JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
CYCP2;1 integrates genetic and nutritional information to promote meristem cell division in Arabidopsis.
Dev. Biol.
PUBLISHED: 03-12-2014
Show Abstract
Hide Abstract
In higher plants, cell cycle activation in the meristems at germination is essential for the initiation of post-embryonic development. We previously identified the signaling pathways of homeobox transcription factor STIMPY and metabolic sugars as two interacting branches of the regulatory network that is responsible for activating meristematic tissue proliferation in Arabidopsis. In this study, we found that CYCP2;1 is both a direct target of STIMPY transcriptional activation and an early responder to sugar signals. Genetic and molecular studies show that CYCP2;1 physically interacts with three of the five mitotic CDKs in Arabidopsis, and is required for the G2 to M transition during meristem activation. Taken together, our results suggest that CYCP2;1 acts as a permissive control of cell cycle progression during seedling establishment by directly linking genetic control and nutritional cues with the activity of the core cell cycle machinery.
Related JoVE Video
Cell-cycle regulation in green algae dividing by multiple fission.
J. Exp. Bot.
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
Green algae dividing by multiple fission comprise unrelated genera but are connected by one common feature: under optimal growth conditions, they can divide into more than two daughter cells. The number of daughter cells, also known as the division number, is relatively stable for most species and usually ranges from 4 to 16. The number of daughter cells is dictated by growth rate and is modulated by light and temperature. Green algae dividing by multiple fission can thus be used to study coordination of growth and progression of the cell cycle. Algal cultures can be synchronized naturally by alternating light/dark periods so that growth occurs in the light and DNA replication(s) and nuclear and cellular division(s) occur in the dark; synchrony in such cultures is almost 100% and can be maintained indefinitely. Moreover, the pattern of cell-cycle progression can be easily altered by differing growth conditions, allowing for detailed studies of coordination between individual cell-cycle events. Since the 1950s, green algae dividing by multiple fission have been studied as a unique model for cell-cycle regulation. Future sequencing of algal genomes will provide additional, high precision tools for physiological, taxonomic, structural, and molecular studies in these organisms.
Related JoVE Video
Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri.
Bioresour. Technol.
PUBLISHED: 05-04-2013
Show Abstract
Hide Abstract
Photosynthetic carbon partitioning into starch and neutral lipids, as well as the influence of nutrient depletion and replenishment on growth, pigments and storage compounds, were studied in the microalga, Parachlorella kessleri. Starch was utilized as a primary carbon and energy storage compound, but nutrient depletion drove the microalgae to channel fixed carbon into lipids as secondary storage compounds. Nutrient depletion inhibited both cellular division and growth and caused degradation of chlorophyll. Starch content decreased from an initial value of 25, to around 10% of dry weight (DW), while storage lipids increased from almost 0 to about 29% of DW. After transfer of cells into replenished mineral medium, growth, reproductive processes and chlorophyll content recovered within 2 days, while the content of both starch and lipids decreased markedly to 3 or less % of DW; this suggested that they were being used as a source of energy and carbon.
Related JoVE Video
Completion of cell division is associated with maximum telomerase activity in naturally synchronized cultures of the green alga Desmodesmus quadricauda.
FEBS Lett.
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
Telomerase maintains the ends of eukaryotic chromosomes, and its activity is an important parameter correlating with the proliferative capacity of cells. We have investigated cell cycle-specific changes in telomerase activity using cultures of Desmodesmus quadricauda, a model alga naturally synchronized by light/dark entrainment. A quantitative telomerase assay revealed high activity in algal cultures, with slight changes during the light period. Significantly increased telomerase activity was observed at the end of the dark phase, when cell division was complete. In contrast to other models, a natural separation between nuclear and cellular division typical for the cell cycle in D. quadricauda made this observation possible.
Related JoVE Video
DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda.
PLoS ONE
PUBLISHED: 04-11-2011
Show Abstract
Hide Abstract
DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.
Related JoVE Video
Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by temperature.
