K and N from three fungal strains in the Aspergillus section Usti. Ophiobolins A, B, C and K displayed bioactivity towards leukemia cells with induction of apoptosis at nanomolar concentrations. The remaining ophiobolins were mainly inactive or only slightly active at micromolar concentrations. Dereplication of those ophiobolin derivatives possessing different activity in combination with structural analysis allowed a correlation of the chemical structure and conformation with the extent of bioactivity, identifying the hydroxy group at C3 and an aldehyde at C21, as well as the A/B-cis ring structure, as indispensible for the strong activity of the ophiobolins. The known compounds penicillic acid, viridicatumtoxin, calbistrin A, brefeldin A, emestrin A, and neosolaniol monoacetate were identified from the extracts and also found generally cytotoxic.
Related JoVE Video
Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi.
Molecules
PUBLISHED: 07-03-2013
Show Abstract
Hide Abstract
This review covers important anticancer and antifungal compounds reported from filamentous fungi and in particular from Aspergillus, Penicillium and Talaromyces. The taxonomy of these fungi is not trivial, so a focus of this review has been to report the correct identity of the producing organisms based on substantial previous in-house chemotaxonomic studies.
Related JoVE Video
Talaromyces atroroseus, a New Species Efficiently Producing Industrially Relevant Red Pigments.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Some species of Talaromyces secrete large amounts of red pigments. Literature has linked this character to species such as Talaromyces purpurogenus, T. albobiverticillius, T. marneffei, and T. minioluteus often under earlier Penicillium names. Isolates identified as T. purpurogenus have been reported to be interesting industrially and they can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology. Talaromyces atroroseus sp. nov., described in this study, produces the azaphilone biosynthetic families mitorubrins and Monascus pigments without any production of mycotoxins. Within the red pigment producing clade, T. atroroseus resolved in a distinct clade separate from all the other species in multigene phylogenies (ITS, ?-tubulin and RPB1), which confirm its unique nature. Talaromyces atroroseus resembles T. purpurogenus and T. albobiverticillius in producing red diffusible pigments, but differs from the latter two species by the production of glauconic acid, purpuride and ZG-1494? and by the dull to dark green, thick walled ellipsoidal conidia produced. The type strain of Talaromyces atroroseus is CBS 133442.
Related JoVE Video
Aspergillus luchuensis, an industrially important black Aspergillus in East Asia.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Aspergilli known as black- and white-koji molds which are used for awamori, shochu, makgeolli and other food and beverage fermentations, are reported in the literature as A. luchuensis, A. awamori, A. kawachii, or A. acidus. In order to elucidate the taxonomic position of these species, available ex-type cultures were compared based on morphology and molecular characters. A. luchuensis, A. kawachii and A. acidus showed the same banding patterns in RAPD, and the three species had the same rDNA-ITS, ?-tubulin and calmodulin sequences and these differed from those of the closely related A. niger and A. tubingensis. Morphologically, the three species are not significantly different from each other or from A. niger and A. tubingensis. It is concluded that A. luchuensis, A. kawachii and A. acidus are the same species, and A. luchuensis is selected as the correct name based on priority. Strains of A. awamori which are stored in National Research Institute of Brewing in Japan, represent A. niger (n?=?14) and A. luchuensis (n?=?6). The neotype of A. awamori (CBS 557.65?=? NRRL 4948) does not originate from awamori fermentation and it is shown to be identical with the unknown taxon Aspergillus welwitschiae. Extrolite analysis of strains of A. luchuensis showed that they do not produce mycotoxins and therefore can be considered safe for food and beverage fermentations. A. luchuensis is also frequently isolated from meju and nuruk in Korea and Puerh tea in China and the species is probably common in the fermentation environment of East Asia. A re-description of A. luchuensis is provided because the incomplete data in the original literature.
Related JoVE Video
Dereplication of microbial natural products by LC-DAD-TOFMS.
J. Nat. Prod.
PUBLISHED: 10-25-2011
Show Abstract
Hide Abstract
Dereplication, the rapid identification of known compounds present in a mixture, is crucial to the fast discovery of novel natural products. Determining the elemental composition of compounds in mixtures and tentatively identifying natural products using MS/MS and UV/vis spectra is becoming easier with advances in analytical equipment and better compound databases. Here we demonstrate the use of LC-UV/vis-MS-based dereplication using data from UV/vis diode array detection and ESI+/ESI- time-of-flight MS for assignment of 719 microbial natural product and mycotoxin reference standards. ESI+ was the most versatile ionization method, detecting 93% of the compounds, although with 12% ionizing poorly. Using ESI+ alone, 56.1% of the compounds could be unambiguously assigned based on characteristic patterns of multiple adduct ions. Using ESI-, 36.4% of the compounds could have their molecular mass assigned unambiguously using multiple adduct ions, while a further 41% of the compounds were detected only as [M - H]-. The most reliable interpretations of conflicting ESI+ and ESI- data on a chromatographic peak were from the ionization polarity with the most intense ionization. Poor ionization was most common with small molecules (<200 Da). In ESI-, these were often polar and basic, while in ESI+ they were small aromatic acids or anthraquinones. No single ion-source settings could be applied over a m/z 60-2000 range. However, continuous switching among three settings (e.g., for 0.5 s each) during the chromatographic run allowed MS of both small labile molecules and large peptides, and pseudo MS/MS data on labile molecules since the settings for large molecules often induce fragmentation into small molecules.
Related JoVE Video
Food fermentations: microorganisms with technological beneficial use.
Int. J. Food Microbiol.
PUBLISHED: 08-09-2011
Show Abstract
Hide Abstract
Microbial food cultures have directly or indirectly come under various regulatory frameworks in the course of the last decades. Several of those regulatory frameworks put emphasis on "the history of use", "traditional food", or "general recognition of safety". Authoritative lists of microorganisms with a documented use in food have therefore come into high demand. One such list was published in 2002 as a result of a joint project between the International Dairy Federation (IDF) and the European Food and Feed Cultures Association (EFFCA). The "2002 IDF inventory" has become a de facto reference for food cultures in practical use. However, as the focus mainly was on commercially available dairy cultures, there was an unmet need for a list with a wider scope. We present an updated inventory of microorganisms used in food fermentations covering a wide range of food matrices (dairy, meat, fish, vegetables, legumes, cereals, beverages, and vinegar). We have also reviewed and updated the taxonomy of the microorganisms used in food fermentations in order to bring the taxonomy in agreement with the current standing in nomenclature.
