JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 04-14-2014
Show Abstract
Hide Abstract
Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.
Related JoVE Video
Between two fern genomes.
Gigascience
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.
Related JoVE Video
Crowdfunding the Azolla fern genome project: a grassroots approach.
Gigascience
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Much of science progresses within the tight boundaries of what is often seen as a "black box". Though familiar to funding agencies, researchers and the academic journals they publish in, it is an entity that outsiders rarely get to peek into. Crowdfunding is a novel means that allows the public to participate in, as well as to support and witness advancements in science. Here we describe our recent crowdfunding efforts to sequence the Azolla genome, a little fern with massive green potential. Crowdfunding is a worthy platform not only for obtaining seed money for exploratory research, but also for engaging directly with the general public as a rewarding form of outreach.
Related JoVE Video
Transcriptome-mining for single-copy nuclear markers in ferns.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Molecular phylogenetic investigations have revolutionized our understanding of the evolutionary history of ferns-the second-most species-rich major group of vascular plants, and the sister clade to seed plants. The general absence of genomic resources available for this important group of plants, however, has resulted in the strong dependence of these studies on plastid data; nuclear or mitochondrial data have been rarely used. In this study, we utilize transcriptome data to design primers for nuclear markers for use in studies of fern evolutionary biology, and demonstrate the utility of these markers across the largest order of ferns, the Polypodiales.
Related JoVE Video
Do asexual polyploid lineages lead short evolutionary lives? A case study from the fern genus Astrolepis.
Evolution
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
A life-history transition to asexuality is typically viewed as leading to a heightened extinction risk, and a number of studies have evaluated this claim by examining the relative ages of asexual versus closely related sexual lineages. Surprisingly, a rigorous assessment of the age of an asexual plant lineage has never been published, although asexuality is extraordinarily common among plants. Here, we estimate the ages of sexual diploids and asexual polyploids in the fern genus Astrolepis using a well-supported plastid phylogeny and a relaxed-clock dating approach. The 50 asexual polyploid samples we included were conservatively estimated to comprise 19 distinct lineages, including a variety of auto- and allopolyploid genomic combinations. All were either the same age or younger than the crown group comprising their maternal sexual-diploid parents based simply on their phylogenetic position. Node ages estimated with the relaxed-clock approach indicated that the average maximum age of asexual lineages was 0.4 My, and individual lineages were on average 7 to 47 times younger than the crown- and total-ages of their sexual parents. Although the confounding association between asexuality and polyploidy precludes definite conclusions regarding the effect of asexuality, our results suggest that asexuality limits evolutionary potential in Astrolepis.
Related JoVE Video
rbcL and matK earn two thumbs up as the core DNA barcode for ferns.
PLoS ONE
PUBLISHED: 06-03-2011
Show Abstract
Hide Abstract
DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the ferns life history--an endeavor previously impossible--will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade--Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)--to further evaluate the resolving power of these loci.
Related JoVE Video
DNA barcoding exposes a case of mistaken identity in the fern horticultural trade.
Mol Ecol Resour
PUBLISHED: 09-26-2010
Show Abstract
Hide Abstract
Using cheilanthoid ferns, we provide an example of how DNA barcoding approaches can be useful to the horticultural community for keeping plants in the trade accurately identified. We use plastid rbcL, atpA, and trnG-R sequence data to demonstrate that a fern marketed as Cheilanthes wrightii (endemic to the southwestern USA and northern Mexico) in the horticultural trade is, in fact, Cheilanthes distans (endemic to Australia and adjacent islands). Public and private (accessible with permission) databases contain a wealth of DNA sequence data that are linked to vouchered plant material. These data have uses beyond those for which they were originally generated, and they provide an important resource for fostering collaborations between the academic and horticultural communities. We strongly advocate the barcoding approach as a valuable new technology available to the horticulture industry to help correct plant identification errors in the international trade.
Related JoVE Video
The evolution of chloroplast genes and genomes in ferns.
Plant Mol. Biol.
