JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Architecture engineering toward highly active palladium integrated titanium dioxide yolk-double-shell nanoreactor for catalytic applications.
Nanoscale
PUBLISHED: 09-01-2014
Show Abstract
Hide Abstract
Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd(2+) ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk-double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki-Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions.
Related JoVE Video
Clinical and laboratory findings of the first imported case of middle East respiratory syndrome coronavirus to the United States.
Clin. Infect. Dis.
PUBLISHED: 08-06-2014
Show Abstract
Hide Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) was discovered September 2012 in the Kingdom of Saudi Arabia (KSA). The first US case of MERS-CoV was confirmed on 2 May 2014.
Related JoVE Video
[Inducible and constitutive expression of fip-fve from Flammulina velutipes in Pichia pastoris GS115].
Sheng Wu Gong Cheng Xue Bao
PUBLISHED: 07-11-2014
Show Abstract
Hide Abstract
We transformed the fip-fve gene into Pichia pastoris GS115 for inducible and constitutive expression to obtain feasible bioactvie recombinant Fip-fve. The fip-fve gene was cloned from Flammulina velutipes fruting body by PCR and ligated to pPIC9 to construct inducible expression vector pPIC9-FIP-fve, and promotor pgap was used to replace the paox1 to construct constitutive expression vector pPIC9-PGAP-FIP-fve. These two vectors were used to transform P. pastoris by PEG method. The fip-fve was expressed after histamine-absence screening and yeast colony PCR. The inducible expression level reached 158.2 mg/L at the fourth day and the constitutive expression level was 46.3 mg/L and 29.5 mg/L using glucose and glycerol, respectively. The SDS-PAGE and Western blotting both proved the correctness of rFip-fve, and the hemagglutination test indicats the rFip-fve's bioactivity.
Related JoVE Video
Ionic liquid assisted chemical strategy to TiO2 hollow nanocube assemblies with surface-fluorination and nitridation and high energy crystal facet exposure for enhanced photocatalysis.
ACS Appl Mater Interfaces
PUBLISHED: 06-19-2014
Show Abstract
Hide Abstract
Realization of anionic nonmetal doping and high energy crystal facet exposure in TiO2 photocatalysts has been proven to be an effective approach for significantly improving their photocatalytic performance. A facile strategy of ionic liquid assisted etching chemistry by simply hydrothermally etching hollow TiO2 spheres composed of TiO2 nanoparticles with an ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate without any other additives is developed to create highly active anatase TiO2 nanocubes and TiO2 nanocube assemblies. With this one-pot ionic liquid assisted etching process, the surface-fluorination and nitridation and high energy {001} crystal facets exposure can be readily realized simultaneously. Compared with the benchmark materials of P25 and TiO2 nanostructures with other hierarchical architectures of hollow spheres, flaky spheres, and spindles synthesized by hydrothermally etching hollow TiO2 spheres with nonionic liquid of NH4F, the TiO2 nanocubes and TiO2 nanocube assemblies used as efficient photocatalysts show super high photocatalytic activity for degradation of methylene blue, methyl orange, and rhodamine B, due to their surface-fluorination and nitridation and high energy crystal facet exposure. The ionic liquid assisted etching chemistry is facile and robust and may be a general strategy for synthesizing other metal oxides with high energy crystal facets and surface doping for improving photocatalytic activity.
Related JoVE Video
Aspirin activation of eosinophils and mast cells: implications in the pathogenesis of aspirin-exacerbated respiratory disease.
J. Immunol.
PUBLISHED: 06-02-2014
Show Abstract
Hide Abstract
Reactions to aspirin and nonsteroidal anti-inflammatory drugs in patients with aspirin-exacerbated respiratory disease (AERD) are triggered when constraints upon activated eosinophils, normally supplied by PGE2, are removed secondary to cyclooxygenase-1 inhibition. However, the mechanism driving the concomitant cellular activation is unknown. We investigated the capacity of aspirin itself to provide this activation signal. Eosinophils were enriched from peripheral blood samples and activated with lysine ASA (LysASA). Parallel samples were stimulated with related nonsteroidal anti-inflammatory drugs. Activation was evaluated as Ca2+ flux, secretion of cysteinyl leukotrienes (CysLT), and eosinophil-derived neurotoxin (EDN) release. CD34+ progenitor-derived mast cells were also used to test the influence of aspirin on human mast cells with measurements of Ca2+ flux and PGD2 release. LysASA induced Ca2+ fluxes and EDN release, but not CysLT secretion from circulating eosinophils. There was no difference in the sensitivity or extent of activation between AERD and control subjects, and sodium salicylate was without effect. Like eosinophils, aspirin was able to activate human mast cells directly through Ca2+ flux and PGD2 release. AERD is associated with eosinophils maturing locally in a high IFN-? milieu. As such, in additional studies, eosinophil progenitors were differentiated in the presence of IFN-? prior to activation with aspirin. Eosinophils matured in the presence of IFN-? displayed robust secretion of both EDN and CysLTs. These studies identify aspirin as the trigger of eosinophil and mast cell activation in AERD, acting in synergy with its ability to release cells from the anti-inflammatory constraints of PGE2.