Related JoVE Video
Fumonisin and ochratoxin production in industrial Aspergillus niger strains.
PLoS ONE
PUBLISHED: 07-01-2011
Show Abstract
Hide Abstract
Aspergillus niger is perhaps the most important fungus used in biotechnology, and is also one of the most commonly encountered fungi contaminating foods and feedstuffs, and occurring in soil and indoor environments. Many of its industrial applications have been given GRAS status (generally regarded as safe). However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains) as well as 228 strains from 17 related black Aspergillus species were examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B(2), B(4), and B(6)) were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83%, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also produced fumonisins. Strains optimized through random mutagenesis usually maintained their mycotoxin production capability. Toxigenic strains were also able to produce the toxins on media suggested for citric acid production with most of the toxins found in the biomass, thereby questioning the use of the remaining biomass as animal feed. In conclusion it is recommended to use strains of A. niger with inactive or inactivated gene clusters for fumonisins and ochratoxins, or to choose isolates for biotechnological uses in related non-toxigenic species such as A. tubingensis, A. brasiliensis, A vadensis or A. acidus, which neither produce fumonisins nor ochratoxins.
Related JoVE Video
A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans.
FEMS Microbiol. Lett.
PUBLISHED: 06-27-2011
Show Abstract
Hide Abstract
Fungi possess an advanced secondary metabolism that is regulated and coordinated in a complex manner depending on environmental challenges. To understand this complexity, a holistic approach is necessary. We initiated such an analysis in the important model fungus Aspergillus nidulans by systematically deleting all 32 individual genes encoding polyketide synthases. Wild-type and all mutant strains were challenged on different complex media to provoke induction of the secondary metabolism. Screening of the mutant library revealed direct genetic links to two austinol meroterpenoids and expanded the current understanding of the biosynthetic pathways leading to arugosins and violaceols. We expect that the library will be an important resource towards a systemic understanding of polyketide production in A. nidulans.
Related JoVE Video
Submerged conidiation and product formation by Aspergillus niger at low specific growth rates are affected in aerial developmental mutants.
Appl. Environ. Microbiol.
PUBLISHED: 06-07-2011
Show Abstract
Hide Abstract
Exposure to an aerial environment or severe nutrient limitation induces asexual differentiation in filamentous fungi. Submerged cultivation of Aspergillus niger in carbon- and energy-limited retentostat cultures both induces and fuels conidiation. Physiological and transcriptomic analyses have revealed that this differentiation strongly affects product formation. Since conidiation is inherent in the aerial environment, we hypothesized that product formation near zero growth can be influenced by affecting differentiation or development of aerial hyphae in general. To investigate this idea, three developmental mutants (?fwnA, scl-1, and scl-2 mutants) that have no apparent vegetative growth defects were cultured in maltose-limited retentostat cultures. The secondary-metabolite profile of the wild-type strain defined flavasperone, aurasperone B, tensidol B, and two so far uncharacterized compounds as associated with conidium formation, while fumonisins B(2), B(4), and B(6) were characteristic of early response to nutrient limitation by the vegetative mycelium. The developmental mutants responded differently to the severe substrate limitation, which resulted in distinct profiles of growth and product formation. fwnA encodes the polyketide synthase responsible for melanin biosynthesis during aerial differentiation, and we show that conidial melanin synthesis in submerged retentostat cultures and aurasperone B production are fwnA dependent. The scl-1 and scl-2 strains are two UV mutants generated in the ?fwnA background that displayed reduced asexual conidiation and formed sclerotium-like structures on agar plates. The reduced conidiation phenotypes of the scl-1 and scl-2 strains are reflected in the retentostat cultivation and are accompanied by elimination or severely reduced accumulation of secondary metabolites and distinctly enhanced accumulation of extracellular protein. This investigation shows that submerged conidiation and product formation of a mitosporic fungus cultured at low specific growth rates can be fundamentally affected by interfering with the genetic program for differentiation of aerial hyphae, opening new perspectives for tailoring industrial performance.
Related JoVE Video
The amsterdam declaration on fungal nomenclature.
IMA Fungus
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19-20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current system of naming pleomorphic fungi should be maintained or changed now that molecular data are routinely available. The issue is urgent as mycologists currently follow different practices, and no consensus was achieved by a Special Committee appointed in 2005 by the International Botanical Congress to advise on the problem. The Declaration recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except where that is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated to promote the implementation of the Declaration. In addition, but not forming part of the Declaration, are reports of discussions held during the symposium on the governance of the nomenclature of fungi, and the naming of fungi known only from an environmental nucleic acid sequence in particular. Possible amendments to the Draft BioCode (2011) to allow for the needs of mycologists are suggested for further consideration, and a possible example of how a fungus only known from the environment might be described is presented.
Related JoVE Video
Hypersaline waters - a potential source of foodborne toxigenic aspergilli and penicillia.
FEMS Microbiol. Ecol.
PUBLISHED: 05-11-2011
Show Abstract
Hide Abstract
Previous studies of hypersaline environments have revealed the dominant presence of melanized yeast-like fungi and related Cladosporium spp. In this study, we focused on the genera Aspergillus and Penicillium and their teleomorphic forms. From oligotrophic and eutrophic hypersaline waters around the world, 60 different species were identified, according to their morphological characteristics and extrolite profiles. For the confirmation of five new species, additionally, sequence analysis of the internal transcribed spacer region, the partial large subunit-rDNA and the partial ?-tubulin gene was performed. The species Aspergillus niger, Eurotium amstelodami and Penicillium chrysogenum were detected with the highest frequencies at all of the sampled sites; thus, they represent the pan-global stable mycobiota in hypersaline environments. Possible candidates were also Aspergillus sydowii and Eurotium herbariorum, as they were quite evenly distributed among the sampled sites, and Aspergillus candidus, which was abundant, but more locally distributed. These species and their byproducts can accumulate downstream following evaporation of brine, and they can become entrapped in the salt crystals. Consequently, marine salt used for consumption can be a potential source of food-borne fungi and their byproducts. For example, ochratoxin-A-producing species Penicillium nordicum was recovered from brine, salt and salted meat products.
Related JoVE Video
Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88.
Genome Res.
PUBLISHED: 05-04-2011
Show Abstract
Hide Abstract
The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.
Related JoVE Video
Flemings penicillin producing strain is not Penicillium chrysogenum but P. rubens.
