JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Non-homologous sex chromosomes in two geckos (gekkonidae: gekkota) with female heterogamety.
Cytogenet. Genome Res.
PUBLISHED: 05-07-2014
Show Abstract
Hide Abstract
Evaluating homology between the sex chromosomes of different species is an important first step in deducing the origins and evolution of sex-determining mechanisms in a clade. Here, we describe the preparation of Z and W chromosome paints via chromosome microdissection from the Australian marbled gecko (Christinus marmoratus) and their subsequent use in evaluating sex chromosome homology with the ZW chromosomes of the Kwangsi gecko (Gekko hokouensis) from eastern Asia. We show that the ZW sex chromosomes of C. marmoratus and G. hokouensis are not homologous and represent independent origins of female heterogamety within the Gekkonidae. We also show that the C. marmoratus Z and W chromosomes are genetically similar to each other as revealed by C-banding, comparative genomic hybridization, and the reciprocal painting of Z and W chromosome probes. This implies that sex chromosomes in C. marmoratus are at an early stage of differentiation, suggesting a recent origin. © 2014 S. Karger AG, Basel.
Related JoVE Video
Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards.
Chromosoma
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
The sand lizard (Lacerta agilis, Lacertidae) has a chromosome number of 2n?=?38, with 17 pairs of acrocentric chromosomes, one pair of microchromosomes, a large acrocentric Z chromosome, and a micro-W chromosome. To investigate the process of karyotype evolution in L. agilis, we performed chromosome banding and fluorescent in situ hybridization for gene mapping and constructed a cytogenetic map with 86 functional genes. Chromosome banding revealed that the Z chromosome is the fifth largest chromosome. The cytogenetic map revealed homology of the L. agilis Z chromosome with chicken chromosomes 6 and 9. Comparison of the L. agilis cytogenetic map with those of four Toxicofera species with many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) showed highly conserved linkage homology of L. agilis chromosomes (LAG) 1, 2, 3, 4, 5(Z), 7, 8, 9, and 10 with macrochromosomes and/or macrochromosome segments of the four Toxicofera species. Most of the genes located on the microchromosomes of Toxicofera were localized to LAG6, small acrocentric chromosomes (LAG11-18), and a microchromosome (LAG19) in L. agilis. These results suggest that the L. agilis karyotype resulted from frequent fusions of microchromosomes, which occurred in the ancestral karyotype of Toxicofera and led to the disappearance of microchromosomes and the appearance of many small macrochromosomes.
Related JoVE Video
Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Transitions between sex determination systems have occurred in many lineages of squamates and it follows that novel sex chromosomes will also have arisen multiple times. The formation of sex chromosomes may be reinforced by inhibition of recombination and the accumulation of repetitive DNA sequences. The karyotypes of monitor lizards are known to be highly conserved yet the sex chromosomes in this family have not been fully investigated. Here, we compare male and female karyotypes of three Australian monitor lizards, Varanus acanthurus, V. gouldii and V. rosenbergi, from two different clades. V. acanthurus belongs to the acanthurus clade and the other two belong to the gouldii clade. We applied C-banding and comparative genomic hybridization to reveal that these species have ZZ/ZW sex micro-chromosomes in which the W chromosome is highly differentiated from the Z chromosome. In combination with previous reports, all six Varanus species in which sex chromosomes have been identified have ZZ/ZW sex chromosomes, spanning several clades on the varanid phylogeny, making it likely that the ZZ/ZW sex chromosome is ancestral for this family. However, repetitive sequences of these ZW chromosome pairs differed among species. In particular, an (AAT)n microsatellite repeat motif mapped by fluorescence in situ hybridization on part of W chromosome in V. acanthurus only, whereas a (CGG)n motif mapped onto the W chromosomes of V. gouldii and V. rosenbergi. Furthermore, the W chromosome probe for V. acanthurus produced hybridization signals only on the centromeric regions of W chromosomes of the other two species. These results suggest that the W chromosome sequences were not conserved between gouldii and acanthurus clades and that these repetitive sequences have been amplified rapidly and independently on the W chromosome of the two clades after their divergence.
Related JoVE Video
Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata).