Related JoVE Video
Novel green-light KTP laser en bloc enucleation for nonmuscle-invasive bladder cancer: technique and initial clinical experience.
J. Endourol.
PUBLISHED: 05-19-2014
Show Abstract
Hide Abstract
The standard procedure for staging and treating nonmuscle-invasive bladder cancer (NMIBC) is still transurethral resection of bladder tumor (TURBT) via a wire loop. However, TURBT is associated with serious disadvantages that facilitate tumor recurrence. Recently, lasers have been explored as treatment tools for bladder tumors. Here, we report a novel tumor en bloc enucleation using a front-firing green-light potassium-titanyl-phosphate laser and its initial clinical application.
Related JoVE Video
First confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities - May 2014.
MMWR Morb. Mortal. Wkly. Rep.
PUBLISHED: 05-16-2014
Show Abstract
Hide Abstract
Since mid-March 2014, the frequency with which cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection have been reported has increased, with the majority of recent cases reported from Saudi Arabia and United Arab Emirates (UAE). In addition, the frequency with which travel-associated MERS cases have been reported and the number of countries that have reported them to the World Health Organization (WHO) have also increased. The first case of MERS in the United States, identified in a traveler recently returned from Saudi Arabia, was reported to CDC by the Indiana State Department of Health on May 1, 2014, and confirmed by CDC on May 2. A second imported case of MERS in the United States, identified in a traveler from Saudi Arabia having no connection with the first case, was reported to CDC by the Florida Department of Health on May 11, 2014. The purpose of this report is to alert clinicians, health officials, and others to increase awareness of the need to consider MERS-CoV infection in persons who have recently traveled from countries in or near the Arabian Peninsula. This report summarizes recent epidemiologic information, provides preliminary descriptions of the cases reported from Indiana and Florida, and updates CDC guidance about patient evaluation, home care and isolation, specimen collection, and travel as of May 13, 2014.
Related JoVE Video
Cytotoxicity of ultrafine monodispersed nanoceria on human gastric cancer cells.
J Biomed Nanotechnol
PUBLISHED: 05-09-2014
Show Abstract
Hide Abstract
The safety and toxicity of CeO2 nanoparticles (nanoceria) are of growing concern due to their potential applications in biological and medical fields based on the radical scavenging and UV-filtering properties. In this paper, the ultrafine monodisperse (2-5 nm) water-insoluble (CeO2-P) and water-soluble nanoceria modified with various functional groups of dextran (CeO2-dextran), polyacrylic acid (CeO2-PAA) and ethylenediamine (CeO2-EDA) on surface were synthesized via alkaline-based precipitation and inverse microemulsion methods. The cell uptaking, oxidative stress and cytotoxicity of these nanoceria on human gastric cancer cell line (BGC-803) were systematically investigated. It is found that the cell uptaking of nanoceria is largely relied on the function groups on its surfaces and followed the order: CeO2-P > CeO2-EDA > CeO2-dextran > CeO2-PAA. Moreover, the oxidative stress of BGC-803 cells is obviously affected by the antioxidant capacity of nanoceria determined by Ce3+/Ce4+ ratio, which eventually causes the cell viability variable once the nanoceria entered into BGC-803 cells. In addition, the cell viability is also closely correlated with the concentration and surface characteristics of nanoceria. The cytotoxicity of nanoceria on BGC-803 cells is largely dependent on its surface functional groups. Our work may provide guidance on the cytotoxicity of ultrafine monodisperse nanoceria for their uses in biological and medical fields.
Related JoVE Video
[HCo(CO)?]-catalyzed three-component cycloaddition of epoxides, imines, and carbon monoxide: facile construction of 1,3-oxazinan-4-ones.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 04-04-2014
Show Abstract
Hide Abstract
The three-component [3+2+1] cycloaddition of epoxides, imines, and carbon monoxide to produce 1,3-oxazinan-4-ones has been developed by using [HCo(CO)4] as the catalyst. The reaction occurs for a wide variety of imines and epoxides, under 60?bar of CO pressure at 50?°C, to produce 1,3-oxazinan-4-ones with different substitution patterns in high yields, and provides an efficient and atom-economic route to heterocycles from simple and readily available starting materials. A plausible mechanism involves [HCo(CO)4]-induced ring-opening of the epoxide, followed by sequential addition of carbon monoxide and the imine, and then ring closure to form the product accompanied by regeneration of [HCo(CO)4].
Related JoVE Video
Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool.