IMA Fungus
PUBLISHED: 04-29-2011
Show Abstract
Hide Abstract
Penicillium chrysogenum is a commonly occurring mould in indoor environments and foods, and has gained much attention for its use in the production of the antibiotic penicillin. Phylogenetic analysis of the most important penicillin producing P. chrysogenum isolates revealed the presence of two highly supported clades, and we show here that these two clades represent two species, P. chrysogenum and P. rubens. These species are phenotypically similar, but extrolite analysis shows that P. chrysogenum produces secalonic acid D and F and/or a metabolite related to lumpidin, while P. rubens does not produce these metabolites. Flemings original penicillin producing strain and the full genome sequenced strain of P. chrysogenum are re-identified as P. rubens. Furthermore, the well-known claim that Alexander Fleming misidentified the original penicillin producing strain as P. rubrum is discussed.
Related JoVE Video
Associations between fungal species and water-damaged building materials.
Appl. Environ. Microbiol.
PUBLISHED: 04-29-2011
Show Abstract
Hide Abstract
Fungal growth in damp or water-damaged buildings worldwide is an increasing problem, which has adverse effects on both the occupants and the buildings. Air sampling alone in moldy buildings does not reveal the full diversity of fungal species growing on building materials. One aim of this study was to estimate the qualitative and quantitative diversity of fungi growing on damp or water-damaged building materials. Another was to determine if associations exist between the most commonly found fungal species and different types of materials. More than 5,300 surface samples were taken by means of V8 contact plates from materials with visible fungal growth. Fungal identifications and information on building material components were analyzed using multivariate statistic methods to determine associations between fungi and material components. The results confirmed that Penicillium chrysogenum and Aspergillus versicolor are the most common fungal species in water-damaged buildings. The results also showed Chaetomium spp., Acremonium spp., and Ulocladium spp. to be very common on damp building materials. Analyses show that associated mycobiotas exist on different building materials. Associations were found between (i) Acremonium spp., Penicillium chrysogenum, Stachybotrys spp., Ulocladium spp., and gypsum and wallpaper, (ii) Arthrinium phaeospermum, Aureobasidium pullulans, Cladosporium herbarum, Trichoderma spp., yeasts, and different types of wood and plywood, and (iii) Aspergillus fumigatus, Aspergillus melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins, microbial volatile organic compounds (MVOCs), and microparticles released into the indoor environment.
Related JoVE Video
Mycobiota of cocoa: from farm to chocolate.
Food Microbiol.
PUBLISHED: 04-05-2011
Show Abstract
Hide Abstract
The present work was carried out to study the mycobiota of cocoa beans from farm to chocolate. Four hundred and ninety-four samples were analyzed at various stages of cocoa processing: (i) primary stage at the farm (fermentation, drying, and storage), (ii) secondary stage at processing (testa, nibs, liquor, butter, cake and powder) and (iii) the final chocolate product (dark, milk, white and powdered) collected from retail outlets. Direct plating or dilution plating on Dichloran 18% Glycerol agar were used for cocoa beans and processed product analyses, respectively. Fungi were isolated and identified using different keys of identification. The largest numbers and diversity of fungi were observed in the samples collected at the farm, especially during drying and storage. The species with the highest occurrence among samples were: Absidia corymbifera, Aspergillus sp. nov., A. flavus, Penicillium paneum and yeasts. A total of 1132 potentially toxigenic fungi were isolated from the following species or species groups: A. flavus, Aspergillus parasiticus, Aspergillus nomius, Aspergillus niger group, Aspergillus carbonarius and Aspergillus ochraceus group. The highest percentage of toxigenic fungi was found at the drying and storage stages. The industrial processing reduced the fungal contamination in all fractions and no fungi were found in the final chocolate products. The knowledge of which fungi are dominant at each processing stage of cocoa provides important data about their ecology. This understanding leads to a reduction in fungal spoilage and mycotoxin production in this product.
Related JoVE Video
A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi.
BMC Microbiol.
PUBLISHED: 04-05-2011
Show Abstract
Hide Abstract
Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA), an immunosuppressant molecule produced by several Penicillium species. The target of MPA is inosine-5-monophosphate dehydrogenase (IMPDH), which catalyses the rate limiting step in the synthesis of guanine nucleotides. The recent discovery of the MPA biosynthetic gene cluster from Penicillium brevicompactum revealed an extra copy of the IMPDH-encoding gene (mpaF) embedded within the cluster. This finding suggests that the key component of MPA self resistance is likely based on the IMPDH encoded by mpaF.
Related JoVE Video
Salting of dry-cured meat - A potential cause of contamination with the ochratoxin A-producing species Penicillium nordicum.
Food Microbiol.
PUBLISHED: 02-22-2011
Show Abstract
Hide Abstract
Penicillium nordicum is a known contaminant of protein-rich foods and is primarily found on dry-cured meat products. It is an important producer of the mycotoxin ochratoxin A, which has nephrotoxic and cancerogenic activities. Recently a high number of P. nordicum strains was isolated from different dry-cured meat products from one of the Slovenian meat-processing plants. Since we have isolated P. nordicum in high counts also from Artic habitats, such as sea water and sea ice and due to its ability to grow well at low temperatures and at increased salinity, sea salt was suspected as the possible source of P. nordicum. In the present study contamination of meat products, air in the meat-processing plant and sea salt used for salting were analysed. When 50 g of salt sample from a sealed package was dissolved in sterile water and filtered, 12 colonies of P. nordicum were obtained on solid medium incubated at 15 °C, while a salt sample from an open vessel in the meat-processing area developed high, uncountable number of colonies. Amplified fragment length polymorphism analyses of P. nordicum isolates from different sources showed that contamination of meat products via salt was possible. Three selected isolates examined for extrolites all produced ochratoxin A. As contamination of dry-cured meat products with P. nordicum represents a potential health risk for consumers and workers in the meat-processing plants, salt should be taken into account as a potential cause of such contaminations.
Related JoVE Video
Aspergillus saccharolyticus sp. nov., a black Aspergillus species isolated in Denmark.
Int. J. Syst. Evol. Microbiol.
