JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genotyping of Burkholderia mallei from an outbreak of glanders in Bahrain suggests multiple introduction events.
PLoS Negl Trop Dis
PUBLISHED: 09-01-2014
Show Abstract
Hide Abstract
Glanders, caused by the gram-negative bacterium Burkholderia mallei, is a highly infectious zoonotic disease of solipeds causing severe disease in animals and men. Although eradicated from many Western countries, it recently emerged in Asia, the Middle-East, Africa, and South America. Due to its rareness, little is known about outbreak dynamics of the disease and its epidemiology.
Related JoVE Video
Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4.
J. Virol.
PUBLISHED: 06-04-2014
Show Abstract
Hide Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and ferret cells enabled MERS-CoV replication, whereas expression of hamster or ferret DPP4 did not. Modeling the binding energies of MERS-CoV spike protein RBD to DPP4 of human (susceptible) or hamster (nonsusceptible) identified five amino acid residues involved in the DPP4-RBD interaction. Expression of hamster DPP4 containing the five human DPP4 amino acids rendered BHK cells susceptible to MERS-CoV, whereas expression of human DPP4 containing the five hamster DPP4 amino acids did not. Using the same approach, the potential of MERS-CoV to utilize the DPP4s of common Middle Eastern livestock was investigated. Modeling of the DPP4 and MERS-CoV RBD interaction predicted the ability of MERS-CoV to bind the DPP4s of camel, goat, cow, and sheep. Expression of the DPP4s of these species on BHK cells supported MERS-CoV replication. This suggests, together with the abundant DPP4 presence in the respiratory tract, that these species might be able to function as a MERS-CoV intermediate reservoir.
Related JoVE Video
Serum amyloid A as an indicator of health status in falcons.
J. Avian Med. Surg.
PUBLISHED: 08-27-2013
Show Abstract
Hide Abstract
Serum amyloid A (SAA) is used as an indicator of health status in many species. To investigate the possible use of SAA as a health indicator in falcons, SAA levels were measured in 259 falcons of varying species and health status. A significant increase (P < .001) in SAA concentrations was observed in falcons affected by inflammatory disease compared with healthy birds and birds with noninflammatory disease. Serum amyloid A concentrations ranged from 0.1 to 6.8 mg/L (mean [SD], 3.4 +/- 1.4 mg/L) in the healthy group, from 0.8 to 8.5 mg/L (mean [SD], 4.0 +/- 3.1 mg/L) in the group with noninflammatory disease, and from 2.3 to 137.5 mg/L (mean [SD], 47.7 +/- 29.7 mg/L) in the group with inflammatory disease. In birds with chronic pododermatitis or fungal pneumonia/airsacculitis, SAA levels remained significantly increased throughout the study period. These results indicate that SAA concentrations can be used in avian medicine to assess the health status of falcons and as a prognostic indicator of certain pathologic disease processes.
Related JoVE Video
Opportunistic infection of Aspergillus and bacteria in captive Cape vultures (Gyps coprotheres).
Asian Pac J Trop Biomed
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
To describe clinical signs, pathology, diagnosis and treatment of Cape vultures in which Aspergillus fumigatus (A. fumigatus) and mixed species of bacteria were isolated.
Related JoVE Video
Natural Burkholderia mallei infection in Dromedary, Bahrain.
Emerging Infect. Dis.
PUBLISHED: 07-19-2011
Show Abstract
Hide Abstract
We confirm a natural infection of dromedaries with glanders. Multilocus variable number tandem repeat analysis of a Burkholderia mallei strain isolated from a diseased dromedary in Bahrain revealed close genetic proximity to strain Dubai 7, which caused an outbreak of glanders in horses in the United Arab Emirates in 2004.
Related JoVE Video
The pleural curtain of the camel (Camelus dromedarius).
Anat Rec (Hoboken)
PUBLISHED: 04-22-2010
Show Abstract
Hide Abstract
The visceral pleura of the camel (Camelus dromedarius) possesses a fibrous curtain of pleural threads or extensions along its basal margins, which extends into the pleural cavity of the costophrenic recesses. These threads are lined by mesothelium and have a core or stroma, which is largely collagenous. Small threads are avascular and nearly acellular. In larger proximal threads, blood vessels in the stroma are often arranged in a branching network, with irregular endothelia surrounded by several incomplete basal laminae. Lymphocytes and other inflammatory cell types aggregate in the stroma near blood vessels. The threads are lined by typical mesothelium except in patches close to the main pleural surface. These patches consist of layers of loosely applied cells with numerous cellular processes and features suggestive of phagocytosis. The position of the pleural curtain in the costophrenic recess and the presence of possibly phagocytotic cells suggest that the pleural curtain stirs, samples, and cleans the pleural fluid. The pleural curtain appears to be a feature of camelids and has also been seen in giraffes.