MBio
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
We investigated the application capabilities of a laser optical sensor, BARDOT (bacterial rapid detection using optical scatter technology) to generate differentiating scatter patterns for the 20 most frequently reported serovars of Salmonella enterica. Initially, the study tested the classification ability of BARDOT by using six Salmonella serovars grown on brain heart infusion, brilliant green, xylose lysine deoxycholate, and xylose lysine tergitol 4 (XLT4) agar plates. Highly accurate discrimination (95.9%) was obtained by using scatter signatures collected from colonies grown on XLT4. Further verification used a total of 36 serovars (the top 20 plus 16) comprising 123 strains with classification precision levels of 88 to 100%. The similarities between the optical phenotypes of strains analyzed by BARDOT were in general agreement with the genotypes analyzed by pulsed-field gel electrophoresis (PFGE). BARDOT was evaluated for the real-time detection and identification of Salmonella colonies grown from inoculated (1.2 × 10(2) CFU/30 g) peanut butter, chicken breast, and spinach or from naturally contaminated meat. After a sequential enrichment in buffered peptone water and modified Rappaport Vassiliadis broth for 4 h each, followed by growth on XLT4 (~16 h), BARDOT detected S. Typhimurium with 84% accuracy in 24 h, returning results comparable to those of the USDA Food Safety and Inspection Service method, which requires ~72 h. BARDOT also detected Salmonella (90 to 100% accuracy) in the presence of background microbiota from naturally contaminated meat, verified by 16S rRNA sequencing and PFGE. Prolonged residence (28 days) of Salmonella in peanut butter did not affect the bacterial ability to form colonies with consistent optical phenotypes. This study shows BARDOT's potential for nondestructive and high-throughput detection of Salmonella in food samples.
Related JoVE Video
Double shelled hollow nanospheres with dual noble metal nanoparticle encapsulation for enhanced catalytic application.
Nanoscale
PUBLISHED: 08-22-2013
Show Abstract
Hide Abstract
We report the design and realization of double shelled @CeO2/M@M/TiO2 (M = Au and/or Pd) nanospheres with dual noble metal nanoparticles encapsulated in metal oxide shells via a layer-by-layer deposition process followed by an alkali etching method. The resulting nanospheres possess uniform sizes, variable shell components and thicknesses, adjustable noble metal nanoparticles encapsulated, regulable chamber spaces between the two shells, and good structural stability, which can be used as unique microreactors with extremely high catalytic activity and stability in the Suzuki-Miyaura coupling reaction, benzyl aerobic alcohol oxidation, and 4-nitrophenol reduction reaction due to their structural features with multiple interactions and strong synergistic effects between the noble metal nanoparticles and metal oxide shells, and less depletion of catalytic active species. The designed double shelled hollow @CeO2/M@M/TiO2 nanocatalysts can be used as novel catalyst systems with highly efficient catalytic performance for various catalytic reactions depending on their shell components and noble metal nanoparticles encapsulated. The synthetic strategy provides a new methodology to design high-performance and multifunctional nanocatalysts.
Related JoVE Video
[Activity of the SrfAC-A domain from Bacillus subtilis fmbj].
Wei Sheng Wu Xue Bao
PUBLISHED: 08-21-2013
Show Abstract
Hide Abstract
We studied the A domain of surfactin synthase in vitro to obtain new surfactin analogues.
Related JoVE Video
Influence of the surface charge on the homogeneity of colloidal crystals.
J Chem Phys
PUBLISHED: 08-17-2013
Show Abstract
Hide Abstract
Five groups of suspensions composed of polystyrene particles, having similar size but different effective surface charge, were adopted to investigate the effects of surface charge and volume fraction on the homogeneity of colloidal crystals through checking the difference between D(exp) and D(uni) by reflection spectroscopy method (D(exp), D(uni) are the experimental and the expected value of the average nearest neighbor interparticle distance by assuming a uniform structure, respectively). We found volume fractions (ranging from 0.006 to 0.02) and structure types basically have no influence on the values of D(exp)/D(uni). Moreover, for crystals formed by lowly charged particles, D(exp)/D(uni) is approximately equal to 1, implying the crystals are homogeneous. With the increase of effective surface charge, D(exp) gradually deviates from D(uni) and the formed crystals become inhomogeneous. Our experimental observations are in accordance with the previous simulation results. Additionally, we also found D(exp)/D(uni) initially drops quickly with increasing effective surface charge and then it tends to an asymptotic value (~0.85), it is supposedly due to the saturation of effective charge. Our relevant computer simulations confirmed that the study scheme that using D(exp)/D(uni) as an indicator to assess the homogeneity of crystal structure is tenable and the simulation results are consistent with experiments.
Related JoVE Video
A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications.
Chem. Commun. (Camb.)
PUBLISHED: 07-22-2013
Show Abstract
Hide Abstract
A novel magnetic double-shell Fe3O4@TiO2/Au@Pd@TiO2 microsphere composed of a Fe3O4 core and double TiO2 shells with Au and Pd nanoparticles encapsulated is created. The microsphere can be used as a highly efficient reusable catalyst with superior catalytic activity and stability and magnetic separable capability in reduction of 4-nitrophenol.
Related JoVE Video
Metabolic flux analysis of Arthrobacter sp. CGMCC 3584 for cAMP production based on (13)C tracer experiments and gas chromatography-mass spectrometry.