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
A novel species, Aspergillus saccharolyticus sp. nov., belonging to the Aspergillus section Nigri group is described. This species was isolated in Denmark from treated hardwood. Its taxonomic status was determined using a polyphasic taxonomic approach including phenotypic (morphology and extrolite profiles) and molecular (?-tubulin, internal transcribed spacer and calmodulin gene sequences, and universally primed PCR fingerprinting) analysis. Phenotypic and molecular data enabled this novel species to be clearly distinguished from other black aspergilli. A. saccharolyticus is a uniseriate Aspergillus species that is morphologically similar to Aspergillus japonicus and Aspergillus aculeatus, but has a totally different extrolite profile compared to any known Aspergillus species. The type strain of A. saccharolyticus sp. nov. is CBS 127449(T) (=IBT 28509(T)).
Related JoVE Video
Distribution of sterigmatocystin in filamentous fungi.
Fungal Biol
PUBLISHED: 01-28-2011
Show Abstract
Hide Abstract
During the last 50y, the carcinogenic mycotoxin sterigmatocystin (ST) has been reported in several phylogenetically and phenotypically different genera: Aschersonia, Aspergillus, Bipolaris, Botryotrichum, Chaetomium, Emericella, Eurotium, Farrowia, Fusarium, Humicola, Moelleriella, Monocillium and Podospora. We have reexamined all available strains of the original producers, in addition to ex type and further strains of each species reported to produce ST and the biosynthetically derived aflatoxins. We also screened strains of all available species in Penicillium and Aspergillus for ST and aflatoxin. Six new ST producing fungi were discovered: Aspergillus asperescens, Aspergillus aureolatus, Aspergillus eburneocremeus, Aspergillus protuberus, Aspergillus tardus, and Penicillium inflatum and one new aflatoxin producer: Aspergillus togoensis (=Stilbothamnium togoense). ST was confirmed in 23 Emericella, four Aspergillus, five Chaetomium, one Botryotrichum and one Humicola species grown on a selection of secondary metabolite inducing media, and using multiple detection methods: HPLC-UV/Vis DAD, - HRMS and - MS/MS. The immediate precursor for aflatoxin, O-methylsterigmatocystin was found in Chaetomium cellulolyticum, Chaetomium longicolleum, Chaetomium malaysiense and Chaetomium virescens, but aflatoxin was not detected from any Chaetomium species. In all 55 species, representing more than 11 clades throughout the Pezizomycotina, can be reliably claimed to be ST producers and 13 of these can also produce aflatoxins. It is not known yet whether the ST/aflatoxin pathway has been developed independently 11 times, or is the result of partial horizontal gene transfer.
Related JoVE Video
High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris.
Appl. Microbiol. Biotechnol.
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
Hydrophobins are small fungal proteins with amphipatic properties and the ability to self-assemble on a hydrophobic/hydrophilic interface; thus, many technical applications for hydrophobins have been suggested. The pathogenic fungus Aspergillus fumigatus expresses the hydrophobins RodA and RodB on the surface of its conidia. RodA is known to be of importance to the pathogenesis of the fungus, while the biological role of RodB is currently unknown. Here, we report the successful expression of both hydrophobins in Pichia pastoris and present fed-batch fermentation yields of 200-300 mg/l fermentation broth. Protein bands of expected sizes were detected by SDS-PAGE and western blotting, and the identity was further confirmed by tandem mass spectrometry. Both proteins were purified using his-affinity chromatography, and the high level of purity was verified by silver-stained SDS-PAGE. Recombinant RodA as well as rRodB were able to convert a glass surface from hydrophilic to hydrophobic similar to native RodA, but only rRodB was able to decrease the hydrophobicity of a Teflon-like surface to the same extent as native RodA, while rRodA showed this ability to a lesser extent. Recombinant RodA and native RodA showed a similar ability to emulsify air in water, while recombinant RodB could also emulsify oil in water better than the control protein bovine serum albumin (BSA). This is to our knowledge the first successful expression of hydrophobins from A. fumigatus in a eukaryote host, which makes it possible to further characterize both hydrophobins. Furthermore, the expression strategy and fed-batch production using P. pastoris may be transferred to hydrophobins from other species.
Related JoVE Video
Aspergillus niger contains the cryptic phylogenetic species A. awamori.
Fungal Biol
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Aspergillus section Nigri is an important group of species for food and medical mycology, and biotechnology. The Aspergillus niger aggregate represents its most complicated taxonomic subgroup containing eight morphologically indistinguishable taxa: A. niger, Aspergillus tubingensis, Aspergillus acidus, Aspergillus brasiliensis, Aspergillus costaricaensis, Aspergillus lacticoffeatus, Aspergillus piperis, and Aspergillus vadensis. Aspergillus awamori, first described by Nakazawa, has been compared taxonomically with other black aspergilli and recently it has been treated as a synonym of A. niger. Phylogenetic analyses of sequences generated from portions of three genes coding for the proteins ?-tubulin (benA), calmodulin (CaM), and the translation elongation factor-1 alpha (TEF-1?) of a population of A. niger strains isolated from grapes in Europe revealed the presence of a cryptic phylogenetic species within this population, A. awamori. Morphological, physiological, ecological and chemical data overlap occurred between A. niger and the cryptic A. awamori, however the splitting of these two species was also supported by AFLP analysis of the full genome. Isolates in both phylospecies can produce the mycotoxins ochratoxin A and fumonisin B?, and they also share the production of pyranonigrin A, tensidol B, funalenone, malformins, and naphtho-?-pyrones. In addition, sequence analysis of four putative A. awamori strains from Japan, used in the koji industrial fermentation, revealed that none of these strains belong to the A. awamori phylospecies.
Related JoVE Video
The molecular and genetic basis of conidial pigmentation in Aspergillus niger.
Fungal Genet. Biol.
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
A characteristic hallmark of Aspergillus niger is the formation of black conidiospores. We have identified four loci involved in spore pigmentation of A. niger by using a combined genomic and classical complementation approach. First, we characterized a newly isolated color mutant, colA, which lacked pigmentation resulting in white or colorless conidia. Pigmentation of the colA mutant was restored by a gene (An12g03950) which encodes a putative 4phosphopantetheinyl transferase protein (PptA). 4Phosphopantetheinyl transferase activity is required for the activation of Polyketide Synthases (PKSs) and/or Non-Ribosomal Peptide Synthases (NRPSs). The loci whose mutation resulted in fawn, olive, and brown color phenotypes were identified by complementation. The fawn phenotype was complemented by a PKS protein (FwnA, An09g05730), the ovlA mutant by An14g05350 (OlvA) and the brnA mutant by An14g05370 (BrnA), the respective homologs of alb1/pksP, ayg1 and abr1 in A. fumigatus. Targeted disruption of the pptA, fwnA, olvA and brnA genes confirmed the complementation results. Disruption of the pptA gene abolished synthesis of all polyketides and non-ribosomal peptides, while the naphtho-?-pyrone subclass of polyketides were specifically dependent on fwnA, and funalenone on fwnA, olvA and brnA. Thus, secondary metabolite profiling of the color mutants revealed a close relationship between polyketide synthesis and conidial pigmentation in A. niger.
