JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Orthotopic murine model of a primary malignant bone tumor in the spine: functional, bioluminescence, and histological correlations.
J Neurosurg Spine
PUBLISHED: 06-27-2014
Show Abstract
Hide Abstract
There is currently no reproducible animal model of human primary malignant bone tumors in the spine to permit laboratory investigation of the human disease. Therefore, the authors sought to adapt their previously developed orthotopic model of spinal metastasis to a model for primary malignant bone tumors of the spine.
Related JoVE Video
Delta-24-RGD oncolytic adenovirus elicits anti-glioma immunity in an immunocompetent mouse model.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Emerging evidence suggests anti-cancer immunity is involved in the therapeutic effect induced by oncolytic viruses. Here we investigate the effect of Delta-24-RGD oncolytic adenovirus on innate and adaptive anti-glioma immunity.
Related JoVE Video
Mesenchymal differentiation mediated by NF-?B promotes radiation resistance in glioblastoma.
Cancer Cell
PUBLISHED: 06-24-2013
Show Abstract
Hide Abstract
Despite extensive study, few therapeutic targets have been identified for glioblastoma (GBM). Here we show that patient-derived glioma sphere cultures (GSCs) that resemble either the proneural (PN) or mesenchymal (MES) transcriptomal subtypes differ significantly in their biological characteristics. Moreover, we found that a subset of the PN GSCs undergoes differentiation to a MES state in a TNF-?/NF-?B-dependent manner with an associated enrichment of CD44 subpopulations and radioresistant phenotypes. We present data to suggest that the tumor microenvironment cell types such as macrophages/microglia may play an integral role in this process. We further show that the MES signature, CD44 expression, and NF-?B activation correlate with poor radiation response and shorter survival in patients with GBM.
Related JoVE Video
TGF-? mediates homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells.
Cancer Res.
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Although studies have suggested that bone marrow human mesenchymal stem cells (BM-hMSC) may be used as delivery vehicles for cancer therapy, it remains unclear whether BM-hMSCs are capable of targeting cancer stem cells, including glioma stem cells (GSC), which are the tumor-initiating cells responsible for treatment failures. Using standard glioma models, we identify TGF-? as a tumor factor that attracts BM-hMSCs via TGF-? receptors (TGF?R) on BM-hMSCs. Using human and rat GSCs, we then show for the first time that intravascularly administered BM-hMSCs home to GSC-xenografts that express TGF-?. In therapeutic studies, we show that BM-hMSCs carrying the oncolytic adenovirus Delta-24-RGD prolonged the survival of TGF-?-secreting GSC xenografts and that the efficacy of this strategy can be abrogated by inhibition of TGF?R on BM-hMSCs. These findings reveal the TGF-?/TGF?R axis as a mediator of the tropism of BM-hMSCs for GSCs and suggest that TGF-? predicts patients in whom BM-hMSC delivery will be effective.
Related JoVE Video
The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma.
J. Clin. Invest.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3-untranslated region (3-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma.
Related JoVE Video
The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma.
Genes Dev.
PUBLISHED: 12-23-2011
Show Abstract
Hide Abstract
Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.
Related JoVE Video
Mesenchymal stem cells display tumor-specific tropism in an RCAS/Ntv-a glioma model.
Neoplasia
PUBLISHED: 05-22-2011
Show Abstract
Hide Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have been shown to localize to gliomas and deliver therapeutic agents. However, the clinical translation of MSCs remains poorly defined because previous studies relied on glioma models with uncertain relevance to human disease, typically xenograft models in immunocompromised mice. To address this shortcoming, we used the RCAS/Ntv-a system, in which endogenous gliomas that recapitulate the tumor and stromal features of human gliomas develop in immunocompetent mice. MSCs were harvested from bone marrow of Ntv-a mice and injected into the carotid artery of Ntv-a mice previously inoculated with RCAS-PDGF-B and RCAS-IGFBP2 to induce malignant gliomas (n = 9). MSCs were labeled with luciferase for in vivo bioluminescence imaging (BLI). After intra-arterial injection, BLI revealed MSCs in the right frontal lobe in seven of nine mice. At necropsy, gliomas were detected within the right frontal lobe in all these mice, correlating with the location of the MSCs. In the two mice without MSCs based on BLI, no tumor was found, indicating that MSC localization was tumor specific. In another cohort of mice (n = 9), MSCs were labeled with SP-DiI, a fluorescent vital dye. After intra-arterial injection, fluorescence microscopy revealed SP-DiI-labeled MSCs throughout tumors 1 to 7 days after injection but not in nontumoral areas of the brain. MSCs injected intravenously did not localize to tumors (n = 12). We conclude that syngeneic MSCs are capable of homing to endogenous gliomas in immunocompetent mice. These findings support the use of MSCs as tumor-specific delivery vehicles for treating gliomas.
Related JoVE Video
Isolation and perivascular localization of mesenchymal stem cells from mouse brain.
Neurosurgery
PUBLISHED: 07-24-2010
Show Abstract
Hide Abstract
Although originally isolated from the bone marrow, mesenchymal stem cells (MSCs) have recently been detected in other tissues. However, little is known about MSCs in the brain.
Related JoVE Video
Glioma-associated cancer-initiating cells induce immunosuppression.
Clin. Cancer Res.
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
Glioblastoma multiforme is a lethal cancer that responds poorly to therapy. Glioblastoma multiforme cancer-initiating cells have been shown to mediate resistance to both chemotherapy and radiation; however, it is unknown to what extent these cells contribute to the profound immunosuppression in glioblastoma multiforme patients and if strategies that alter their differentiation state can reduce this immunosuppression.
