JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Integrating transcriptomics with metabolic modeling predicts biomarkers and drug targets for Alzheimer's disease.
PLoS ONE
PUBLISHED: 08-15-2014
Show Abstract
Hide Abstract
Accumulating evidence links numerous abnormalities in cerebral metabolism with the progression of Alzheimer's disease (AD), beginning in its early stages. Here, we integrate transcriptomic data from AD patients with a genome-scale computational human metabolic model to characterize the altered metabolism in AD, and employ state-of-the-art metabolic modelling methods to predict metabolic biomarkers and drug targets in AD. The metabolic descriptions derived are first tested and validated on a large scale versus existing AD proteomics and metabolomics data. Our analysis shows a significant decrease in the activity of several key metabolic pathways, including the carnitine shuttle, folate metabolism and mitochondrial transport. We predict several metabolic biomarkers of AD progression in the blood and the CSF, including succinate and prostaglandin D2. Vitamin D and steroid metabolism pathways are enriched with predicted drug targets that could mitigate the metabolic alterations observed. Taken together, this study provides the first network wide view of the metabolic alterations associated with AD progression. Most importantly, it offers a cohort of new metabolic leads for the diagnosis of AD and its treatment.
Related JoVE Video
A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration.
Mol. Syst. Biol.
PUBLISHED: 08-03-2014
Show Abstract
Hide Abstract
Over the last decade, the field of cancer metabolism has mainly focused on studying the role of tumorigenic metabolic rewiring in supporting cancer proliferation. Here, we perform the first genome-scale computational study of the metabolic underpinnings of cancer migration. We build genome-scale metabolic models of the NCI-60 cell lines that capture the Warburg effect (aerobic glycolysis) typically occurring in cancer cells. The extent of the Warburg effect in each of these cell line models is quantified by the ratio of glycolytic to oxidative ATP flux (AFR), which is found to be highly positively associated with cancer cell migration. We hence predicted that targeting genes that mitigate the Warburg effect by reducing the AFR may specifically inhibit cancer migration. By testing the anti-migratory effects of silencing such 17 top predicted genes in four breast and lung cancer cell lines, we find that up to 13 of these novel predictions significantly attenuate cell migration either in all or one cell line only, while having almost no effect on cell proliferation. Furthermore, in accordance with the predictions, a significant reduction is observed in the ratio between experimentally measured ECAR and OCR levels following these perturbations. Inhibiting anti-migratory targets is a promising future avenue in treating cancer since it may decrease cytotoxic-related side effects that plague current anti-proliferative treatments. Furthermore, it may reduce cytotoxic-related clonal selection of more aggressive cancer cells and the likelihood of emerging resistance.
Related JoVE Video
Maximal sum of metabolic exchange fluxes outperforms biomass yield as a predictor of growth rate of microorganisms.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth.
Related JoVE Video
Metabolically re-modeling the drug pipeline.
Curr Opin Pharmacol
PUBLISHED: 04-17-2013
Show Abstract
Hide Abstract
Costs for drug development have soared, exposing a clear need for new R&D strategies. Systems biology has meanwhile emerged as an attractive vehicle for integrating omics data and other post-genomic technologies into the drug pipeline. One of the emerging areas of computational systems biology is constraint-based modeling (CBM), which uses genome-scale metabolic models (GSMMs) as platforms for integrating and interpreting diverse omics datasets. Here we review current uses of GSMMs in drug discovery, focusing on prediction of novel drug targets and promising lead compounds. We then expand our discussion to prediction of toxicity and selectivity of potential drug targets. We discuss successes as well as limitations of GSMMs in these areas. Finally, we suggest new ways in which GSMMs may contribute to drug discovery, offering our vision of how GSMMs may re-model the drug pipeline in years to come.
Related JoVE Video
Model-based identification of drug targets that revert disrupted metabolism and its application to ageing.
Nat Commun
PUBLISHED: 03-13-2013
Show Abstract
Hide Abstract
The growing availability of omics data and high-quality in silico genome-scale metabolic models (GSMMs) provide a golden opportunity for the systematic identification of new metabolic drug targets. Extant GSMM-based methods aim at identifying drug targets that would kill the target cell, focusing on antibiotics or cancer treatments. However, normal human metabolism is altered in many diseases and the therapeutic goal is fundamentally different--to retrieve the healthy state. Here we present a generic metabolic transformation algorithm (MTA) addressing this issue. First, the prediction accuracy of MTA is comprehensively validated using data sets of known perturbations. Second, two predicted yeast lifespan-extending genes, GRE3 and ADH2, are experimentally validated, together with their associated hormetic effect. Third, we show that MTA predicts new drug targets for human ageing that are enriched with orthologs of known lifespan-extending genes and with genes downregulated following caloric restriction mimetic treatments. MTA offers a promising new approach for the identification of drug targets in metabolically related disorders.
Related JoVE Video
p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production.
Cancer Metab
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
The p53 tumor suppressor protein is a transcription factor that initiates transcriptional programs aimed at inhibiting carcinogenesis. p53 represses metabolic pathways that support tumor development (such as glycolysis and the pentose phosphate pathway (PPP)) and enhances metabolic pathways that are considered counter-tumorigenic such as fatty acid oxidation.
Related JoVE Video
Metabolic modeling of endosymbiont genome reduction on a temporal scale.
Mol. Syst. Biol.
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
A fundamental challenge in Systems Biology is whether a cell-scale metabolic model can predict patterns of genome evolution by realistically accounting for associated biochemical constraints. Here, we study the order in which genes are lost in an in silico evolutionary process, leading from the metabolic network of Escherichia coli to that of the endosymbiont Buchnera aphidicola. We examine how this order correlates with the order by which the genes were actually lost, as estimated from a phylogenetic reconstruction. By optimizing this correlation across the space of potential growth and biomass conditions, we compute an upper bound estimate on the models prediction accuracy (R=0.54). The models network-based predictive ability outperforms predictions obtained using genomic features of individual genes, reflecting the effect of selection imposed by metabolic stoichiometric constraints. Thus, while the timing of gene loss might be expected to be a completely stochastic evolutionary process, remarkably, we find that metabolic considerations, on their own, make a marked 40% contribution to determining when such losses occur.
Related JoVE Video
Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model.
Bioinformatics
PUBLISHED: 06-10-2010
Show Abstract
Hide Abstract
The availability of modern sequencing techniques has led to a rapid increase in the amount of reconstructed metabolic networks. Using these models as a platform for the analysis of high throughput transcriptomic, proteomic and metabolomic data can provide valuable insight into conditional changes in the metabolic activity of an organism. While transcriptomics and proteomics provide important insights into the hierarchical regulation of metabolic flux, metabolomics shed light on the actual enzyme activity through metabolic regulation and mass action effects. Here we introduce a new method, termed integrative omics-metabolic analysis (IOMA) that quantitatively integrates proteomic and metabolomic data with genome-scale metabolic models, to more accurately predict metabolic flux distributions. The method is formulated as a quadratic programming (QP) problem that seeks a steady-state flux distribution in which flux through reactions with measured proteomic and metabolomic data, is as consistent as possible with kinetically derived flux estimations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.