Related JoVE Video
Aspergillus sect. Aeni sect. nov., a new section of the genus for A.karnatakaensis sp. nov. and some allied fungi.
IMA Fungus
PUBLISHED: 11-08-2010
Show Abstract
Hide Abstract
The new species Aspergilluskarnatakaensis sp. nov. is described and illustrated. All three isolates of this species were isolated from Indian soil; two from soil under a coconut palm in a coffee plantation in Karnataka, and one from soil in the Machrar river bed in Bansa district. This species is closely related to, but clearly distinct, from A. aeneus based on ?-tubulin or calmodulin sequence data. Sequences of the ITS region of these two species are identical. Aspergillus karnatakaensis produced terrein, gregatins, asteltoxin, karnatakafurans A and B and the unknown metabolite, provisionally named NIDU. Aspergillus karnatakaensis belongs to a well-defined clade within Aspergillus subgenus Nidulantes together with eight other species including A. aeneus, A. crustosus, A. eburneocremeus, A. heyangensis, and the teleomorph producing-species Emericella bicolor, E. discophora, E. spectabilis, and E. foeniculicola. This clade is placed in a new section, Aspergillus sect. Aenei sect. nov. All teleomorph species assigned to this section are able to produce sterigmatocystin.
Related JoVE Video
Polyphasic taxonomy of Aspergillus section Sparsi.
IMA Fungus
PUBLISHED: 11-04-2010
Show Abstract
Hide Abstract
Aspergillus section Sparsi includes species which have large globose conidial heads with colours ranging from light grey to olive-buff. In this study, we examined isolates of species tentatively assigned to section Sparsi using a polyphasic approach. The characters examined include sequence analysis of partial ?-tubulin, calmodulin and ITS sequences of the isolates, morphological and physiological tests, and examination of the extrolite profiles. Our data indicate that the revised section Sparsi includes 10 species: A. anthodesmis, A. biplanus, A. conjunctus, A. diversus, A. funiculosus, A. implicatus, A. panamensis, A. quitensis, A. sparsus, and the new taxon A. haitiensis. The recently described A. quitensis and A. ecuadorensis are synonyms of A. amazonicus based on both molecular and physiological data. The white-spored species A. implicatus has also been found to belong to this section. Aspergillus haitiensis sp. nov. is characterised by whitish colonies becoming reddish brown due to the production of conidial heads, and dark coloured smooth stipes. The taxon produces gregatins, siderin and several unknown but characteristic metabolites.
Related JoVE Video
Sex in Penicillium series Roqueforti.
IMA Fungus
PUBLISHED: 10-28-2010
Show Abstract
Hide Abstract
Various fungi were isolated during the course of a survey in a cold-store of apples in the Netherlands. One of these fungi belongs to the genus Penicillium and produces cleistothecia at 9 and 15 °C. A detailed study using a combination of phenotypic characters, sequences and extrolite patterns showed that these isolates belong to a new species within the series Roqueforti. The formation of cleistothecia at low temperatures and the inability to produce roquefortine C, together with a unique phylogenetic placement, make these isolates a novel entity in the Roqueforti series. The name Penicillium psychrosexualis sp. nov. (CBS 128137(T)) is proposed here for these isolates.
Related JoVE Video
Hydrophobins from Aspergillus species cannot be clearly divided into two classes.
BMC Res Notes
PUBLISHED: 08-16-2010
Show Abstract
Hide Abstract
Hydrophobins are a family of small secreted proteins with a characteristic pattern of eight cysteine residues found exclusively in filamentous fungi. They have originally been divided into two classes based on their physical properties and hydropathy patterns, and are involved in the attachment of hyphae to hydrophobic structures, the formation of aerial structures and appear to be involved in pathogenicity.
Related JoVE Video
Penicillium araracuarense sp. nov., Penicillium elleniae sp. nov., Penicillium penarojense sp. nov., Penicillium vanderhammenii sp. nov. and Penicillium wotroi sp. nov., isolated from leaf litter.
Int. J. Syst. Evol. Microbiol.
PUBLISHED: 07-16-2010
Show Abstract
Hide Abstract
Several species of the genus Penicillium were isolated during a survey of the mycobiota of leaf litter and soil in Colombian Amazon forest. Five species, Penicillium penarojense sp. nov. (type strain CBS 113178(T)?=?IBT 23262(T)), Penicillium wotroi sp. nov. (type strain CBS 118171(T)?=?IBT 23253(T)), Penicillium araracuarense sp. nov. (type strain CBS 113149(T)?=?IBT 23247(T)), Penicillium elleniae sp. nov. (type strain CBS 118135(T)?=?IBT 23229(T)) and Penicillium vanderhammenii sp. nov. (type strain CBS 126216(T)?=?IBT 23203(T)) are described here as novel species. Their taxonomic novelty was determined using a polyphasic approach, combining phenotypic, molecular (ITS and partial ?-tubulin sequences) and extrolite data. Phylogenetic analyses showed that each novel species formed a unique clade for both loci analysed and that they were most closely related to Penicillium simplicissimum, Penicillium janthinellum, Penicillium daleae and Penicillium brasilianum. An overview of the phylogeny of this taxonomically difficult group is presented, and 33 species are accepted. Each of the five novel species had a unique extrolite profile of known and uncharacterized metabolites and various compounds, such as penicillic acid, andrastin A, pulvilloric acid, paxillin, paspaline and janthitrem, were commonly produced by these phylogenetically related species. The novel species had a high growth rate on agar media, but could be distinguished from each other by several macro- and microscopical characteristics.
Related JoVE Video
Combining substrate specificity analysis with support vector classifiers reveals feruloyl esterase as a phylogenetically informative protein group.
PLoS ONE
PUBLISHED: 06-08-2010
Show Abstract
Hide Abstract
Our understanding of how fungi evolved to develop a variety of ecological niches, is limited but of fundamental biological importance. Specifically, the evolution of enzymes affects how well species can adapt to new environmental conditions. Feruloyl esterases (FAEs) are enzymes able to hydrolyze the ester bonds linking ferulic acid to plant cell wall polysaccharides. The diversity of substrate specificities found in the FAE family shows that this family is old enough to have experienced the emergence and loss of many activities.