Mol Cytogenet
PUBLISHED: 10-19-2013
Show Abstract
Hide Abstract
The infraorder Gekkota is intriguing because it contains multiple chromosomal and environmental sex determination systems that vary even among closely related taxa. Here, we compare male and females karyotypes of the pink-tailed worm-lizard (Aprasia parapulchella), a small legless lizard belonging to the endemic Australian family Pygopodidae.
Related JoVE Video
Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1.
BMC Genomics
PUBLISHED: 08-19-2013
Show Abstract
Hide Abstract
Scant genomic information from non-avian reptile sex chromosomes is available, and for only a few lizards, several snakes and one turtle species, and it represents only a small fraction of the total sex chromosome sequences in these species.
Related JoVE Video
Cell surface heparan sulfate chains regulate local reception of FGF signaling in the mouse embryo.
Dev. Cell
PUBLISHED: 04-11-2011
Show Abstract
Hide Abstract
Heparan sulfate (HS) proteoglycans modulate the activity of multiple growth factors on the cell surface and extracellular matrix. However, it remains unclear how the HS chains control the movement and reception of growth factors into targeted receiving cells during mammalian morphogenetic processes. Here, we found that HS-deficient Ext2 null mutant mouse embryos fail to respond to fibroblast growth factor (FGF) signaling. Marker expression analyses revealed that cell surface-tethered HS chains are crucial for local retention of FGF4 and FGF8 ligands in the extraembryonic ectoderm. Fine chimeric studies with single-cell resolution and expression studies with specific inhibitors for HS movement demonstrated that proteolytic cleavage of HS chains can spread FGF signaling to adjacent cells within a short distance. Together, the results show that spatiotemporal expression of cell surface-tethered HS chains regulate the local reception of FGF-signaling activity during mammalian embryogenesis.
Related JoVE Video
Chromosomal localization of the 18S-28S and 5S rRNA genes and (TTAGGG)n sequences of butterfly lizards (Leiolepis belliana belliana and Leiolepis boehmei, Agamidae, Squamata).
Genet. Mol. Biol.
PUBLISHED: 03-16-2011
Show Abstract
Hide Abstract
Chromosomal mapping of the butterfly lizards Leiolepis belliana belliana and L. boehmei was done using the 18S-28S and 5S rRNA genes and telomeric (TTAGGG)n sequences. The karyotype of L. b. belliana was 2n = 36, whereas that of L. boehmei was 2n = 34. The 18S-28S rRNA genes were located at the secondary constriction of the long arm of chromosome 1, while the 5S rRNA genes were found in the pericentromeric region of chromosome 6 in both species. Hybridization signals for the (TTAGGG)n sequence were observed at the telomeric ends of all chromosomes, as well as interstitially at the same position as the 18S-28S rRNA genes in L. boehmei. This finding suggests that in L. boehmei telomere-to-telomere fusion probably occurred between chromosome 1 and a microchromosome where the 18S-28S rRNA genes were located or, alternatively, at the secondary constriction of chromosome 1. The absence of telomeric sequence signals in chromosome 1 of L. b. belliana suggested that its chromosomes may have only a few copies of the (TTAGGG)n sequence or that there may have been a gradual loss of the repeat sequences during chromosomal evolution.
Related JoVE Video
Molecular cloning, characterization, and chromosome mapping of reptilian estrogen receptors.
Endocrinology
PUBLISHED: 10-06-2010
Show Abstract
Hide Abstract
In many vertebrates, steroid hormones are essential for ovarian differentiation during a critical developmental stage as well as promoting the growth and differentiation of the adult female reproductive system. Although studies have been extensively conducted in mammals and a few fish, amphibians, and bird species, the molecular mechanisms of sex steroid hormone (estrogens) action have been poorly examined in reptiles. Here, we evaluate hormone receptor and ligand interactions in two species of snake, the Okinawa habu (Protobothrops flavoviridis, Viperidae) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae) after the isolation of cDNAs encoding estrogen receptor ? (ESR1) and estrogen receptor ? (ESR2). Using a transient transfection assay with mammalian cells, the transcriptional activity of reptilian (Okinawa habu, Japanese four-striped rat snake, American alligator, and Florida red-belly freshwater turtle) ESR1 and ESR2 was examined. All ESR proteins displayed estrogen-dependent activation of transcription via an estrogen-response element-containing promoter; however, the responsiveness to various estrogens was different. Further, we determined the chromosomal locations of the snake steroid hormone receptor genes. ESR1 and ESR2 genes were localized to the short and long arms of chromosome 1, respectively, whereas androgen receptor was localized to a pair of microchromosomes in the two snake species examined. These data provide basic tools that allow future studies examining receptor-ligand interactions and steroid endocrinology in snakes and also expands our knowledge of sex steroid hormone receptor evolution.