Planta
PUBLISHED: 02-04-2011
Show Abstract
Hide Abstract
Synchronized cultures of the green alga Chlamydomonas reinhardtii were grown photoautotrophically under a wide range of environmental conditions including temperature (15-37 °C), different mean light intensities (132, 150, 264 ?mol m?² s?¹), different illumination regimes (continuous illumination or alternation of light/dark periods of different durations), and culture methods (batch or continuous culture regimes). These variable experimental approaches were chosen in order to assess the role of temperature in the timing of cell division, the length of the cell cycle and its pre- and post-commitment phases. Analysis of the effect of temperature, from 15 to 37 °C, on synchronized cultures showed that the length of the cell cycle varied markedly from times as short as 14 h to as long as 36 h. We have shown that the length of the cell cycle was proportional to growth rate under any given combination of growth conditions. These findings were supported by the determination of the temperature coefficient (Q??), whose values were above the level expected for temperature-compensated processes. The data presented here show that cell cycle duration in C. reinhardtii is a function of growth rate and is not controlled by a temperature independent endogenous timer or oscillator, including a circadian one.
Related JoVE Video
Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda.
Aquat. Toxicol.
PUBLISHED: 01-07-2011
Show Abstract
Hide Abstract
The function of selenium in an organism is mediated mostly by selenoproteins including glutathione peroxidase. Glutathione peroxidase is a potent anti-oxidative enzyme, scavenging a variety of peroxides. The green alga Scenedesmus quadricauda was used to investigate the relationship between the toxicity of selenium and the glutathione peroxidase activity. Selenium resistant strains SeIV and SeVI were synchronized and grown in high concentrations of Se (selenite or selenate). As a measure of selenium toxicity the EC(50) values were determined. During growth of the untreated wild type, glutathione peroxidase activity increased slightly and then declined gradually until the end of the cell cycle. A similar pattern was observed in untreated resistant strains and when resistant strains were grown in the presence of selenium in the oxidation state to which they were resistant. In the wild type cultivated with 50 mg Se L(-1) (selenite or selenate), activity increased to a high level and slowly declined until the end of the cell cycle. Similarly, activity increased in strains SeIV and SeVI when grown in the presence of selenium in the oxidation state to which they were not resistant. We followed the effect of selenium on the ultrastructure of S. quadricauda. After exposure to selenite, the chloroplast membranes of wild type were reorganized into thick bundles of thylakoids and the stroma became granulose. When selenate was added, the chloroplast of wild type had a fingerprint-like appearance, the stroma became less dense and starch production increased. In selenium resistant strains, when treated with the selenium form to which they were resistant, the chloroplast was affected, but not to such an extent as in the wild type. The activity of glutathione peroxidase in Scenedesmus was affected by selenium in an oxidation state-dependent manner. The most apparent effects of selenium on the ultrastructure involved impairment of the chloroplast and the overproduction of starch.
Related JoVE Video
Regulation of the Chlamydomonas cell cycle by a stable, chromatin-associated retinoblastoma tumor suppressor complex.
Plant Cell
PUBLISHED: 10-26-2010
Show Abstract
Hide Abstract
We examined the cell cycle dynamics of the retinoblastoma (RB) protein complex in the unicellular alga Chlamydomonas reinhardtii that has single homologs for each subunit-RB, E2F, and DP. We found that Chlamydomonas RB (encoded by MAT3) is a cell cycle-regulated phosphoprotein, that E2F1-DP1 can bind to a consensus E2F site, and that all three proteins interact in vivo to form a complex that can be quantitatively immunopurified. Yeast two-hybrid assays revealed the formation of a ternary complex between MAT3, DP1, and E2F1 that requires a C-terminal motif in E2F1 analogous to the RB binding domain of plant and animal E2Fs. We examined the abundance of MAT3/RB and E2F1-DP1 in highly synchronous cultures and found that they are synthesized and remain stably associated throughout the cell cycle with no detectable fraction of free E2F1-DP1. Consistent with their stable association, MAT3/RB and DP1 are constitutively nuclear, and MAT3/RB does not require DP1-E2F1 for nuclear localization. In the nucleus, MAT3/RB remains bound to chromatin throughout the cell cycle, and its chromatin binding is mediated through E2F1-DP1. Together, our data show that E2F-DP complexes can regulate the cell cycle without dissociation of their RB-related subunit and that other changes may be sufficient to convert RB-E2F-DP from a cell cycle repressor to an activator.
Related JoVE Video
Microalgae--novel highly efficient starch producers.
Biotechnol. Bioeng.