Related JoVE Video
The mycobiota of three dry-cured meat products from Slovenia.
Food Microbiol.
PUBLISHED: 04-18-2010
Show Abstract
Hide Abstract
The surface mycobiota of three types of Slovenian dry-cured meat products were isolated from a total of 75 items of product that were sampled periodically during the drying/ripening stage of processing. The predominant filamentous fungal genus isolated was Penicillium. Eurotium spp., Aspergillus versicolor and Cladosporium spp. were isolated from only two of the products. Eight Penicillium species were identified. Penicillium nordicum was recovered frequently. Penicillium nalgiovense was recovered less frequently, from one product only (a salami), while a yet-to-be described species Penicillium "milanense" was isolated from 21 items. The other penicillia were rarely isolated. Of the isolated and identified species, those that can produce mycotoxins are: A. versicolor, Penicillium brevicompactum, Penicillium chrysogenum, P. nordicum, and Penicillium polonicum. Their growth on dry-cured meat products is undesirable.
Related JoVE Video
Metabolomics of Aspergillus fumigatus.
Med. Mycol.
PUBLISHED: 07-28-2009
Show Abstract
Hide Abstract
Aspergillus fumigatus is the most important species in Aspergillus causing infective lung diseases. This species has been reported to produce a large number of extrolites, including secondary metabolites, acids, and proteins such as hydrophobins and extracellular enzymes. At least 226 potentially bioactive secondary metabolites have been reported from A. fumigatus that can be ordered into 24 biosynthetic families. Of these families we have detected representatives from the following families of secondary metabolites: fumigatins, fumigaclavines, fumiquinazolines, trypacidin and monomethylsulochrin, fumagillins, gliotoxins, pseurotins, chloroanthraquinones, fumitremorgins, verruculogen, helvolic acids, and pyripyropenes by HPLC with diode array detection and mass spectrometric detection. There is still doubt whether A. fumigatus can produce tryptoquivalins, but all isolates produce the related fumiquinazolines. We also tentatively detected sphingofungins in A. fumigatus Af293 and in an isolate of A. lentulus. The sphingofungins may have a similar role as the toxic fumonisins, found in A. niger. A further number of mycotoxins, including ochratoxin A, and other secondary metabolites have been reported from A. fumigatus, but in those cases either the fungus or its metabolite appear to be misidentified.
Related JoVE Video
Proteome analysis of Aspergillus niger: lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism.
BMC Microbiol.
PUBLISHED: 05-17-2009
Show Abstract
Hide Abstract
Aspergillus niger is a filamentous fungus found in the environment, on foods and feeds and is used as host for production of organic acids, enzymes and proteins. The mycotoxin fumonisin B2 was recently found to be produced by A. niger and hence very little is known about production and regulation of this metabolite. Proteome analysis was used with the purpose to reveal how fumonisin B2 production by A. niger is influenced by starch and lactate in the medium.
Related JoVE Video
Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities.
Mycol. Res.
PUBLISHED: 05-08-2009
Show Abstract
Hide Abstract
As part of studies of metabolites from fungi common in the built environment in Canadian homes, we investigated metabolites from strains of three Eurotium species, namely E. herbariorum, E. amstelodami, and E. rubrum as well as a number of isolates provisionally identified as Aspergillus ustus. The latter have been recently assigned as the new species A. insuetus and A. calidoustus. E. amstelodami produced neoechinulin A and neoechinulin B, epiheveadride, flavoglaucin, auroglaucin, and isotetrahydroauroglaucin as major metabolites. Minor metabolites included echinulin, preechinulin and neoechinulin E. E. rubrum produced all of these metabolites, but epiheveadride was detected as a minor metabolite. E. herbariorum produced cladosporin as a major metabolite, in addition to those found in E. amstelodami. This species also produced questin and neoechinulin E as minor metabolites. This is the first report of epiheveadride occurring as a natural product, and the first nonadride isolated from Eurotium species. Unlike strains from mainly infection-related samples, largely from Europe, neither ophiobolins G and H nor austins were detected in the Canadian strains of A. insuetus and A. calidoustus tested, all of which had been reported from the latter species. TMC-120 A, B, C and a sesquiterpene drimane are reported with certainty for the first time from indoor isolates, as well as two novel related methyl isoquinoline alkaloids.
Related JoVE Video
Review of secondary metabolites and mycotoxins from the Aspergillus niger group.
Anal Bioanal Chem
PUBLISHED: 05-07-2009
Show Abstract
Hide Abstract
Filamentous fungi in the Aspergillus section Nigri (the black aspergilli) represent some of the most widespread food and feed contaminants known but they are also some of the most important workhorses used by the biotechnological industry. The Nigri section consists of six commonly found species (excluding A. aculeatus and its close relatives) from which currently 145 different secondary metabolites have been isolated and/or detected. From a human and animal safety point of view, the mycotoxins ochratoxin A (from A. carbonarius and less frequently A. niger) and fumonisin B(2) (from A. niger) are currently the most problematic compounds. Especially in foods and feeds such as coffee, nuts, dried fruits, and grape-based products where fumonisin-producing fusaria are not a problem, fumonisins pose a risk. Moreover, compounds such as malformins, naptho-gamma-pyrones, and bicoumarins (kotanins) call for monitoring in food, feed, and biotechnology products as well as for a better toxicological evaluation, since they are often produced in large amounts by the black aspergilli. For chemical differentiation/identification of the less toxic species the diketopiperazine asperazine can be used as a positive marker since it is consistently produced by A. tubingensis (177 of 177 strains tested) and A. acidus (47 of 47 strains tested) but never by A. niger (140 strains tested). Naptho-gamma-pyrones are the compounds produced in the highest quantities and are produced by all six common species in the group (A. niger 134 of 140; A. tubingensis 169 of 177; A. acidus 44 of 47; A. carbonarius 40 of 40, A. brasiliensis 18 of 18; and A. ibericus three of three).
Related JoVE Video
Aspergillus alabamensis, a new clinically relevant species in the section Terrei.
