JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Triple combination antiviral drug (TCAD) composed of amantadine, oseltamivir, and ribavirin impedes the selection of drug-resistant influenza A virus.
PLoS ONE
PUBLISHED: 09-16-2011
Show Abstract
Hide Abstract
Widespread resistance among circulating influenza A strains to at least one of the anti-influenza drugs is a major public health concern. A triple combination antiviral drug (TCAD) regimen comprised of amantadine, oseltamivir, and ribavirin has been shown to have synergistic and broad spectrum activity against influenza A strains, including drug resistant strains. Here, we used mathematical modeling along with three different experimental approaches to understand the effects of single agents, double combinations, and the TCAD regimen on resistance in influenza in vitro, including: 1) serial passage at constant drug concentrations, 2) serial passage at escalating drug concentrations, and 3) evaluation of the contribution of each component of the TCAD regimen to the suppression of resistance. Consistent with the modeling which demonstrated that three drugs were required to suppress the emergence of resistance in influenza A, treatment with the TCAD regimen resulted in the sustained suppression of drug resistant viruses, whereas treatment with amantadine alone or the amantadine-oseltamivir double combination led to the rapid selection of resistant variants which comprised ?100% of the population. Furthermore, the TCAD regimen imposed a high genetic barrier to resistance, requiring multiple mutations in order to escape the effects of all the drugs in the regimen. Finally, we demonstrate that each drug in the TCAD regimen made a significant contribution to the suppression of virus breakthrough and resistance at clinically achievable concentrations. Taken together, these data demonstrate that the TCAD regimen was superior to double combinations and single agents at suppressing resistance, and that three drugs at a minimum were required to impede the selection of drug resistant variants in influenza A virus. The use of mathematical modeling with multiple experimental designs and molecular readouts to evaluate and optimize combination drug regimens for the suppression of resistance may be broadly applicable to other infectious diseases.
Related JoVE Video
Induction of interferon-gamma-inducible protein 10 by SARS-CoV infection, interferon alfacon 1 and interferon inducer in human bronchial epithelial Calu-3 cells and BALB/c mice.
Antivir. Chem. Chemother.
PUBLISHED: 03-17-2010
Show Abstract
Hide Abstract
The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) is poorly understood. Several mechanisms involving both direct effects on target cells and indirect effects via the immune system might exist. SARS-CoV has been shown in vitro to induce changes of cytokines and chemokines in various human and animal cells. We previously reported that interferon (IFN) alfacon-1 was more active against SARS-CoV infection in human bronchial epithelial Calu-3 cells than in African green monkey kidney epithelial cells on day 3 post-infection.
Related JoVE Video
Triple combination of amantadine, ribavirin, and oseltamivir is highly active and synergistic against drug resistant influenza virus strains in vitro.
PLoS ONE
PUBLISHED: 02-03-2010
Show Abstract
Hide Abstract
The rapid emergence and subsequent spread of the novel 2009 Influenza A/H1N1 virus (2009 H1N1) has prompted the World Health Organization to declare the first pandemic of the 21st century, highlighting the threat of influenza to public health and healthcare systems. Widespread resistance to both classes of influenza antivirals (adamantanes and neuraminidase inhibitors) occurs in both pandemic and seasonal viruses, rendering these drugs to be of marginal utility in the treatment modality. Worldwide, virtually all 2009 H1N1 and seasonal H3N2 strains are resistant to the adamantanes (rimantadine and amantadine), and the majority of seasonal H1N1 strains are resistant to oseltamivir, the most widely prescribed neuraminidase inhibitor (NAI). To address the need for more effective therapy, we evaluated the in vitro activity of a triple combination antiviral drug (TCAD) regimen composed of drugs with different mechanisms of action against drug-resistant seasonal and 2009 H1N1 influenza viruses. Amantadine, ribavirin, and oseltamivir, alone and in combination, were tested against amantadine- and oseltamivir-resistant influenza A viruses using an in vitro infection model in MDCK cells. Our data show that the triple combination was highly synergistic against drug-resistant viruses, and the synergy of the triple combination was significantly greater than the synergy of any double combination tested (P<0.05), including the combination of two NAIs. Surprisingly, amantadine and oseltamivir contributed to the antiviral activity of the TCAD regimen against amantadine- and oseltamivir-resistant viruses, respectively, at concentrations where they had no activity as single agents, and at concentrations that were clinically achievable. Our data demonstrate that the TCAD regimen composed of amantadine, ribavirin, and oseltamivir is highly synergistic against resistant viruses, including 2009 H1N1. The TCAD regimen overcomes baseline drug resistance to both classes of approved influenza antivirals, and thus may represent a highly active antiviral therapy for seasonal and pandemic influenza.
Related JoVE Video
Triple combination of oseltamivir, amantadine, and ribavirin displays synergistic activity against multiple influenza virus strains in vitro.
Antimicrob. Agents Chemother.
PUBLISHED: 07-20-2009
Show Abstract
Hide Abstract
The recurring emergence of influenza virus strains that are resistant to available antiviral medications has become a global health concern, especially in light of the potential for a new influenza virus pandemic. Currently, virtually all circulating strains of influenza A virus in the United States are resistant to either of the two major classes of anti-influenza drugs (adamantanes and neuraminidase inhibitors). Thus, new therapeutic approaches that can be rapidly deployed and that will address the issue of recurring resistance should be developed. We have tested double and triple combinations of the approved anti-influenza drugs oseltamivir and amantadine together with ribavirin against three influenza virus strains using cytopathic effect inhibition assays in MDCK cells. We selected A/New Caledonia/20/99 (H1N1) and A/Sydney/05/97 (H3N2) as representatives of the wild-type versions of the predominant circulating seasonal influenza virus strains and A/Duck/MN/1525/81 (H5N1) as a representative of avian influenza virus strains. Dose-response curves were generated for all drug combinations, and the degree of drug interaction was quantified using a model that calculates the synergy (or antagonism) between the drugs in double and triple combinations. This report demonstrates that a triple combination of antivirals was highly synergistic against influenza A virus. Importantly, the synergy of the triple combination was 2- to 13-fold greater than the synergy of any double combination depending on the influenza virus subtype. These data support the investigation of a novel combination of oseltamivir, amantadine, and ribavirin as an effective treatment for both seasonal and pandemic influenza virus, allowing the efficient use of the existing drug supplies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.