J. Biotechnol.
PUBLISHED: 04-19-2013
Show Abstract
Hide Abstract
Arthrobacter sp. CGMCC 3584 are able to produce cAMP from glucose by the purine synthesis pathway via de novo or salvage biosynthesis. In order to gain an improved understanding of its metabolism, (13)C-labeling experiment and gas chromatography-mass spectrometry (GC-MS) analysis were employed to determine the metabolic network structure and estimate the intracellular fluxes. GC-MS analysis helps to reflect the activity of the intracellular pathways and reactions. The metabolic network mainly contains glycolytic and pentose phosphate pathways, the tricarboxylic acid cycle, and the inactive glyoxylate shunt. Hypoxanthine as a precursor of cAMP and sodium fluoride as an inhibitor of glycolysis were found to increase the cAMP production, as well as the flux through the PP pathway. The effects of adding hypoxanthine and sodium fluoride are discussed based on the enzyme assays and metabolic flux analysis. In conclusion, our results provide quantitative insights into how cells manipulate the metabolic network under different culture conditions and this may be of value in metabolic regulation for desirable production.
Related JoVE Video
Lis1 mediates planar polarity of auditory hair cells through regulation of microtubule organization.
Development
PUBLISHED: 03-28-2013
Show Abstract
Hide Abstract
The V-shaped hair bundles atop auditory hair cells and their uniform orientation are manifestations of epithelial planar cell polarity (PCP) required for proper perception of sound. PCP is regulated at the tissue level by a conserved core Wnt/PCP pathway. However, the hair cell-intrinsic polarity machinery is poorly understood. Recent findings implicate hair cell microtubules in planar polarization of hair cells. To elucidate the microtubule-mediated polarity pathway, we analyzed Lis1 function in the auditory sensory epithelium in the mouse. We show that conditional deletion of Lis1 in developing hair cells causes defects in cytoplasmic dynein and microtubule organization, resulting in planar polarity defects without overt effects on the core PCP pathway. Lis1 ablation during embryonic development results in defects in hair bundle morphology and orientation, cellular organization and junctional nectin localization. We present evidence that Lis1 regulates localized Rac-PAK signaling in embryonic hair cells, probably through microtubule-associated Tiam1, a guanine nucleotide exchange factor for Rac. Lis1 ablation in postnatal hair cells significantly disrupts centrosome anchoring and the normal V-shape of hair bundles, accompanied by defects in the pericentriolar matrix and microtubule organization. Lis1 is also required for proper positioning of the Golgi complex and mitochondria as well as for hair cell survival. Together, our results demonstrate that Lis1 mediates the planar polarity of hair cells through regulation of microtubule organization downstream of the tissue polarity pathway.
Related JoVE Video
Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application.
Chem. Commun. (Camb.)
PUBLISHED: 03-27-2013
Show Abstract
Hide Abstract
Novel hollow mesoporous @M/CeO(2) (M = Au, Pd, and Au-Pd) nanospheres are created. The nanospheres can be used as effective nanoreactors with superior catalytic activity and stability for reduction of 4-nitrophenol due to their hollow mesoporous structural features.
Related JoVE Video
Effects of oriented surface dipole on photoconversion efficiency in an alkane/lipid-hybrid-bilayer-based photovoltaic model system.
Chemphyschem
PUBLISHED: 03-25-2013
Show Abstract
Hide Abstract
When a phospholipid monolayer containing a zinc-coordinated porphyrin species formed atop a self-assembled monolayer of heptadecafluoro-1-decanethiol (CF3(CF2)7(CH2)2SH) is subjected to photoelectrochemical current generation, a significant modulation effect is observed. Compared with devices that contain similar photoactive lipid monolayers but formed on 1-dodecanethiol SAMs, these fluorinated hybrid bilayers produce a >60% increase in cathodic currents and a similar decrease in anodic currents. Photovoltages recorded from these hybrid bilayers are found to vary in the same fashion. The modulation of photovoltaic responses in these hybrid-bilayer-based devices is explained by the opposite surface dipoles associated with the thiols employed in this study, which in one case (fluorothiol) increase and in another (alkanethiol) decrease the work function of the underlying gold substrates. A similar trend of photovoltage/photocurrent modulation is also observed if fullerene is used as the photoagent in these devices. Our results reveal the intricacy of orientated surface dipole in influencing the photovoltaic processes, and its subtle interplay with other factors related to the photoagents, such as their location and orientation within the organic matrix.
Related JoVE Video
Prominent role of IFN-? in patients with aspirin-exacerbated respiratory disease.
J. Allergy Clin. Immunol.
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
Aspirin-exacerbated respiratory disease (AERD) is distinguished from aspirin-tolerant asthma/chronic sinusitis in large part by an exuberant infiltration of eosinophils that are characterized by their overexpression of metabolic pathways that drive the constitutive and aspirin-induced secretion of cysteinyl leukotrienes (CysLTs).