PUBLISHED: 10-24-2010
Show Abstract
Hide Abstract
The freshwater alga Chlorella, a highly productive source of starch, might substitute for starch-rich terrestrial plants in bioethanol production. The cultivation conditions necessary for maximizing starch content in Chlorella biomass, generated in outdoor scale-up solar photobioreactors, are described. The most important factor that can affect the rate of starch synthesis, and its accumulation, is mean illumination resulting from a combination of biomass concentration and incident light intensity. While 8.5% DW of starch was attained at a mean light intensity of 215?µmol/(m2 s1), 40% of DW was synthesized at a mean light intensity 330?µmol/(m2 s1). Another important factor is the phase of the cell cycle. The content of starch was highest (45% of DW) prior to cell division, but during the course of division, its cellular level rapidly decreased to about 13% of DW in cells grown in light, or to about 4% in those kept in the dark during the division phase. To produce biomass with high starch content, it is necessary to suppress cell division events, but not to disturb synthesis of starch in the chloroplast. The addition of cycloheximide (1?mg/L), a specific inhibitor of cytoplasmic protein synthesis, and the effect of element limitation (nitrogen, sulfur, phosphorus) were tested. The majority of the experiments were carried out in laboratory-scale photobioreactors, where culture treatments increased starch content to up to about 60% of DW in the case of cycloheximide inhibition or sulfur limitation. When the cells were limited by phosphorus or nitrogen supply, the cellular starch content increased to 55% or 38% of DW, respectively, however, after about 20?h, growth of the cultures stopped producing starch, and the content of starch again decreased. Sulfur limited and cycloheximide-treated cells maintained a high content of starch (60% of DW) for up to 2 days. Sulfur limitation, the most appropriate treatment for scaled-up culture of starch-enriched biomass, was carried out in an outdoor pilot-scale experiment. After 120?h of growth in complete mineral medium, during which time the starch content reached around 18% of DW, sulfur limitation increased the starch content to 50% of DW.
Related JoVE Video
Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity.
Planta
PUBLISHED: 07-18-2010
Show Abstract
Hide Abstract
In the cultures of the alga Chlamydomonas reinhardtii, division rhythms of any length from 12 to 75 h were found at a range of different growth rates that were set by the intensity of light as the sole source of energy. The responses to light intensity differed in terms of altered duration of the phase from the beginning of the cell cycle to the commitment to divide, and of the phase after commitment to cell division. The duration of the pre-commitment phase was determined by the time required to attain critical cell size and sufficient energy reserves (starch), and thus was inversely proportional to growth rate. If growth was stopped by interposing a period of darkness, the pre-commitment phase was prolonged corresponding to the duration of the dark interval. The duration of the post-commitment phase, during which the processes leading to cell division occurred, was constant and independent of growth rate (light intensity) in the cells of the same division number, or prolonged with increasing division number. It appeared that different regulatory mechanisms operated through these two phases, both of which were inconsistent with gating of cell division at any constant time interval. No evidence was found to support any hypothetical timer, suggested to be triggered at the time of daughter cell release.
Related JoVE Video
Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda.
BMC Plant Biol.
PUBLISHED: 05-15-2009
Show Abstract
Hide Abstract
Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes.
Related JoVE Video
The microalga Parachlorella kessleri--a novel highly efficient lipid producer.
Biotechnol. Bioeng.
Show Abstract
Hide Abstract
The alga Parachlorella kessleri, strain CCALA 255, grown under optimal conditions, is characterized by storage of energy in the form of starch rather than lipids. If grown in the complete medium, the cultures grew rapidly, producing large amounts of biomass in a relatively short time. The cells, however, contained negligible lipid reserves (1-10% of DW). Treatments inducing hyperproduction of storage lipids in P. kessleri biomass were described. The cultures were grown in the absence or fivefold decreased concentration of either nitrogen or phosphorus or sulfur. Limitation by all elements using fivefold or 10-fold diluted mineral medium was also tested. Limitation with any macroelement (nitrogen, sulfur, or phosphorus) led to an increase in the amount of lipids; nitrogen limitation was the most effective. Diluted nutrient media (5- or 10-fold) were identified as the best method to stimulate lipid overproduction (60% of DW). The strategy for lipid overproduction consists of the fast growth of P. kessleri culture grown in the complete medium to produce sufficient biomass (DW more than 10 g/L) followed by the dilution of nutrient medium to stop growth and cell division by limitation of all elements, leading to induction of lipid production and accumulation up to 60% DW. Cultivation conditions necessary for maximizing lipid content in P. kessleri biomass generated in a scale-up solar open thin-layer photobioreactor were described.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.