JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Assessment of EGFR mutations in circulating tumor cell preparations from NSCLC patients by next generation sequencing: toward a real-time liquid biopsy for treatment.
PLoS ONE
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
Assessment of EGFR mutation in non-small cell lung cancer (NSCLC) patients is mandatory for optimization of pharmacologic treatment. In this respect, mutation analysis of circulating tumor cells (CTCs) may be desirable since they may provide real-time information on patient's disease status.
Related JoVE Video
Optimizing single agent panitumumab therapy in pre-treated advanced colorectal cancer.
Neoplasia
PUBLISHED: 05-21-2014
Show Abstract
Hide Abstract
To improve the selection of advanced colorectal cancer patients to panitumumab by optimizing the assessment of RAS (KRAS-NRAS) mutations.
Related JoVE Video
Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations.
J. Clin. Oncol.
PUBLISHED: 08-08-2011
Show Abstract
Hide Abstract
To investigate the prevalence, distribution, and prognostic role of BRAF mutations in a large cohort of white patients with non-small-cell lung cancer (NSCLC).
Related JoVE Video
A unique microRNA signature associated with plaque instability in humans.
Stroke
PUBLISHED: 08-04-2011
Show Abstract
Hide Abstract
Atherosclerotic plaque rupture is considered the most important mechanism that underlies the onset of stroke, myocardial infarction, and sudden death. Several evidences demonstrated the pivotal role of inflammatory processes in plaque destabilization. MicroRNAs (miRNAs) are small endogenous RNAs and represent a new important class of gene regulators. Nevertheless, no data exist about the expression profile of miRNAs in atherosclerotic plaques. Thus, the aim of this study was to investigate the expression level of miRNAs in human plaques and to correlate it with clinical features of plaque destabilization.
Related JoVE Video
Increased detection sensitivity for KRAS mutations enhances the prediction of anti-EGFR monoclonal antibody resistance in metastatic colorectal cancer.
Clin. Cancer Res.
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
KRAS mutations represent the main cause of resistance to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MoAbs) in metastatic colorectal cancer (mCRC). We evaluated whether highly sensitive methods for KRAS investigation improve the accuracy of predictions of anti-EGFR MoAbs efficacy.
Related JoVE Video
Molecular profiling of the "plexinome" in melanoma and pancreatic cancer.
Hum. Mutat.
PUBLISHED: 05-23-2009
Show Abstract
Hide Abstract
Plexins are transmembrane high-affinity receptors for semaphorins, regulating cell guidance, motility, and invasion. Functional evidences implicate semaphorin signals in cancer progression and metastasis. Yet, it is largely unknown whether plexin genes are genetically altered in human tumors. We performed a comprehensive gene copy analysis and mutational profiling of all nine members of the plexin gene family (plexinome), in melanomas and pancreatic ductal adenocarcinomas (PDACs), which are characterized by high metastatic potential and poor prognosis. Gene copy analysis detected amplification of PLXNA4 in melanomas, whereas copy number losses of multiple plexin genes were seen in PDACs. Somatic mutations were detected in PLXNA4, PLXNB3, and PLXNC1; providing the first evidence that these plexins are mutated in human cancer. Functional assays in cellular models revealed that some of these missense mutations result in loss of plexin function. For instance, c.1613G>A, p.R538H mutation in the extracellular domain of PLXNB3 prevented binding of the ligand Sema5A. Moreover, although PLXNA4 signaling can inhibit tumor cell migration, the mutated c.5206C>T, p.H1736Y allele had lost this activity. Our study is the first systematic analysis of the "plexinome" in human tumors, and indicates that multiple mutated plexins may be involved in cancer progression.
Related JoVE Video
Clinical implications of KRAS mutations in lung cancer patients treated with tyrosine kinase inhibitors: an important role for mutations in minor clones.