Related JoVE Video
A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.).
BMC Plant Biol.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
The application and nutritional value of vegetable oil is highly dependent on its fatty acid composition, especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid. Microsomal oleoyl phosphatidylcholine desaturase encoded by FAD2 gene is known to introduce a double bond at the ?12 position of an oleic acid on phosphatidylcholine and convert it to linoleic acid. The known plant FAD2 enzymes are encoded by small gene families consisting of 1-4 members. In addition to the classic oleate ?12-desaturation activity, functional variants of FAD2 that are capable of undertaking additional or alternative acyl modifications have also been reported in a limited number of plant species. In this study, our objective was to identify FAD2 genes from safflower and analyse their differential expression profile and potentially diversified functionality.
Related JoVE Video
Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L.) plants.
Front Plant Sci
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Vegetable oils high in oleic acid are considered to be advantageous because of their better nutritional value and potential industrial applications. The oleic acid content in the classic safflower oil is normally 10-15% while a natural mutant (ol) accumulates elevated oleic acid up to 70% in seed oil. As a part of our investigation into the molecular features of the high oleic (HO) trait in safflower we have profiled the microRNA (miRNA) populations in developing safflower seeds expressing the ol allele in comparison to the wild type high linoleic (HL) safflower using deep sequencing technology. The small RNA populations of the mid-maturity developing embryos of homozygous ol HO and wild type HL safflower had a very similar size distribution pattern, however, only ~16.5% of the unique small RNAs were overlapping in these two genotypes. From these two small RNA populations we have found 55 known miRNAs and identified two candidate novel miRNA families to be likely unique to the developing safflower seeds. Target genes with conserved as well as novel functions were predicted for the conserved miRNAs. We have also identified 13 miRNAs differentially expressed between the HO and HL safflower genotypes. The results may lay a foundation for unraveling the miRNA-mediated molecular processes that regulate oleic acid accumulation in the HO safflower mutant and developmental processes in safflower embryos in general.
Related JoVE Video
Identification of novel autoantibodies for detection of malignant mesothelioma.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The malignant mesothelioma (MM) survival rate has been hampered by the lack of efficient and accurate early detection methods. The immune system may detect the early changes of tumor progression by responding with tumor-associated autoantibody production. Hence, in this study, we translated the humoral immune response to cancer proteins into a potential blood test for MM.
Related JoVE Video
Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid.
Microb. Cell Fact.
PUBLISHED: 07-11-2011
Show Abstract
Hide Abstract
Mandelic acid (MA), an important component in pharmaceutical syntheses, is currently produced exclusively via petrochemical processes. Growing concerns over the environment and fossil energy costs have inspired a quest to develop alternative routes to MA using renewable resources. Herein we report the first direct route to optically pure MA from glucose via genetic modification of the L-phenylalanine pathway in E. coli.
Related JoVE Video
Maize ZmMEK1 is a single-copy gene.
Mol. Biol. Rep.
PUBLISHED: 06-08-2011
Show Abstract
Hide Abstract
Mitogen-activated protein kinase (MAPK) cascade constitutes a conserved signaling module in eukaryotes. MAPK kinase (MAPKK) plays a crucial role in a MAPK cascade. ZmMEK1 is the first characterized MAPKK gene in maize. Although ZmMEK1 has been studied in detail in biochemical level, the genomic organization of ZmMEK1 gene is obscure. In this research, we clarified ZmMEK1 is a single-copy gene in the maize genome. Southern blot analysis using 3 specific region of ZmMEK1 cDNA as a probe revealed the presence of distinct single bands in each lane of EcoRI and HindIII. Although previous Southern blot analysis using full-length ZmMEK1 cDNA as a probe revealed several hybridizing bands, we showed here that all bands come from one genomic fragment corresponding to ZmMEK1 gene. Furthermore, ZmMEK1 was induced by PEG, abscisic acid (ABA), and salicylic acid (SA) and was down-regulated by NaCl.
Related JoVE Video
Kinetics study of crystallization with the disorder-bcc-fcc phase transition of charged colloidal dispersions.
Langmuir
PUBLISHED: 05-20-2011
Show Abstract
Hide Abstract
Structure transformation (disorder-bcc-fcc) in charged colloidal dispersions, as a manifestation of the Ostwalds step rule, was confirmed by means of reflection spectrum (RS) measurements in our previous study. By taking advantage of a reflection spectrum containing plenty of information about the crystallization behaviors, time-dependent changes of parameters associated with the crystal structure and composition during the disorder-bcc-fcc transition are reported by treating the data from RS in this article. In addition, Avramis model is adopted to analyze the transition process and investigate the transition rate. On the basis of the above investigations, associated kinetic features of crystallization with the disorder-bcc-fcc transition are described.
Related JoVE Video
Bacillus sp. CDB3 isolated from cattle dip-sites possesses two ars gene clusters.