PUBLISHED: 07-19-2010
Show Abstract
Hide Abstract
Most of the publicly available data on chloroplast (plastid) genes and genomes come from seed plants, with relatively little information from their sister group, the ferns. Here we describe several broad evolutionary patterns and processes in fern plastid genomes (plastomes), and we include some new plastome sequence data. We review what we know about the evolutionary history of plastome structure across the fern phylogeny and we compare plastome organization and patterns of evolution in ferns to those in seed plants. A large clade of ferns is characterized by a plastome that has been reorganized with respect to the ancestral gene order (a similar order that is ancestral in seed plants). We review the sequence of inversions that gave rise to this organization. We also explore global nucleotide substitution patterns in ferns versus those found in seed plants across plastid genes, and we review the high levels of RNA editing observed in fern plastomes.
Related JoVE Video
Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns.
Evolution
PUBLISHED: 04-17-2010
Show Abstract
Hide Abstract
Molecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well-documented phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer-lived species tend to have slower rates of molecular evolution than their shorter-lived counterparts. Although a similar pattern has been uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths within the “tree fern” clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided with the evolution of the long-lived tree-like habit at the base of the tree fern clade. This suggests that a generation time effect may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines,but will be necessary for a full appreciation of molecular evolution.
Related JoVE Video
Deciphering the origins of apomictic polyploids in the Cheilanthes yavapensis complex (Pteridaceae).
Am. J. Bot.
PUBLISHED: 08-26-2009
Show Abstract
Hide Abstract
Deciphering species relationships and hybrid origins in polyploid agamic species complexes is notoriously difficult. In this study of cheilanthoid ferns, we demonstrate increased resolving power for clarifying the origins of polyploid lineages by integrating evidence from a diverse selection of biosystematic methods. The prevalence of polyploidy, hybridization, and apomixis in ferns suggests that these processes play a significant role in their evolution and diversification. Using a combination of systematic approaches, we investigated the origins of apomictic polyploids belonging to the Cheilanthes yavapensis complex. Spore studies allowed us to assess ploidy levels; plastid and nuclear DNA sequencing revealed evolutionary relationships and confirmed the putative progenitors (both maternal and paternal) of taxa of hybrid origin; enzyme electrophoretic evidence provided information on genome dosage in allopolyploids. We find here that the widespread apomictic triploid, Cheilanthes lindheimeri, is an autopolyploid derived from a rare, previously undetected sexual diploid. The apomictic triploid Cheilanthes wootonii is shown to be an interspecific hybrid between C. fendleri and C. lindheimeri, whereas the apomictic tetraploid C. yavapensis is comprised of two cryptic and geographically distinct lineages. We show that earlier morphology-based hypotheses of species relationships, while not altogether incorrect, only partially explain the complicated evolutionary history of these ferns.
Related JoVE Video
Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-30-2009
Show Abstract
Hide Abstract
In todays angiosperm-dominated terrestrial ecosystems, leptosporangiate ferns are truly exceptional--accounting for 80% of the approximately 11,000 nonflowering vascular plant species. Recent studies have shown that this remarkable diversity is mostly the result of a major leptosporangiate radiation beginning in the Cretaceous, following the rise of angiosperms. This pattern is suggestive of an ecological opportunistic response, with the proliferation of flowering plants across the landscape resulting in the formation of many new niches--both on forest floors and within forest canopies--into which leptosporangiate ferns could diversify. At present, one-third of leptosporangiate species grow as epiphytes in the canopies of angiosperm-dominated tropical rain forests. However, we know too little about the evolutionary history of epiphytic ferns to assess whether or not their diversification was in fact linked to the establishment of these forests, as would be predicted by the ecological opportunistic response hypothesis. Here we provide new insight into leptosporangiate diversification and the evolution of epiphytism by integrating a 400-taxon molecular dataset with an expanded set of fossil age constraints. We find evidence for a burst of fern diversification in the Cenozoic, apparently driven by the evolution of epiphytism. Whether this explosive radiation was triggered simply by the establishment of modern angiosperm-dominated tropical rain forest canopies, or spurred on by some other large-scale extrinsic factor (e.g., climate change) remains to be determined. In either case, it is clear that in both the Cretaceous and Cenozoic, leptosporangiate ferns were adept at exploiting newly created niches in angiosperm-dominated ecosystems.
Related JoVE Video
Evolution of leaf form in marsileaceous ferns: evidence for heterochrony.
