JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis.
Am. J. Hum. Genet.
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.
Related JoVE Video
A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci.
Hum. Mol. Genet.
PUBLISHED: 06-04-2013
Show Abstract
Hide Abstract
Systemic sclerosis (SSc) and systemic lupus erythematosus (SLE) are two archetypal systemic autoimmune diseases which have been shown to share multiple genetic susceptibility loci. In order to gain insight into the genetic basis of these diseases, we performed a pan-meta-analysis of two genome-wide association studies (GWASs) together with a replication stage including additional SSc and SLE cohorts. This increased the sample size to a total of 21,109 (6835 cases and 14,274 controls). We selected for replication 19 SNPs from the GWAS data. We were able to validate KIAA0319L (P = 3.31 × 10(-11), OR = 1.49) as novel susceptibility loci for SSc and SLE. Furthermore, we also determined that the previously described SLE susceptibility loci PXK (P = 3.27 × 10(-11), OR = 1.20) and JAZF1 (P = 1.11 × 10(-8), OR = 1.13) are shared with SSc. Supporting these new discoveries, we observed that KIAA0319L was overexpressed in peripheral blood cells of SSc and SLE patients compared with healthy controls. With these, we add three (KIAA0319L, PXK and JAZF1) and one (KIAA0319L) new susceptibility loci for SSc and SLE, respectively, increasing significantly the knowledge of the genetic basis of autoimmunity.
Related JoVE Video
The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis.
PLoS ONE
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P ?=?1.34×10(-8), OR ?=?1.22, CI 95% ?=?1.14-1.30; rs2004640: P ?=?4.60×10(-7), OR ?=?0.84, CI 95% ?=?0.78-0.90; rs10488631: P ?=?7.53×10(-20), OR ?=?1.63, CI 95% ?=?1.47-1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P ?=?0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P ?=?9.04×10(-22), OR ?=?1.75, CI 95% ?=?1.56-1.97) better explained the observed association (likelihood P-value ?=?1.48×10(-4)), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific.
Related JoVE Video
A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations.
Hum. Mol. Genet.
PUBLISHED: 11-10-2011
Show Abstract
Hide Abstract
A single-nucleotide polymorphism (SNP) at the IL12RB2 locus showed a suggestive association signal in a previously published genome-wide association study (GWAS) in systemic sclerosis (SSc). Aiming to reveal the possible implication of the IL12RB2 gene in SSc, we conducted a follow-up study of this locus in different Caucasian cohorts. We analyzed 10 GWAS-genotyped SNPs in the IL12RB2 region (2309 SSc patients and 5161 controls). We then selected three SNPs (rs3790567, rs3790566 and rs924080) based on their significance level in the GWAS, for follow-up in an independent European cohort comprising 3344 SSc and 3848 controls. The most-associated SNP (rs3790567) was further tested in an independent cohort comprising 597 SSc patients and 1139 controls from the USA. After conditional logistic regression analysis of the GWAS data, we selected rs3790567 [P(MH)= 1.92 × 10(-5) odds ratio (OR) = 1.19] as the genetic variant with the firmest independent association observed in the analyzed GWAS peak of association. After the first follow-up phase, only the association of rs3790567 was consistent (P(MH)= 4.84 × 10(-3) OR = 1.12). The second follow-up phase confirmed this finding (P(?2) = 2.82 × 10(-4) OR = 1.34). After performing overall pooled-analysis of all the cohorts included in the present study, the association found for the rs3790567 SNP in the IL12RB2 gene region reached GWAS-level significant association (P(MH)= 2.82 × 10(-9) OR = 1.17). Our data clearly support the IL12RB2 genetic association with SSc, and suggest a relevant role of the interleukin 12 signaling pathway in SSc pathogenesis.
Related JoVE Video
Evidence for PTPN22 R620W polymorphism as the sole common risk variant for rheumatoid arthritis in the 1p13.2 region.
J. Rheumatol.
PUBLISHED: 10-01-2011
Show Abstract
Hide Abstract
The PTPN22 rs2476601 genetic variant has been associated with rheumatoid arthritis (RA) and other autoimmune diseases. Some reports suggest that this single-nucleotide polymorphism (SNP) may not be the only causal variant in the region of PTPN22. Our aim was to identify new independent RA-associated common gene variants in the PTPN22 region.
Related JoVE Video
Novel association of acid phosphatase locus 1*C allele with systemic lupus erythematosus.
Hum. Immunol.
PUBLISHED: 07-07-2011
Show Abstract
Hide Abstract
The red cell acid phosphatase (ACP1) gene, which encodes a low-molecular-weight phosphotyrosine phosphatase, has been suggested as a common genetic factor of autoimmunity. In the present study, we aim to investigate the possible association of ACP1 with the susceptibility of systemic lupus erythematosus (SLE). A total of 1,546 SLE patients and 1,947 healthy individuals from 4 Caucasians populations were included in the present study. Four single-nucleotide polymorphisms (SNPs) were genotyped in this study: rs10167992, rs11553742, rs7576247, and rs3828329. ACP1*A, ACP1*B, and ACP1*C codominant ACP1 alleles were determined using 2 of the SNPs and analyzed. After the meta-analysis test was performed, a significant association of rs11553742*T was observed (p(pooled) = 0.005, odds ratios = 1.37 [1.10-1.70]), retaining significance after multiple testing was applied (p(FDR) = 0.019). Our data indicate for first time the association of rs11553742*T with increased susceptibility in SLE patients.