Related JoVE Video
Analysis of camelid IgG for antivenom development: Immunoreactivity and preclinical neutralisation of venom-induced pathology by IgG subclasses, and the effect of heat treatment.
Toxicon
PUBLISHED: 04-07-2010
Show Abstract
Hide Abstract
Antivenom is the most effective treatment of snake envenoming and is manufactured from the IgG of venom-immunised horses and sheep. Camelids have a unique IgG structure which may account for the report that camel IgG is less immunogenic and less likely to activate complement than equine or ovine IgG. Camelid IgG therefore offers potential safety advantages over conventional IgGs used for antivenom manufacture. The reported thermostability of camelid IgG also holds promise in the inclusion of a relatively inexpensive anti-microbial heat step in antivenom manufacture. However, these potential benefits of camelid IgG would be much reduced if any one of the three camel IgG subclasses dominated, or under-performed, the serological response of camels to venom immunisation because of the prohibitive manufacturing costs of having to purify, or exclude, one or more IgG subclasses. This study compared the titre, antigen-specificity, relative avidity and ability to neutralise the haemorrhagic and coagulopathic effects of Echis ocellatus venom of each IgG subclass from the venom-immunised camels. The results demonstrated that no one IgG subclass consistently out-performed or under-performed the others in their immunoreactivity to venom proteins and ability to neutralise venom-induced pathologies. We concluded therefore that IgG taken from a pool of immunised camels could be processed into antivenom without requiring the implementation of expensive chromatographic separations to select, or indeed to exclude, a specific IgG subclass. The immunoreactivity of the heavy and light chain, IgG1 subclass, was markedly more vulnerable to extreme heat treatment than the heavy chain-only IgG2 and IgG3 subclasses.
Related JoVE Video
Analysis of camelid antibodies for antivenom development: Neutralisation of venom-induced pathology.
Toxicon
PUBLISHED: 02-05-2010
Show Abstract
Hide Abstract
Camelid IgG has been reported to be less immunogenic, less able to activate the complement cascade and more thermostable than IgG from other mammals, and has the ability to bind antigens that are unreactive with other mammalian IgGs. We are investigating whether these attributes of camelid IgG translate into antivenom with immunological and venom-neutralising efficacy advantages over conventional equine and ovine antivenoms. The objective of this study was to determine the preclinical venom-neutralising effectiveness of IgG from camels immunised with venoms, individually or in combination, of the saw-scaled viper, Echis ocellatus, the puff adder, Bitis arietans and the spitting cobra, Naja nigricollis - the most medically-important snake species in West Africa. Neutralisation of the pathological effects of venoms from E. ocellatus, B. arietans and N. nigricollis by IgG from the venom-immunised camels, or commercial antivenom, was compared using assays of venom lethality (ED(50)), haemorrhage (MHD) and coagulopathy (MCD). The E. ocellatus venom ED(50), MHD and MCD results of the E. ocellatus monospecific camel IgG antivenom were broadly equivalent to comparable ovine (EchiTAbG, MicroPharm Ltd, Wales) and equine (SAIMR Echis, South African Vaccine Producer, South Africa) antivenoms, although the equine antivenom required half the amount of IgG. The B. arietans monospecific camel IgG neutralised the lethal effects of B. arietans venom at one fourth the concentration of the SAIMR polyspecific antivenom (a monospecific B. arietans antivenom is not available). The N. nigricollis camel IgG antivenom was ineffective (at the maximum permitted dose, 100 mul) against the lethal effects of N. nigricollis venom. All the equine polyspecific antivenoms required more than 100 microl to be effective against this venom. The polyspecific camel IgG antivenom, prepared from five camels, was effective against the venom-induced effects of E. ocellatus but not against that of B. arietans and N. nigricollis venoms. No direct correlation was evident between either camel IgG relative avidity or titre and the effectiveness of venom neutralisation in preclinical assays.
Related JoVE Video
Analysis of camelid IgG for antivenom development: Serological responses of venom-immunised camels to prepare either monospecific or polyspecific antivenoms for West Africa.