J Environ Sci (China)
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
Contamination of soil and water by arsenic is a global problem. In Australia, the dipping of cattle in arsenic-containing solution to control cattle ticks in last centenary has left many sites heavily contaminated with arsenic and other toxicants. We had previously isolated five soil bacterial strains (CDB1-5) highly resistant to arsenic. To understand the resistance mechanism, molecular studies have been carried out. Two chromosome-encoded arsenic resistance (ars) gene clusters have been cloned from CDB3 (Bacillus sp.). They both function in Escherichia coli and cluster 1 exerts a much higher resistance to the toxic metalloid. Cluster 2 is smaller possessing four open reading frames (ORFs) arsRorf2BC, similar to that identified in Bacillus subtilis Skin element. Among the eight ORFs in cluster 1 five are analogs of common ars genes found in other bacteria, however, organized in a unique order arsRBCDA instead of arsRDABC. Three other putative genes are located directly downstream and designated as arsTIP based on the homologies of their theoretical translation sequences respectively to thioredoxin reductases, iron-sulphur cluster proteins and protein phosphatases. The latter two are novel of any known ars operons. The arsD gene from Bacillus species was cloned for the first time and the predict protein differs from the well studied E. coli ArsD by lacking two pairs of C-terminal cysteine residues. Its functional involvement in arsenic resistance has been confirmed by a deletion experiment. There exists also an inverted repeat in the intergenic region between arsC and arsD implying some unknown transcription regulation.
Related JoVE Video
Effect of diclofenac sodium combined with nuclear rotation on the prevention of posterior capsule opacification: two-year follow-up.
J Cataract Refract Surg
PUBLISHED: 03-23-2011
Show Abstract
Hide Abstract
To evaluate the effect of combined diclofenac sodium and nuclear rotation on the prevention of posterior capsule opacification (PCO).
Related JoVE Video
13C-tracer and gas chromatography-mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides.
Plant Physiol.
PUBLISHED: 08-18-2010
Show Abstract
Hide Abstract
The green alga Chlorella protothecoides has received considerable attention because it accumulates neutral triacylglycerols, commonly regarded as an ideal feedstock for biodiesel production. In order to gain a better understanding of its metabolism, tracer experiments with [U-(13)C]/[1-(13)C]glucose were performed with heterotrophic growth of C. protothecoides for identifying the metabolic network topology and estimating intracellular fluxes. Gas chromatography-mass spectrometry analysis tracked the labeling patterns of protein-bound amino acids, revealing a metabolic network consisting of the glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle with inactive glyoxylate shunt. Evidence of phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme activity was also obtained. It was demonstrated that the relative activity of the pentose phosphate pathway to glycolysis under nitrogen-limited environment increased, reflecting excess NADPH requirements for lipid biosynthesis. Although the growth rate and cellular oil content were significantly altered in response to nitrogen limitation, global flux distribution of C. protothecoides remained stable, exhibiting the rigidity of central carbon metabolism. In conclusion, quantitative knowledge on the metabolic flux distribution of oleaginous alga obtained in this study may be of value in designing strategies for metabolic engineering of desirable bioproducts.
Related JoVE Video
Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2.
J. Plant Physiol.
PUBLISHED: 04-17-2010
Show Abstract
Hide Abstract
Low temperature is one of the most common environmental stresses affecting plant growth and agricultural production. Serine/threonine protein phosphatases 2C (PP2Cs) have been suggested to play an important role in stress signaling. To identify potential new member of the PP2C proteins in maize and investigate its functions for stress responses, the ZmPP2C2 gene, encoding a new PP2C protein from maize roots, was cloned by RT-PCR and RACE-PCR. Its constitutive expression in roots, stems and leaves of maize seedlings was detected by RNA gel blot, and its regulation in response to cold stress was also examined. To further evaluate its function in the cold stress response, we over-expressed the ZmPP2C2 gene in tobacco under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter, and assessed a series of physiological changes in wild type and transgenic plants under low temperatures. Compared with wild type tobacco under cold stress, plants that over-expressed ZmPP2C2 displayed higher germination speed and rate, higher antioxidant enzyme (SOD, POD, CAT) activities, with lower cold-induced electrolyte leakage and malondialdehyde (MDA) contents. These results show that over-expression of ZmPP2C2 in tobacco enhanced tolerance to cold stress, suggesting that this new gene, ZmPP2C2, may act as a positive regulator of cold resistance in plants.
Related JoVE Video
Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress.
Mol. Biol. Rep.
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
Mitogen-activated protein kinase (MAPK) cascades play a remarkably crucial role in plants. It has been studied intensively in model plants Arabidopsis, tobacco and rice. However, the function of MAPKs in maize (Zea mays L.) has not been well documented. ZmSIMK1 (Zea mays salt-induced mitogen-activated protein kinase 1) is a previously identified MAPK gene in maize. In this research, we charactered ZmSIMK1 and showed that ZmSIMK1 was involved in Arabidopsis salt stress. The genomic organization of ZmSIMK1 gene and its expression in maize have been analyzed. In order to investigate the function of ZmSIMK1, we generated transgenic Arabidopsis constitutively overexpressing ZmSIMK1. Ectopic expression of ZmSIMK1 in Arabidopsis resulted in increased resistance against salt stress. Importantly, ZmSIMK1-overexpressing Arabidopsis exhibited constitutive expression of stress-responsive marker genes, RD29A and P5CS1. Furthermore, RD29A and P5CS1 were upregulated under salt stress. These results suggest that ZmSIMK1 may play an important role in plant salt stress.