Related JoVE Video
Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy.
PLoS Genet.
PUBLISHED: 05-25-2011
Show Abstract
Hide Abstract
The aim of this study was to determine, through a genome-wide association study (GWAS), the genetic components contributing to different clinical sub-phenotypes of systemic sclerosis (SSc). We considered limited (lcSSc) and diffuse (dcSSc) cutaneous involvement, and the relationships with presence of the SSc-specific auto-antibodies, anti-centromere (ACA), and anti-topoisomerase I (ATA). Four GWAS cohorts, comprising 2,296 SSc patients and 5,171 healthy controls, were meta-analyzed looking for associations in the selected subgroups. Eighteen polymorphisms were further tested in nine independent cohorts comprising an additional 3,175 SSc patients and 4,971 controls. Conditional analysis for associated SNPs in the HLA region was performed to explore their independent association in antibody subgroups. Overall analysis showed that non-HLA polymorphism rs11642873 in IRF8 gene to be associated at GWAS level with lcSSc (P?=?2.32×10(-12), OR?=?0.75). Also, rs12540874 in GRB10 gene (P?=?1.27 × 10(-6), OR?=?1.15) and rs11047102 in SOX5 gene (P?=?1.39×10(-7), OR?=?1.36) showed a suggestive association with lcSSc and ACA subgroups respectively. In the HLA region, we observed highly associated allelic combinations in the HLA-DQB1 locus with ACA (P?=?1.79×10(-61), OR?=?2.48), in the HLA-DPA1/B1 loci with ATA (P?=?4.57×10(-76), OR?=?8.84), and in NOTCH4 with ACA P?=?8.84×10(-21), OR?=?0.55) and ATA (P?=?1.14×10(-8), OR?=?0.54). We have identified three new non-HLA genes (IRF8, GRB10, and SOX5) associated with SSc clinical and auto-antibody subgroups. Within the HLA region, HLA-DQB1, HLA-DPA1/B1, and NOTCH4 associations with SSc are likely confined to specific auto-antibodies. These data emphasize the differential genetic components of subphenotypes of SSc.
Related JoVE Video
Association of acid phosphatase locus 1*C allele with the risk of cardiovascular events in rheumatoid arthritis patients.
Arthritis Res. Ther.
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
Acid phosphatase locus 1 (ACP1) encodes a low molecular weight phosphotyrosine phosphatase implicated in a number of different biological functions in the cell. The aim of this study was to determine the contribution of ACP1 polymorphisms to susceptibility to rheumatoid arthritis (RA), as well as the potential contribution of these polymorphisms to the increased risk of cardiovascular disease (CV) observed in RA patients.
Related JoVE Video
Identification of the oxidative stress-related gene MSRA as a rheumatoid arthritis susceptibility locus by genome-wide pathway analysis.
Arthritis Rheum.
PUBLISHED: 07-10-2010
Show Abstract
Hide Abstract
Genome-wide association studies carried out in rheumatoid arthritis (RA) have led to the discovery of several genetic associations with this disease. Still, the current associated genetic variations can explain only part of the genetic risk involved in RA, and it is well recognized that these genome-wide association studies are likely underpowered to detect all common disease variants. This study was undertaken to explore the genomic regions showing low-significance associations in previous genome-wide association studies of RA.
Related JoVE Video
[Genetics in scleroderma].
Reumatol Clin
PUBLISHED: 03-30-2010
Show Abstract
Hide Abstract
Systemic sclerosis or scleroderma (SSc) is an autoimmune pathology with a variable clinical expression grouped within genetically complex diseases, in which environmental and genetical factors combine. Genes of the HLA regions were those first associated with susceptibility to present SSc, mainly the HLA-DRB1?11/?06/?16 allelles. However, through association studies, different candidate genes that belong to the triad of autoimmunity, endothelial disfunction and fibrosis have been proposed as genes implicated in the predisposition to disease. In spite of these initial advances, up until recently most studies have had little statistical power, due to the small number of patients included and the lack of reproduction in independent populations. Recently, the development of genotyping platforms and data analysis has allowed for the application of a new type of strategy known as «genome wide association studies» the analysis of the genetics to complex diseases, which are potent tools in the study of these multifactorial diseases. This paper pretends to perform a review of the recent advances in the study of the genetics of scleroderma, presenting results obtained in the analysis of the main candidate genes outside the HLA regions and the contribution of GWAS to the understanding of the molecular mechanisms of this disease.
Related JoVE Video
Deletion of the late cornified envelope genes, LCE3C and LCE3B, is associated with rheumatoid arthritis.