Toxicon
PUBLISHED: 02-05-2010
Show Abstract
Hide Abstract
Snake envenoming is a significant cause of mortality and morbidity in sub-Saharan Africa. The only effective treatment, antivenom, has been in short supply since the 1990s. Whilst the humanitarian response by some antivenom producers has significantly improved the situation, strategies to ensure the long term stability of antivenom supply are still necessary. We are investigating whether the potential safety and logistic advantages of camel IgG antivenom can be exploited to improve antivenom provision in many countries where snakebite is endemic. This study assessed the IgG titre, specificity and avidity of camels immunised with either individual venom or a mixture of venoms from the three most medically important snakes of West Africa, the saw-scale viper (Echis ocellatus), the puff adder (Bitis arietans) and the spitting cobra (Naja nigricollis). Seven of the eight immunised camels generated IgG titres and avidities comparable to, or exceeding, that of commercial equine and ovine antivenoms that are highly effective in envenomed patients. In this, the first of a series of reports on the potential utility of camelid IgG antivenom, we describe an immunisation protocol that induced potent, sustained serological response of very high antibody avidity. These attributes suggest, from an immunological perspective, that camel IgG antivenoms should be as efficacious as current equine and ovine antivenoms.
Related JoVE Video
Increasing fatal AA amyloidosis in hunting falcons and how to identify the risk: a report from the United Arab Emirates.
Amyloid
PUBLISHED: 08-07-2009
Show Abstract
Hide Abstract
In hunting falcons, a fatal syndrome of wasting, weight loss, green mutes and, finally, sudden death of emaciated birds has been observed in the United Arab Emirates (UAE). Histological examination using Congo red has revealed amyloid in most organs, in particular in the liver, spleen, kidney, and adrenal glands. Moreover, a retrospective study revealed amyloidosis in 100 cases among a total of 623 necropsied falcons between August 1995 and March 2004 in Dubai/UAE (16%; varying from 8 to 30% in different raptor bird species). The amyloid was immunohistochemically classified as amyloid A (AA), which was confirmed by Western blot analysis and N-terminal amino acid sequence analysis, suggesting it to be secondary to a chronic inflammatory process. Retrospective analysis has indicated a significantly increased prevalence of bumble foot and visceral gout among falcons with amyloidosis. In addition, a significant increase of amyloidosis from 5.6% of necropsied falcons with amyloidosis in 1995 to 40.0% in 2004 has been noticed. Finally, a semi-quantitative serum test for falcon serum amyloid A (f-SAA) has been developed. Among 38 falcons with fatal AA amyloidosis, f-SAA was increased pathologically in 36, whereas f-SAA was elevated in only one of 15 apparently disease-free falcons (p < 0.001). This significant result indicates that a normal f-SAA will indicate a minimal or even absent risk of succumbing to AA amyloidosis.
Related JoVE Video
Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase.
Protein Sci.
PUBLISHED: 02-26-2009
Show Abstract
Hide Abstract
Nitric Oxide Reductase (NOR) is an integral membrane protein performing the reduction of NO to N(2)O. NOR is composed of two subunits: the large one (NorB) is a bundle of 12 transmembrane helices (TMH). It contains a b type heme and a binuclear iron site, which is believed to be the catalytic site, comprising a heme b and a non-hemic iron. The small subunit (NorC) harbors a cytochrome c and is attached to the membrane through a unique TMH. With the aim to perform structural and functional studies of NOR, we have immunized dromedaries with NOR and produced several antibody fragments of the heavy chain (VHHs, also known as nanobodies). These fragments have been used to develop a faster NOR purification procedure, to proceed to crystallization assays and to analyze the electron transfer of electron donors. BIAcore experiments have revealed that up to three VHHs can bind concomitantly to NOR with affinities in the nanomolar range. This is the first example of the use of VHHs with an integral membrane protein. Our results indicate that VHHs are able to recognize with high affinity distinct epitopes on this class of proteins, and can be used as versatile and valuable tool for purification, functional study and crystallization of integral membrane proteins.
Related JoVE Video
A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional Nanobodies.
Arch. Biochem. Biophys.
Show Abstract
Hide Abstract
Camel single-domain antibody fragments or Nanobodies, are practical in a wide range of applications. Their unique biochemical and biophysical properties permit an intracellular expression and antigen targeting. The availability of an efficient intracellular selection step would immediately identify the best intracellularly performing functional antibody fragments. Therefore, we assessed a bacterial-two-hybrid system to retrieve such Nanobodies. With GFP as an antigen we demonstrate that antigen-specific Nanobodies of sub-micromolar affinity and stability above 30 kJ/mol, at a titer of 10(-4) can be retrieved in a single-step selection. This was further proven practically by the successful recovery from an immune library of multiple stable, antigen-specific Nanobodies of good affinity for HIV-1 integrase or nucleoside hydrolase. The sequence diversity, intrinsic domain stability, antigen-specificity and affinity of these binders compare favorably to those that were retrieved in parallel by phage display pannings.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.