Related JoVE Video
Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway.
Mol. Cancer Ther.
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
Glioblastoma multiforme (GBM) is a lethal cancer that responds poorly to radiotherapy and chemotherapy. Glioma cancer-initiating cells have been shown to recapitulate the characteristic features of GBM and mediate chemotherapy and radiation resistance. However, it is unknown whether the cancer-initiating cells contribute to the profound immune suppression in GBM patients. Recent studies have found that the activated form of signal transducer and activator of transcription 3 (STAT3) is a key mediator in GBM immunosuppression. We isolated and generated CD133+ cancer-initiating single colonies from GBM patients and investigated their immune-suppressive properties. We found that the cancer-initiating cells inhibited T-cell proliferation and activation, induced regulatory T cells, and triggered T-cell apoptosis. The STAT3 pathway is constitutively active in these clones and the immunosuppressive properties were markedly diminished when the STAT3 pathway was blocked in the cancer-initiating cells. These findings indicate that cancer-initiating cells contribute to the immune evasion of GBM and that blockade of the STAT3 pathway has therapeutic potential.
Related JoVE Video
Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas.
Cancer Res.
PUBLISHED: 11-17-2009
Show Abstract
Hide Abstract
Delta24-RGD is an infectivity-augmented, conditionally replicative oncolytic adenovirus with significant antiglioma effects. Although intratumoral delivery of Delta24-RGD may be effective, intravascular delivery would improve successful application in humans. Due to their tumor tropic properties, we hypothesized that human mesenchymal stem cells (hMSC) could be harnessed as intravascular delivery vehicles of Delta24-RGD to human gliomas. To assess cellular events, green fluorescent protein-labeled hMSCs carrying Delta24-RGD (hMSC-Delta24) were injected into the carotid artery of mice harboring orthotopic U87MG or U251-V121 xenografts and brain sections were analyzed by immunofluorescence for green fluorescent protein and viral proteins (E1A and hexon) at increasing times. hMSC-Delta24 selectively localized to glioma xenografts and released Delta24-RGD, which subsequently infected glioma cells. To determine efficacy, mice were implanted with luciferase- labeled glioma xenografts, treated with hMSC-Delta24 or controls, and imaged weekly by bioluminescence imaging. Analysis of tumor size by bioluminescence imaging showed inhibition of glioma growth and eradication of tumors in hMSC-Delta24-treated animals compared with controls (P < 0.0001). There was an increase in median survival from 42 days in controls to 75.5 days in hMSC-Delta24-treated animals (P < 0.0001) and an increase in survival beyond 80 days from 0% to 37.5%, respectively. We conclude that intra-arterially delivered hMSC-Delta24 selectively localize to human gliomas and are capable of delivering and releasing Delta24-RGD into the tumor, resulting in improved survival and tumor eradication in subsets of mice.
Related JoVE Video
An orthotopic murine model of human spinal metastasis: histological and functional correlations.
J Neurosurg Spine
PUBLISHED: 06-30-2009
Show Abstract
Hide Abstract
There is currently no reproducible animal model of human spinal metastasis that allows for laboratory study of the human disease. Consequently, the authors sought to develop an orthotopic model of spinal metastasis by using a human lung cancer cell line, and to correlate neurological decline with tumor growth.
Related JoVE Video
Simultaneous phosphorylation of p53 at serine 15 and 20 induces apoptosis in human glioma cells by increasing expression of pro-apoptotic genes.
J. Neurooncol.
PUBLISHED: 02-23-2009
Show Abstract
Hide Abstract
Understanding the mechanism underlying p53s ability to induce cell cycle arrest versus apoptosis is critical to treating human gliomas, 70% of which contain wild-type p53. Although N-terminal phosphorylation results in activation of p53, the role of N-terminal phosphorylation, particularly at serines 15 and 20, in p53s ability to induce cell cycle arrest versus apoptosis remains controversial. Here we test the hypothesis that phosphorylation of serine 15 and/or 20 is causally related to p53-mediated apoptosis in human gliomas. Introduction of p53 plasmids containing alanine mutations at serine 15 or/and serine 20 (which block phosphorylation) or aspartate mutations (which mimic phosphorylation) at the same sites, implicated simultaneous phosphorylation of both sites in the induction of apoptosis. When a double phosphorylation-mimicking adenoviral p53 vector (Ad-p53-15D20D) was compared with an unphosphorylated p53 vector (Ad-p53), treatment with Ad-p53 resulted in G1-arrest, whereas Ad-p53-15D20D induced apoptosis. These effects occurred independent of phosphorylation of other N-terminal serine (i.e., serines 6, 9, 33, 37, 46) indicating that phosphorylation of S15 and S20 is sufficient for inducing apoptosis. Mechanistically, Ad-p53 was capable only of increasing the expression of p21/CIP, whereas Ad-p53-15D20D increased the binding to and expression of the pro-apoptotic genes Fas, Puma and PIG3. However, Ad-p53-15D20D did not alter the expression of Noxa, Bid, IGFBP3, PERP and Killer/DR5, suggesting that phosphorylation of S15 and S20 resulted in the expression of specific pro-apoptotic gene. In conclusion, simultaneous phosphorylation of S15 and S20 is causally associated with apoptosis, resulting in increased expression of specific p53-responsive pro-apoptotic genes.
Related JoVE Video
REST regulates oncogenic properties of glioblastoma stem cells.
Stem Cells
Show Abstract
Hide Abstract
Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor repressor element 1 silencing transcription factor (REST), suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.