Related JoVE Video
A novel real-time PCR assay for determination of viral loads in person infected with hepatitis B virus.
J. Virol. Methods
PUBLISHED: 09-15-2009
Show Abstract
Hide Abstract
A novel LUX (Light Upon eXtension) primer-based real-time PCR assay was developed and evaluated in this study, which was designed to provide a cost-effective, specific and highly sensitive method for viral load determination of hepatitis B virus (HBV). The assay employed an effective and rapid nucleic acid extraction system based on magnetic beads. To evaluate its efficacy, this new viral DNA preparation method was compared with QIAamp Blood Mini Kit and the results showed a good correlation (r=0.971; P<0.001). The performance of the LUX real-time assay was validated by testing serial dilutions of HBV plasmid DNA (5 to 5 x 10(8)copies/reaction) and a good linear relationship was obtained between the Ct values and the log(10) concentration of the HBV DNA. The assay possessed high sensitivity and the detection limit of this system was as few as 25 copies/ml of serum. A total of 91 positive serum samples were detected to evaluate further the assay and the high specificity was confirmed by melting curve analysis. This assay provides an ideal tool for monitoring the treatment efficacy and studying the relationship between HBV viral load and the stage of disease.
Related JoVE Video
Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought.
J. Plant Physiol.
PUBLISHED: 06-11-2009
Show Abstract
Hide Abstract
ZmPP2C (AY621066) is a protein phosphatase type-2c previously isolated from roots of Zea mays (LD9002). In this study, constitutive expression of ZmPP2C in Arabidopsis thaliana under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter decreased plant tolerance to salt and drought during seed germination and vegetative growth. When growing on media with NaCl or mannitol, the ZmPP2C-overexpressed plants displayed more severe damages, with weaker growth phenotypes corresponding to a series of physiological changes: lower net photosynthesis rate (Pn) and free proline content, higher malondialdehyde (MDA) level, higher relative membrane permeability (RMP), and water loss. Under these stress conditions, they also showed decreased transcription of the stress-related genes RD29A, RD29B, P5CS1, and P5CS2, and ABA-related genes ABI1 and ABI2. Further, the transgenic plants became less sensitive to abscisic acid (ABA). ZmPP2C over-expression significantly attenuated ABA inhibition on seed germination and root growth of the transgenic plants. These results demonstrate that ZmPP2C is involved in plant stress signal transduction, and ZmPP2C gene over-expression in Arabidopsis thaliana may be exploited to study its potential roles in stress-induced signaling pathway.
Related JoVE Video
Identification of a bacteriocin and its cognate immunity factor expressed by Moraxella catarrhalis.
BMC Microbiol.
PUBLISHED: 04-01-2009
Show Abstract
Hide Abstract
Bacteriocins are antimicrobial proteins and peptides ribosomally synthesized by some bacteria which can effect both intraspecies and interspecies killing.
Related JoVE Video
Small interfering RNA targeting Toll-like receptor 9 protects mice against polymicrobial septic acute kidney injury.
Nephron Exp. Nephrol.
Show Abstract
Hide Abstract
Although recent reports suggest that Toll-like receptor (TLR) 9 is associated with the pathogenesis of polymicrobial septic acute kidney injury (AKI), it is still unclear whether and how renal TLR9 is involved in the development of polymicrobial septic AKI. This study aimed to determine whether the expression of TLR9 in mouse renal cells is related to the development of polymicrobial septic AKI.
Related JoVE Video
Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis.
J. Bacteriol.
Show Abstract
Hide Abstract
Solvent-producing clostridia are capable of utilizing pentose sugars, including xylose and arabinose; however, little is known about how pentose sugars are catabolized through the metabolic pathways in clostridia. In this study, we identified the xylose catabolic pathways and quantified their fluxes in Clostridium acetobutylicum based on [1-(13)C]xylose labeling experiments. The phosphoketolase pathway was found to be active, which contributed up to 40% of the xylose catabolic flux in C. acetobutylicum. The split ratio of the phosphoketolase pathway to the pentose phosphate pathway was markedly increased when the xylose concentration in the culture medium was increased from 10 to 20 g liter(-1). To our knowledge, this is the first time that the in vivo activity of the phosphoketolase pathway in clostridia has been revealed. A phosphoketolase from C. acetobutylicum was purified and characterized, and its activity with xylulose-5-P was verified. The phosphoketolase was overexpressed in C. acetobutylicum, which resulted in slightly increased xylose consumption rates during the exponential growth phase and a high level of acetate accumulation.