Neoplasia
PUBLISHED: 05-22-2009
Show Abstract
Hide Abstract
Mutations inducing resistance to anti-epidermal growth factor receptor (EGFR) therapy may have a clinical impact even if present in minor cell clones which could expand during treatment. We tested this hypothesis in lung cancer patients treated with tyrosine kinase inhibitors (TKIs). Eighty-three patients with lung adenocarcinoma treated with erlotinib or gefitinib were included in this study. The mutational status of KRAS and EGFR was investigated by direct sequencing (DS). KRAS mutations were also assessed by mutant-enriched sequencing (ME-sequencing). DS detected KRAS mutations in 16 (19%) of 83 tumors; ME-sequencing identified all the mutations detected by DS but also mutations in minor clones of 14 additional tumors, for a total of 30 (36%) of 83. KRAS mutations assessed by DS and ME-sequencing significantly correlated with resistance to TKIs (P = .04 and P = .004, respectively) and significantly affected progression-free survival (PFS) and overall survival (OS). However, the predictive power of mutations assessed by ME-sequencing was higher than that obtained by DS (hazard ratio [HR] = 2.82, P = .0001 vs HR = 1.98, P = .04, respectively, for OS; HR = 2.52, P = .0005 vs HR = 2.21, P = .007, respectively, for PFS). Survival outcome of patients harboring KRAS mutations in minor clones, detected only by ME-sequencing, did not differ from that of patients with KRAS mutations detected by DS. Only KRAS mutations assessed by ME-sequencing remained an independent predictive factor at multivariate analysis. KRAS mutations in minor clones have an important impact on response and survival of patients with lung adenocarcinoma treated with EGFR-TKI. The use of sensitive detection methods could allow to more effectively identify treatment-resistant patients.
Related JoVE Video
Mutational profile of GNAQQ209 in human tumors.
PLoS ONE
PUBLISHED: 05-18-2009
Show Abstract
Hide Abstract
Frequent somatic mutations have recently been identified in the ras-like domain of the heterotrimeric G protein alpha-subunit (GNAQ) in blue naevi 83%, malignant blue naevi (50%) and ocular melanoma of the uvea (46%). The mutations exclusively affect codon 209 and result in GNAQ constitutive activation which, in turn, acts as a dominant oncogene.
Related JoVE Video
MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway.
EMBO J.
PUBLISHED: 05-18-2009
Show Abstract
Hide Abstract
MDM4 is a key regulator of p53, whose biological activities depend on both transcriptional activity and transcription-independent mitochondrial functions. MDM4 binds to p53 and blocks its transcriptional activity; however, the main cytoplasmic localization of MDM4 might also imply a regulation of p53-mitochondrial function. Here, we show that MDM4 stably localizes at the mitochondria, in which it (i) binds BCL2, (ii) facilitates mitochondrial localization of p53 phosphorylated at Ser46 (p53Ser46(P)) and (iii) promotes binding between p53Ser46(P) and BCL2, release of cytochrome C and apoptosis. In agreement with these observations, MDM4 reduction by RNA interference increases resistance to DNA-damage-induced apoptosis in a p53-dependent manner and independently of transcription. Consistent with these findings, a significant downregulation of MDM4 expression associates with cisplatin resistance in human ovarian cancers, and MDM4 modulation affects cisplatin sensitivity of ovarian cancer cells. These data define a new localization and function of MDM4 that, by acting as a docking site for p53Ser46(P) to BCL2, facilitates the p53-mediated intrinsic-apoptotic pathway. Overall, our results point to MDM4 as a double-faced regulator of p53.
Related JoVE Video
Related JoVE Video
IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors.
Hum. Mutat.