Eukaryotic Cell
PUBLISHED: 03-20-2009
Show Abstract
Hide Abstract
Phylogenetic analyses of sequences generated from portions of three genes coding for the proteins enolase (enoA), beta-tubulin (benA), and calmodulin (calM) of a large number of isolates within the section Terrei, genus Aspergillus, revealed the presence of a new cryptic species within this section, Aspergillus alabamensis. Most members of this new cryptic species were recovered as colonizing isolates from immunocompetent patient populations, had decreased in vitro susceptibilities to the antifungal drug amphotericin B, and were morphologically similar to but genetically distinct from Aspergillus terreus isolates.
Related JoVE Video
Fingerprinting using extrolite profiles and physiological data shows sub-specific groupings of Penicillium crustosum strains.
Mycol. Res.
PUBLISHED: 03-07-2009
Show Abstract
Hide Abstract
Fingerprinting of Penicillium crustosum strains was performed using different phenotypic characteristics. Seven strains of this extremely homogenous species were selected; of these, five originated from geographical locations characterized by low temperatures, and one from a location with a low water activity. Principal component analysis (PCA) was performed using micromorphological data, temperature- and water-dependent growth rates, and extrolite profiles obtained by HPLC analysis. The micromorphological data were less informative, while the growth-rate data were informative only if the strains investigated already showed slight adaptations to the selected external parameter. In contrast, PCA analyses of the extrolite data showed groupings of the strains according to their origins and known physiological differences. These groupings are in full agreement with the clustering obtained by previous amplified fragment length polymorphism (AFLP) study. We thus demonstrate here for the first time that combined qualitative and quantitative extrolite profiles can be used as a tool for phenotypic fingerprinting, to complement, or replace, molecular fingerprinting techniques.
Related JoVE Video
Effect of competition on the production and activity of secondary metabolites in Aspergillus species.
Med. Mycol.
PUBLISHED: 02-28-2009
Show Abstract
Hide Abstract
Secondary metabolites are of intense interest to humans due to their pharmaceutical and/or toxic properties. Also, these metabolites are clinically relevant because of their importance in fungal pathogenesis. Aspergillus species secrete secondary metabolites when grown individually and in the presence of other fungal species. However, it is not known whether secreted secondary metabolites provide a competitive advantage over other fungal species, or whether competition has any effect on the production of those metabolites. Here, we have performed co-cultivation competition assays among different species of Aspergillus to determine relative species fitness in culture, and to analyze the presence of possible antifungal activity of secondary metabolites in extracts. The results show that, for the most part, at 30 degrees C only one species is able to survive direct competition with a second species. In contrast, survival of both competitors was often observed at 37 degrees C. Consistent with these observations, antifungal activity of extracts from cultures grown at 30 degrees C was greater than that of extract from cultures at 37 degrees C. Interestingly, culture extracts from all species studied had some degree of antifungal activity, but in general, the extracts had greater antifungal activity when species were grown in the presence of a competitor. Using gas chromatography it was determined that the composition of extracts changed due to competition and a shift in temperature. These findings indicate that co-cultivation could be a very promising method for inducing and characterizing novel antifungal compounds produced by species of Aspergillus.
Related JoVE Video
Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale.
Microb. Cell Fact.
PUBLISHED: 01-22-2009
Show Abstract
Hide Abstract
Colorants derived from natural sources look set to overtake synthetic colorants in market value as manufacturers continue to meet the rising demand for clean label ingredients - particularly in food applications. Many ascomycetous fungi naturally synthesize and secrete pigments and thus provide readily available additional and/or alternative sources of natural colorants that are independent of agro-climatic conditions. With an appropriately selected fungus; using in particular chemotaxonomy as a guide, the fungal natural colorants could be produced in high yields by using the optimized cultivation technology. This approach could secure efficient production of pigments avoiding use of genetic manipulation.
Related JoVE Video
The biodiversity of Aspergillus section Flavi in brazil nuts: from rainforest to consumer.
Int. J. Food Microbiol.
Show Abstract
Hide Abstract
A total of 288 brazil nut samples (173 kernel and 115 shell) from the Amazon rainforest region and São Paulo State, Brazil were collected at different stages of brazil nut production. Samples were analysed for: percentages of aflatoxigenic fungal species and potential for aflatoxin production and presence of aflatoxins. Aspergillus nomius was the most common species found (1235 isolates) which amounted to 30% of the total species with potential to produce aflatoxins. This species is of concern since 100% of all isolates produced aflatoxins B(1), B(2), G(1) and G(2). Aspergillus flavus was almost equally common (1212 isolates) although only 46% produced aflatoxins under laboratory conditions, and only aflatoxins B(1) and B(2). Low number of other species with the potential to produce aflatoxins was isolated: Aspergillus arachidicola and Aspergillus bombycis produced B and G aflatoxins whilst Aspergillus pseudotamarii produced only aflatoxin B(1). The total aflatoxin levels found in samples taken from the rainforests was 0.7 ?g/kg, from processing plants before and after sorting 8.0 and 0.1 ?g/kg respectively, from street markets in the Amazon region 6.3 ?g/kg and from supermarkets in São Paulo State 0.2 ?g/kg. Processing, which included manual or mechanical sorting and drying at 60°C for 30 to 36 h, eliminated on average more than 98% of total aflatoxins. These results showed that sorting is a very effective way to decrease aflatoxin content in brazil nuts.
Related JoVE Video
Two new Penicillium species Penicillium buchwaldii and Penicillium spathulatum, producing the anticancer compound asperphenamate.
FEMS Microbiol. Lett.
Show Abstract
Hide Abstract
Penicillium buchwaldii sp. nov. (type strain CBS 117181(T)  = IBT 6005(T)  = IMI 30428(T) ) and Penicillium spathulatum sp. nov. (CBS 117192(T)  = IBT 22220(T) ) are described as new species based on a polyphasic taxonomic approach. Isolates of P. buchwaldii typically have terverticillate conidiophores with echinulate thick-walled conidia and produce the extrolites asperphenamate, citreoisocoumarin, communesin A and B, asperentin and 5-hydroxy-asperentin. Penicillium spathulatum is unique in having restricted colonies on Czapek yeast agar (CYA) with an olive grey reverse, good growth on CYA supplemented with 5% NaCl, terverticillate bi- and ter-ramulate conidiophores and consistently produces the extrolites benzomalvin A and D and asperphenamate. The two new species belong to Penicillium section Brevicompacta and are phylogenetically closely related to Penicillium tularense. With exception of Penicillium fennelliae, asperphenamate is also produced by all other species in section Brevicompacta (P. tularense, Penicillium brevicompactum, Penicillium bialowiezense, Penicillium olsonii, Penicillium astrolabium and Penicillium neocrassum). Both new species have a worldwide distribution. The new species were mainly isolated from indoor environments and food and feedstuffs. The fact that asperphenamate has been found in many widely different plants may indicate that endophytic fungi rather than the plants are the actual producers.