Related JoVE Video
Unique structural characteristics and evolution of a cluster of venom phospholipase A2 isozyme genes of Protobothrops flavoviridis snake.
Gene
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
Protobothrops flavoviridis (Crotalinae) venom gland phospholipase A(2) (PLA(2)) isozyme genes have evolved in an accelerated manner to acquire diverse physiological activities in their products. For elucidation of the multiplication mechanism of PLA(2) genes, a 25,026 bp genome segment harboring five PLA(2) isozyme genes was obtained from Amami-Oshima P. flavoviridis liver and sequenced. The gene PfPLA 2 encoded [Lys(49)]PLA(2) called BPII, the gene PfPLA 4 neurotoxic [Asp(49)]PLA(2) called PLA-N, the gene PfPLA 5 basic [Asp(49)]PLA(2) called PLA-B, and PfPLA 1(psi) and PfPLA 3(psi) were the inactivated genes. The 5 truncated reverse transcriptase (RT) elements, whose intact forms constitute long interspersed nuclear elements (LINEs), were found in close proximity to the 3 end of PLA(2) genes and named PLA(2) gene-coupled RT fragments (PcRTFs). The facts that PcRTFs have the stem-loop and repetitive sequence in the 3 untranslated region (UTR) which is characteristic of CR1 LINEs suggest that PcRTFs are the debris of P. flavoviridis ancestral CR1 LINEs, denoted as PfCR1s. Since the associated pairs of PLA(2) genes and PcRTFs are arranged in tandem in the 25,026 bp segment, it is thought that an ancestral PLA(2) gene-PfCR1 unit (PfPLA-PfCR1) which was produced by retrotransposition of PfCR1 by itself to the 3 end of PLA(2) gene duplicated several times to form a multimer of PfPLA-PfCR1, a cluster of PLA(2) genes, in the period after Crotalinae and Viperinae snakes branched off. Recombinational hot spot of a 37bp segment, named Scomb, was found in the region 548 bp upstream from the TATA box of PLA(2) genes. Thus, it could be assumed that multiplication of PfPLA-PfCR1 occurred by unequal crossing over of the segment, -Scomb-PfPLA-PfCR1-Scomb-. The PfCR1 moieties were afterward disrupted in the 5 portion to PcRTFs. The detection of two types of PcRTFs different in length which were produced by elimination of two definitive sequences in PfCR1 moiety possibly by gene conversion clearly supports such process but not multiplication of the PLA(2) gene-PcRTF unit.
Related JoVE Video
Karyotypic evolution in squamate reptiles: comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirg
Chromosome Res.
PUBLISHED: 07-23-2009
Show Abstract
Hide Abstract
The butterfly lizard (Leiolepis reevesii rubritaeniata) has the diploid chromosome number of 2n = 36, comprising two distinctive components, macrochromosomes and microchromosomes. To clarify the conserved linkage homology between lizard and snake chromosomes and to delineate the process of karyotypic evolution in Squamata, we constructed a cytogenetic map of L. reevesii rubritaeniata with 54 functional genes and compared it with that of the Japanese four-striped rat snake (E. quadrivirgata, 2n = 36). Six pairs of the lizard macrochromosomes were homologous to eight pairs of the snake macrochromosomes. The lizard chromosomes 1, 2, 4, and 6 corresponded to the snake chromosomes 1, 2, 3, and Z, respectively. LRE3p and LRE3q showed the homology with EQU5 and EQU4, respectively, and LRE5p and LRE5q corresponded to EQU7 and EQU6, respectively. These results suggest that the genetic linkages have been highly conserved between the two species and that their karyotypic difference might be caused by the telomere-to-telomere fusion events followed by inactivation of one of two centromeres on the derived dicentric chromosomes in the lineage of L. reevesii rubritaeniata or the centric fission events of the bi-armed macrochromosomes and subsequent centromere repositioning in the lineage of E. quadrivirgata. The homology with L. reevesii rubritaeniata microchromosomes were also identified in the distal regions of EQU1p and 1q, indicating the occurrence of telomere-to-telomere fusions of microchromosomes to the p and q arms of EQU1.