PUBLISHED: 01-02-2009
Show Abstract
Hide Abstract
Systematic sequence profiling of the Glioblastoma Multiforme (GBM) genome has recently led to the identification of somatic mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Interestingly, only the evolutionarily conserved residue R132 located in the substrate binding site of IDH1 was found mutated in GBM. At present, the occurrence and the relevance of p.R132 (IDH1(R132)) variants in tumors other than GBMs is largely unknown. We searched for mutations at position R132 of the IDH1 gene in a panel of 672 tumor samples. These included high-grade glioma, gastrointestinal stromal tumors (GIST), melanoma, bladder, breast, colorectal, lung, ovarian, pancreas, prostate, and thyroid carcinoma specimens. In addition, we assessed a panel of 84 cell lines from different tumor lineages. Somatic mutations affecting the IDH1(R132) residue were detected in 20% (23 of 113) high-grade glioma samples. In addition to the previously reported p.R132H and p.R132S alleles, we identified three novel somatic mutations (p.R132C, p.R132G, and p.R132L) affecting residue IDH1(R132) in GBM. Strikingly, no IDH1 mutations were detected in the other tumor types. These data indicate that cancer mutations affecting IDH1(R132) are tissue-specific, and suggest that it plays a unique role in the development of high-grade gliomas.
Related JoVE Video
Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing.
Clin. Cancer Res.
Show Abstract
Hide Abstract
The therapeutic choice for patients with lung adenocarcinoma depends on the presence of EGF receptor (EGFR) mutations. In many cases, only cytologic samples are available for molecular diagnosis. Bronchoalveolar lavage (BAL) and pleural fluid, which represent a considerable proportion of cytologic specimens, cannot always be used for molecular testing because of low rate of tumor cells.
Related JoVE Video
Complex mutations & subpopulations of deletions at exon 19 of EGFR in NSCLC revealed by next generation sequencing: potential clinical implications.
PLoS ONE
Show Abstract
Hide Abstract
Microdeletions at exon 19 are the most frequent genetic alterations affecting the Epidermal Growth Factor Receptor (EGFR) gene in non-small cell lung cancer (NSCLC) and they are strongly associated with response to treatment with tyrosine kinase inhibitors. A series of 116 NSCLC DNA samples investigated by Sanger Sequencing (SS), including 106 samples carrying exon 19 EGFR deletions and 10 without deletions (control samples), were subjected to deep next generation sequencing (NGS). All samples with deletions at SS showed deletions with NGS. No deletions were seen in control cases. In 93 (88%) cases, deletions detected by NGS were exactly corresponding to those identified by SS. In 13 cases (12%) NGS resolved deletions not accurately characterized by SS. In 21 (20%) cases the NGS showed presence of complex (double/multiple) frameshift deletions producing a net in-frame change. In 5 of these cases the SS could not define the exact sequence of mutant alleles, in the other 16 cases the results obtained by SS were conventionally considered as deletions plus insertions. Different interpretative hypotheses for complex mutations are discussed. In 46 (43%) tumors deep NGS showed, for the first time to our knowledge, subpopulations of DNA molecules carrying EGFR deletions different from the main one. Each of these subpopulations accounted for 0.1% to 17% of the genomic DNA in the different tumors investigated. Our findings suggest that a region in exon 19 is highly unstable in a large proportion of patients carrying EGFR deletions. As a corollary to this study, NGS data were compared with those obtained by immunohistochemistry using the 6B6 anti-mutant EGFR antibody. The immunoreaction was E746-A750del specific. In conclusion, NGS analysis of EGFR exon 19 in NSCLCs allowed us to formulate a new interpretative hypothesis for complex mutations and revealed the presence of subpopulations of deletions with potential pathogenetic and clinical impact.
Related JoVE Video
EGFR molecular profiling in advanced NSCLC: a prospective phase II study in molecularly/clinically selected patients pretreated with chemotherapy.
J Thorac Oncol
Show Abstract
Hide Abstract
The optimal use of epidermal growth factor receptor (EGFR)-related molecular markers to prospectively identify tyrosine kinase inhibitor (TKI)-sensitive patients, particularly after a previous chemotherapy treatment, is currently under debate.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.