Related JoVE Video
Aspergillus waksmanii sp. nov. and Aspergillus marvanovae sp. nov., two closely related species in section Fumigati.
Int. J. Syst. Evol. Microbiol.
Show Abstract
Hide Abstract
Two new and phylogenetically closely related species in Aspergillus section Fumigati are described and illustrated. Homothallic Aspergillus waksmanii sp. nov. was isolated from New Jersey soil (USA) and is represented by the ex-type isolate NRRL 179(T) (?=?CCF 4266(T)?=?Thom 4138.HS2(T)?=?IBT 31900(T)). Aspergillus marvanovae sp. nov. was isolated from water with high boracic acid anions content in Dukovany nuclear power station (Czech Republic). The sexual stage of this species is unknown, but the MAT1-1 locus was successfully amplified suggesting that the species is probably heterothallic and teleomorphic but is represented by only the ex-type isolate CCM 8003(T) (?=?CCF 4037(T)?=?NRRL 62486(T)?=?IBT 31279(T)?=?IFM 60873(T)). Both species can be distinguished from all previously described species in section Fumigati based on morphology, maximum growth temperature, sequence data from five unlinked loci and unique secondary metabolites profiles.
Related JoVE Video
Media and growth conditions for induction of secondary metabolite production.
Methods Mol. Biol.
Show Abstract
Hide Abstract
Growth media and incubation conditions have a very strong influence of secondary metabolite production. There is no consensus on which media are the optimal for metabolite production, but a series of useful and effective media and incubation conditions have been listed here. Chemically well-defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity as agar plug samples are easily analyzed to get an optimal representation of the qualitative secondary metabolome. Standard incubation for a week at 25°C in darkness is recommended, but optimal conditions have to be modified depending on the ecology and physiology of different filamentous fungi.
Related JoVE Video
Patulin and secondary metabolite production by marine-derived Penicillium strains.
Fungal Biol
Show Abstract
Hide Abstract
Genus Penicillium represents an important fungal group regarding to its mycotoxin production. Secondary metabolomes of eight marine-derived strains belonging to subgenera Furcatum and Penicillium were investigated using dereplication by liquid chromatography (LC)-Diode Array Detector (DAD)-mass spectrometry (MS)/MS. Each strain was grown on six different culture media to enhance the number of observable metabolites. Thirty-two secondary metabolites were detected in crude extracts with twenty first observations for studied species. Patulin, a major mycotoxin, was classically detected in extracts of Penicillium expansum, and was also isolated from Penicillium antarcticum cultures, whose secondary metabolome is still to be done. These detections constituted the first descriptions of patulin in marine strains of Penicillium, highlighting the risk for shellfish and their consumers due to the presence of these fungi in shellfish farming areas. Patulin induced acute neurotoxicity on Diptera larvae, indicating the interest of this bioassay as an additional tool for detection of this major mycotoxin in crude extracts.
Related JoVE Video
Aspergillus bertholletius sp. nov. from Brazil nuts.
PLoS ONE
Show Abstract
Hide Abstract
During a study on the mycobiota of brazil nuts (Bertholletia excelsa) in Brazil, a new Aspergillus species, A. bertholletius, was found, and is described here. A polyphasic approach was applied using morphological characters, extrolite data as well as partial ?-tubulin, calmodulin and ITS sequences to characterize this taxon. A. bertholletius is represented by nineteen isolates from samples of brazil nuts at various stages of production and soil close to Bertholletia excelsa trees. The following extrolites were produced by this species: aflavinin, cyclopiazonic acid, kojic acid, tenuazonic acid and ustilaginoidin C. Phylogenetic analysis using partial ?-tubulin and camodulin gene sequences showed that A. bertholletius represents a new phylogenetic clade in Aspergillus section Flavi. The type strain of A. bertholletius is CCT 7615 (?=?ITAL 270/06?=?IBT 29228).
Related JoVE Video
Fungal origins of the bicyclo[2.2.2]diazaoctane ring system of prenylated indole alkaloids.
J. Nat. Prod.
Show Abstract
Hide Abstract
Over eight different families of natural products consisting of nearly 70 secondary metabolites that contain the bicyclo[2.2.2]diazaoctane ring system have been isolated from various Aspergillus, Penicillium, and Malbranchea species. Since 1968, these secondary metabolites have been the focus of numerous biogenetic, synthetic, taxonomic, and biological studies and, as such, have made a lasting impact across multiple scientific disciplines. This review covers the isolation, biosynthesis, and biological activity of these unique secondary metabolites containing the bridging bicyclo[2.2.2]diazaoctane ring system. Furthermore, the diverse fungal origin of these natural products is closely examined and, in many cases, updated to reflect the currently accepted fungal taxonomy.
Related JoVE Video
The effect of cocoa fermentation and weak organic acids on growth and ochratoxin A production by Aspergillus species.
Int. J. Food Microbiol.
Show Abstract
Hide Abstract
The acidic characteristics of cocoa beans have influence on flavor development in chocolate. Cocoa cotyledons are not naturally acidic, the acidity comes from organic acids produced by the fermentative microorganisms which grow during the processing of cocoa. Different concentrations of these metabolites can be produced according to the fermentation practices adopted in the farms, which could affect the growth and ochratoxin A production by fungi. This work presents two independent experiments carried out to investigate the effect of some fermentation practices on ochratoxin A production by Aspergillus carbonarius in cocoa, and the effect of weak organic acids such as acetic, lactic and citric at different pH values on growth and ochratoxin A production by A. carbonarius and Aspergillus niger in culture media. A statistical difference (?<0.05) in the ochratoxin A level in the cured cocoa beans was observed in some fermentation practices adopted. The laboratorial studies demonstrate the influence of organic acids on fungal growth and ochratoxin A production, with differences according to the media pH and the organic acid present. Acetic acid was the most inhibitory acid against A. carbonarius and A. niger. From the point of view of food safety, considering the amount of ochratoxin A produced, fermentation practices should be conducted towards the enhancement of acetic acid, although lactic and citric acids also have an important role in lowering the pH to improve the toxicity of acetic acid.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.