Arthritis Rheum.
PUBLISHED: 03-10-2010
Show Abstract
Hide Abstract
The risk of rheumatoid arthritis (RA) is increased in the offspring of individuals affected with various autoimmune disorders, including psoriasis. Recently, the deletion of 2 genes from the late cornified envelope (LCE) gene cluster, LCE3C and LCE3B, has been associated with psoriasis in several populations. The purpose of this study was to assess whether this polymorphic gene deletion could also be involved in susceptibility to RA.
Related JoVE Video
Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus.
Nat. Genet.
PUBLISHED: 01-04-2010
Show Abstract
Hide Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs that leads to profound disability and premature death. To identify new SSc susceptibility loci, we conducted the first genome-wide association study in a population of European ancestry including a total of 2,296 individuals with SSc and 5,171 controls. Analysis of 279,621 autosomal SNPs followed by replication testing in an independent case-control set of European ancestry (2,753 individuals with SSc (cases) and 4,569 controls) identified a new susceptibility locus for systemic sclerosis at CD247 (1q22-23, rs2056626, P = 2.09 x 10(-7) in the discovery samples, P = 3.39 x 10(-9) in the combined analysis). Additionally, we confirm and firmly establish the role of the MHC (P = 2.31 x 10(-18)), IRF5 (P = 1.86 x 10(-13)) and STAT4 (P = 3.37 x 10(-9)) gene regions as SSc genetic risk factors.
Related JoVE Video
The spatio-temporal pattern of testis organogenesis in mammals - insights from the mole.
Int. J. Dev. Biol.
PUBLISHED: 07-15-2009
Show Abstract
Hide Abstract
Some cellular events are crucial in testis organogenesis, including Sertoli and Leydig cell differentiation, mesonephric cell migration and testis cord formation. These processes are controlled by transcription factors, paracrine signalling and hormones. Using the mole species Talpa occidentalis as an alternative animal model, we report the expression patterns of nine genes during testis differentiation and analyse their implications in the above-mentioned cellular processes. We show that: 1) Sertoli cell differentiation occurs very early and precedes mesonephric cell migration, indicating that the latter is not needed for the endocrine cytodifferentiation of Sertoli cells; 2) the time of Leydig cell differentiation is consistent with the participation of PDGFR-alpha in promoting the migration and/or proliferation of Leydig cell precursors, and with that of WNT4 signalling in inhibiting Leydig cell differentiation and 3) the formation of the tunica albuginea involves intragonadal cell migration/movement. These results demonstrate that testicular organogenesis in the mole differs from that in the mouse in some particular aspects, thus providing evidence that the spatio-temporal pattern of testis development is not highly conserved during mammalian evolution.
Related JoVE Video
Identification of CSK as a systemic sclerosis genetic risk factor through Genome Wide Association Study follow-up.
Hum. Mol. Genet.
Show Abstract
Hide Abstract
Systemic sclerosis (SSc) is complex autoimmune disease affecting the connective tissue; influenced by genetic and environmental components. Recently, we performed the first successful genome-wide association study (GWAS) of SSc. Here, we perform a large replication study to better dissect the genetic component of SSc. We selected 768 polymorphisms from the previous GWAS and genotyped them in seven replication cohorts from Europe. Overall significance was calculated for replicated significant SNPs by meta-analysis of the replication cohorts and replication-GWAS cohorts (3237 cases and 6097 controls). Six SNPs in regions not previously associated with SSc were selected for validation in another five independent cohorts, up to a total of 5270 SSc patients and 8326 controls. We found evidence for replication and overall genome-wide significance for one novel SSc genetic risk locus: CSK [P-value = 5.04 × 10(-12), odds ratio (OR) = 1.20]. Additionally, we found suggestive association in the loci PSD3 (P-value = 3.18 × 10(-7), OR = 1.36) and NFKB1 (P-value = 1.03 × 10(-6), OR = 1.14). Additionally, we strengthened the evidence for previously confirmed associations. This study significantly increases the number of known putative genetic risk factors for SSc, including the genes CSK, PSD3 and NFKB1, and further confirms six previously described ones.
Related JoVE Video
Unraveling the genetic component of systemic sclerosis.
Hum. Genet.
Show Abstract
Hide Abstract
Systemic sclerosis (SSc) is a severe connective tissue disorder characterized by extensive fibrosis, vascular damage, and autoimmune events. During the last years, the number of genetic markers convincingly associated with SSc has exponentially increased. In this report, we aim to offer an updated review of the classical and novel genetic associations with SSc, analyzing the firmest and replicated signals within HLA and non-HLA genes, identified by both candidate gene and genome-wide association (GWA) studies. We will also provide an insight into the future perspectives and approaches that might shed more light into the complex genetic background underlying SSc. In spite of the remarkable advance in the field of SSc genetics during the last decade, the use of the new genetic technologies such as next generation sequencing (NGS), as well as the deep phenotyping of the study cohorts, to fully characterize the genetic component of this disease is imperative.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.