Related JoVE Video
TIPE2, a novel regulator of immunity, protects against experimental stroke.
J. Biol. Chem.
Show Abstract
Hide Abstract
The inflammatory responses accompanying stroke are recognized to contribute to secondary ischemic injury. TIPE2 is a very recently identified negative regulator of inflammation that maintains immune homeostasis. However, it is unknown whether TIPE2 is expressed in the brain and contributes to the regulation of cerebral diseases. In this study, we explored the potential roles of TIPE2 in cerebral ischemia/reperfusion injury. TIPE2(-/-) mice were used to assess whether TIPE2 provides neuroprotection following cerebral ischemia/reperfusion induced by middle cerebral artery occlusion (MCAO), and in vitro primary cerebral cell cultures were used to investigate the expression and regulation of TIPE2. Our results show that genetic ablation of the Tipe2 gene significantly increased the cerebral volume of infarction and neurological dysfunction in mice subjected to MCAO. Flow cytometric analysis revealed more infiltrating macrophages, neutrophils, and lymphocytes in the ischemic hemisphere of TIPE2(-/-) mice. The responses to inflammatory cytokines and chemokines were significantly increased in TIPE2(-/-) mouse brain after MCAO. We further observed that TIPE2 was highly induced in WT mice after cerebral ischemia and was expressed mainly in microglia/macrophages, but not in neurons and astrocytes. Finally, we found that regulation of TIPE2 expression was associated with NADPH oxidase activity. These findings demonstrate, for the first time, that TIPE2 is involved in the pathogenesis of stroke and suggest that TIPE2 plays an essential role in a signal transduction pathway that links the inflammatory immune response to specific conditions after cerebral ischemia. Targeting TIPE2 may be a new therapeutic strategy for stroke treatment.
Related JoVE Video
Protocol for the use of light upon extension real-time PCR for the determination of viral load in HBV infection.
Methods Mol. Biol.
Show Abstract
Hide Abstract
Real-time PCR has engendered wide acceptance for quantitation of hepatitis B virus (HBV) DNA in the blood due to its improved rapidity, sensitivity, reproducibility, and reduced contamination. Here we describe a cost-effective and highly sensitive HBV real-time quantitative assay based on the light upon extension real-time PCR platform and a simple and reliable HBV DNA preparation method using silica-coated magnetic beads.
Related JoVE Video
Inhibition of ?-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors.
Genes Dev.
Show Abstract
Hide Abstract
Two Krebs cycle genes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), are mutated in a subset of human cancers, leading to accumulation of their substrates, fumarate and succinate, respectively. Here we demonstrate that fumarate and succinate are competitive inhibitors of multiple ?-ketoglutarate (?-KG)-dependent dioxygenases, including histone demethylases, prolyl hydroxylases, collagen prolyl-4-hydroxylases, and the TET (ten-eleven translocation) family of 5-methlycytosine (5mC) hydroxylases. Knockdown of FH and SDH results in elevated intracellular levels of fumarate and succinate, respectively, which act as competitors of ?-KG to broadly inhibit the activity of ?-KG-dependent dioxygenases. In addition, ectopic expression of tumor-derived FH and SDH mutants inhibits histone demethylation and hydroxylation of 5mC. Our study suggests that tumor-derived FH and SDH mutations accumulate fumarate and succinate, leading to enzymatic inhibition of multiple ?-KG-dependent dioxygenases and consequent alterations of genome-wide histone and DNA methylation. These epigenetic alterations associated with mutations of FH and SDH likely contribute to tumorigenesis.
Related JoVE Video
PTK7 regulates myosin II activity to orient planar polarity in the mammalian auditory epithelium.
Curr. Biol.
Show Abstract
Hide Abstract
Planar cell polarity (PCP) signaling is a key regulator of epithelial morphogenesis, including neural tube closure and the orientation of inner ear sensory hair cells, and is mediated by a conserved noncanonical Wnt pathway. Ptk7 is a novel vertebrate-specific regulator of PCP, yet the mechanisms by which Ptk7 regulates mammalian epithelial PCP remain poorly understood.
Related JoVE Video
Molecular photovoltaic system based on fullerenes and carotenoids co-assembled in lipid/alkanethiol hybrid bilayers.
Langmuir
Show Abstract
Hide Abstract
A hybrid molecular photovoltaic system, based on fullerene C(60) and lutein (a natural photosynthetic carotenoid pigment) that are assembled in a phospholipid/alkanethiol bilayer matrix, is described here. The assembly and photoconversion behaviors of such a system were studied by UV-vis spectroscopy, cyclic voltammetry, impedance spectroscopy, photoelectrochemical action spectroscopy, and photocurrent generation. While lutein itself is inefficient in generating photocurrent, it can strongly modulate photocurrents produced by fullerenes when coassembled in the lipid bilayer matrix presumably via photoinduced electron transfer. Our results thus provide a successful example of combining both synthetic and natural photoactive components in building molecular photovoltaic systems.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.