Related JoVE Video
Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping.
PLoS ONE
Show Abstract
Hide Abstract
Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis), the Siamese crocodile (Crocodylus siamensis), and the Western clawed frog (Xenopus tropicalis) and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human). This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines). The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated chromosomal fusions probably occurred independently in the amphibian, squamate, crocodilian, and mammalian lineages.
Related JoVE Video
Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC(3) profiling in snake.
BMC Genomics
Show Abstract
Hide Abstract
Extant sauropsids (reptiles and birds) are divided into two major lineages, the lineage of Testudines (turtles) and Archosauria (crocodilians and birds) and the lineage of Lepidosauria (tuatara, lizards, worm lizards and snakes). Karyotypes of these sauropsidan groups generally consist of macrochromosomes and microchromosomes. In chicken, microchromosomes exhibit a higher GC-content than macrochromosomes. To examine the pattern of intra-genomic GC heterogeneity in lepidosaurian genomes, we constructed a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 183 cDNA clones by fluorescence in situ hybridization, and examined the correlation between the GC-content of exonic third codon positions (GC3) of the genes and the size of chromosomes on which the genes were localized.
Related JoVE Video
Molecular cytogenetic identification and characterization of Robertsonian chromosomes in the large Japanese field mouse (Apodemus speciosus) using FISH.
Zool. Sci.
Show Abstract
Hide Abstract
Robertsonian (Rb) karyotypic polymorphism in Apodemus speciosus has interested many researchers with particular referece to the genetic divergence between Rb and non-Rb populations. Failure to find morphologic, biochemical, or genetic differences in previous studies reveals the necessity of focusing on loci on Rb chromosomes, which can be characterized by FISH mapping with DNA probes. In an Rb heterozygote, DNA probes from laboratory mouse chromosomes (MMUs) 1 and 10 were simultaneously hybridized to the long arm of a metacentric and a medium-sized acrocentric chromosome and to the short arm of the metacentric and a small acrocentric chromosome, respectively. Four additional probes derived from each of MMUs 1 and 10 were mapped to the long and short arms, respectively, of the Rb chromosome identified by the above markers. Homologies between the long arm of the Rb chromosome and MMU 1 and between the short arm and MMU 10 were supported by all ten markers, which were dispersed along nearly the entire lengths of the Rb chromosomes. These results indicate that the long and short arms of the Rb chromosomes are homologous to Apodemus speciosus chromosomes 12 and 19 (defined in a previous study), respectively. This ten-marker series can be useful for detecting chromosome-specific divergence between the two karyotypic populations at the gene level.
Related JoVE Video
Characterization of squamate olfactory receptor genes and their transcripts by the high-throughput sequencing approach.
Genome Biol Evol
Show Abstract
Hide Abstract
The olfactory receptor (OR) genes represent the largest multigene family in the genome of terrestrial vertebrates. Here, the high-throughput next-generation sequencing (NGS) approach was applied to characterization of OR gene repertoires in the green anole lizard Anolis carolinensis and the Japanese four-lined ratsnake Elaphe quadrivirgata. Tagged polymerase chain reaction (PCR) products amplified from either genomic DNA or cDNA of the two species were used for parallel pyrosequencing, assembling, and screening for errors in PCR and pyrosequencing. Starting from the lizard genomic DNA, we accurately identified 56 of 136 OR genes that were identified from its draft genome sequence. These recovered genes were broadly distributed in the phylogenetic tree of vertebrate OR genes without severe biases toward particular OR families. Ninety-six OR genes were identified from the ratsnake genomic DNA, implying that the snake has more OR gene loci than the anole lizard in response to an increased need for the acuity of olfaction. This view is supported by the estimated number of OR genes in the Burmese pythons draft genome (?280), although squamates may generally have fewer OR genes than terrestrial mammals and amphibians. The OR gene repertoire of the python seems unique in that many class I OR genes are retained. The NGS approach also allowed us to identify candidates of highly expressed and silent OR gene copies in the lizards olfactory epithelium. The approach will facilitate efficient and parallel characterization of considerable unbiased proportions of multigene family members and their transcripts from nonmodel organisms.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.