Evolution
PUBLISHED: 01-22-2009
Show Abstract
Hide Abstract
Using an explicit phylogenetic framework, ontogenetic patterns of leaf form are compared among the three genera of marsileaceous ferns (Marsilea, Regnellidium, and Pilularia) with the outgroup Asplenium to address the hypothesis that heterochrony played a role in their evolution. We performed a Fourier analysis on a developmental sequence of leaves from individuals of these genera. Principal components analysis of the harmonic coefficients was used to characterize the ontogenetic trajectories of leaf form in a smaller dimensional space. Results of this study suggest that the "evolutionary juvenilization" observed in these leaf sequences is best described using a mixed model of heterochrony (accelerated growth rate and early termination at a simplified leaf form). The later stages of the ancestral, more complex, ontogenetic pattern were lost in Marsileaceae, giving rise to the simplified adult leaves of Marsilea, Regnellidium, and Pilularia. Life-history traits such as ephemeral and uncertain habitats, high reproductive rates, and accelerated maturation, which are typical for marsileaceous ferns, suggest that they may be "r strategists." The evidence for heterochrony presented here illustrates that it has resulted in profound ecological and morphological consequences for the entire life history of Marsileaceae.
Related JoVE Video
Identifying multiple origins of polyploid taxa: a multilocus study of the hybrid cloak fern (Astrolepis integerrima; Pteridaceae).
Am. J. Bot.
Show Abstract
Hide Abstract
Molecular studies have shown that multiple origins of polyploid taxa are the rule rather than the exception. To understand the distribution and ecology of polyploid species and the evolutionary significance of polyploidy in general, it is important to delineate these independently derived lineages as accurately as possible. Although gene flow among polyploid lineages and backcrossing to their diploid parents often confound this process, such post origin gene flow is very infrequent in asexual polyploids. In this study, we estimate the number of independent origins of the apomictic allopolyploid fern Astrolepis integerrima, a morphologically heterogeneous species most common in the southwestern United States and Mexico, with outlying populations in the southeastern United States and the Caribbean.
Related JoVE Video
Unique expression of a sporophytic character on the gametophytes of notholaenid ferns (Pteridaceae).
Am. J. Bot.
Show Abstract
Hide Abstract
Not all ferns grow in moist, shaded habitats; some lineages thrive in exposed, seasonally dry environments. Notholaenids are a clade of xeric-adapted ferns commonly characterized by the presence of a waxy exudate, called farina, on the undersides of their leaves. Although some other lineages of cheilanthoid ferns also have farinose sporophytes, previous studies suggested that notholaenids are unique in also producing farina on their gametophytes. For this reason, consistent farina expression across life cycle phases has been proposed as a potential synapomorphy for the genus Notholaena. Recent phylogenetic studies have shown two species with nonfarinose sporophytes to be nested within Notholaena, with a third nonfarinose species well supported as sister to all other notholaenids. This finding raises the question: are the gametophytes of these three species farinose like those of their close relatives, or are they glabrous, consistent with their sporophytes?
Related JoVE Video
Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns.
Syst. Biol.
Show Abstract
Hide Abstract
Backbone relationships within the large eupolypod II clade, which includes nearly a third of extant fern species, have resisted elucidation by both molecular and morphological data. Earlier studies suggest that much of the phylogenetic intractability of this group is due to three factors: (i) a long root that reduces apparent levels of support in the ingroup; (ii) long ingroup branches subtended by a series of very short backbone internodes (the "ancient rapid radiation" model); and (iii) significantly heterogeneous lineage-specific rates of substitution. To resolve the eupolypod II phylogeny, with a particular emphasis on the backbone internodes, we assembled a data set of five plastid loci (atpA, atpB, matK, rbcL, and trnG-R) from a sample of 81 accessions selected to capture the deepest divergences in the clade. We then evaluated our phylogenetic hypothesis against potential confounding factors, including those induced by rooting, ancient rapid radiation, rate heterogeneity, and the Bayesian star-tree paradox artifact. While the strong support we inferred for the backbone relationships proved robust to these potential problems, their investigation revealed unexpected model-mediated impacts of outgroup composition, divergent effects of methods for countering the star-tree paradox artifact, and gave no support to concerns about the applicability of the unrooted model to data sets with heterogeneous lineage-specific rates of substitution. This study is among few to investigate these factors with empirical data, and the first to compare the performance of the two primary methods for overcoming the Bayesian star-tree paradox artifact. Among the significant phylogenetic results is the near-complete support along the eupolypod II backbone, the demonstrated paraphyly of Woodsiaceae as currently circumscribed, and the well-supported placement of the enigmatic genera Homalosorus, Diplaziopsis, and Woodsia.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.