JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Representing connectivity: quantifying effective habitat availability based on area and connectivity for conservation status assessment and recovery.
PeerJ
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We apply a comprehensive suite of graph theoretic metrics to illustrate how landscape connectivity can be effectively incorporated into conservation status assessments and in setting conservation objectives. These metrics allow conservation practitioners to evaluate and quantify connectivity in terms of representation, resiliency, and redundancy and the approach can be applied in spite of incomplete knowledge of species-specific biology and dispersal processes. We demonstrate utility of the graph metrics by evaluating changes in distribution and connectivity that would result from implementing two conservation plans for three endangered plant species (Erigeron parishii, Acanthoscyphus parishii var. goodmaniana, and Eriogonum ovalifolium var. vineum) relative to connectivity under current conditions. Although distributions of the species differ from one another in terms of extent and specific location of occupied patches within the study landscape, the spatial scale of potential connectivity in existing networks were strikingly similar for Erigeron and Eriogonum, but differed for Acanthoscyphus. Specifically, patches of the first two species were more regularly distributed whereas subsets of patches of Acanthoscyphus were clustered into more isolated components. Reserves based on US Fish and Wildlife Service critical habitat designation would not greatly contribute to maintain connectivity; they include 83-91% of the extant occurrences and >92% of the aerial extent of each species. Effective connectivity remains within 10% of that in the whole network for all species. A Forest Service habitat management strategy excluded up to 40% of the occupied habitat of each species resulting in both range reductions and loss of occurrences from the central portions of each species' distribution. Overall effective network connectivity was reduced to 62-74% of the full networks. The distance at which each CHMS network first became fully connected was reduced relative to the full network in Erigeron and Acanthoscyphus due to exclusion of peripheral patches, but was slightly increased for Eriogonum. Distances at which networks were sensitive to loss of connectivity due to presence non-redundant connections were affected mostly for Acanthoscyphos. Of most concern was that the range of distances at which lack of redundancy yielded high risk was much greater than in the full network. Through this in-depth example evaluating connectivity using a comprehensive suite of developed graph theoretic metrics, we establish an approach as well as provide sample interpretations of subtle variations in connectivity that conservation managers can incorporate into planning.
Related JoVE Video
Actual and Potential Use of Population Viability Analyses in Recovery of Plant Species Listed under the U.S. Endangered Species Act.
Conserv. Biol.
PUBLISHED: 04-04-2013
Show Abstract
Hide Abstract
Use of population viability analyses (PVAs) in endangered species recovery planning has been met with both support and criticism. Previous reviews promote use of PVA for setting scientifically based, measurable, and objective recovery criteria and recommend improvements to increase the frameworks utility. However, others have questioned the value of PVA models for setting recovery criteria and assert that PVAs are more appropriate for understanding relative trade-offs between alternative management actions. We reviewed 258 final recovery plans for 642 plants listed under the U.S. Endangered Species Act to determine the number of plans that used or recommended PVA in recovery planning. We also reviewed 223 publications that describe plant PVAs to assess how these models were designed and whether those designs reflected previous recommendations for improvement of PVAs. Twenty-four percent of listed species had recovery plans that used or recommended PVA. In publications, the typical model was a matrix population model parameterized with ?5 years of demographic data that did not consider stochasticity, genetics, density dependence, seed banks, vegetative reproduction, dormancy, threats, or management strategies. Population growth rates for different populations of the same species or for the same population at different points in time were often statistically different or varied by >10%. Therefore, PVAs parameterized with underlying vital rates that vary to this degree may not accurately predict recovery objectives across a species entire distribution or over longer time scales. We assert that PVA, although an important tool as part of an adaptive-management program, can help to determine quantitative recovery criteria only if more long-term data sets that capture spatiotemporal variability in vital rates become available. Lacking this, there is a strong need for viable and comprehensive methods for determining quantitative, science-based recovery criteria for endangered species with minimal data availability. Uso Actual y Potencial del Análisis de Viabilidad Poblacional para la Recuperación de Especies de Plantas Enlistadas en el Acta de Especies En Peligro de E.U.A.
Related JoVE Video
A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems.
Ecol. Lett.
PUBLISHED: 01-10-2013
Show Abstract
Hide Abstract
Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.
Related JoVE Video
Predicting recovery criteria for threatened and endangered plant species on the basis of past abundances and biological traits.
Conserv. Biol.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Recovery plans for species listed under the U.S. Endangered Species Act are required to specify measurable criteria that can be used to determine when the species can be delisted. For the 642 listed endangered and threatened plant species that have recovery plans, we applied recursive partitioning methods to test whether the number of individuals or populations required for delisting can be predicted on the basis of distributional and biological traits, previous abundance at multiple time steps, or a combination of traits and previous abundances. We also tested listing status (threatened or endangered) and the year the recovery plan was written as predictors of recovery criteria. We analyzed separately recovery criteria that were stated as number of populations and as number of individuals (population-based and individual-based criteria, respectively). Previous abundances alone were relatively good predictors of population-based recovery criteria. Fewer populations, but a greater proportion of historically known populations, were required to delist species that had few populations at listing compared with species that had more populations at listing. Previous abundances were also good predictors of individual-based delisting criteria when models included both abundances and traits. The physiographic division in which the species occur was also a good predictor of individual-based criteria. Our results suggest managers are relying on previous abundances and patterns of decline as guidelines for setting recovery criteria. This may be justifiable in that previous abundances inform managers of the effects of both intrinsic traits and extrinsic threats that interact and determine extinction risk.
Related JoVE Video
The power to detect recent fragmentation events using genetic differentiation methods.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Habitat loss and fragmentation are imminent threats to biological diversity worldwide and thus are fundamental issues in conservation biology. Increased isolation alone has been implicated as a driver of negative impacts in populations associated with fragmented landscapes. Genetic monitoring and the use of measures of genetic divergence have been proposed as means to detect changes in landscape connectivity. Our goal was to evaluate the sensitivity of Wrights F st, Hedrick Gst , Sherwins MI, and Josts D to recent fragmentation events across a range of population sizes and sampling regimes. We constructed an individual-based model, which used a factorial design to compare effects of varying population size, presence or absence of overlapping generations, and presence or absence of population sub-structuring. Increases in population size, overlapping generations, and population sub-structuring each reduced F st, Gst , MI, and D. The signal of fragmentation was detected within two generations for all metrics. However, the magnitude of the change in each was small in all cases, and when N e was >100 individuals it was extremely small. Multi-generational sampling and population estimates are required to differentiate the signal of background divergence from changes in Fst , Gst , MI, and D associated with fragmentation. Finally, the window during which rapid change in Fst , Gst , MI, and D between generations occurs can be small, and if missed would lead to inconclusive results. For these reasons, use of F st, Gst , MI, or D for detecting and monitoring changes in connectivity is likely to prove difficult in real-world scenarios. We advocate use of genetic monitoring only in conjunction with estimates of actual movement among patches such that one could compare current movement with the genetic signature of past movement to determine there has been a change.
Related JoVE Video
Landscape matrix mediates occupancy dynamics of Neotropical avian insectivores.
Ecol Appl
PUBLISHED: 08-12-2011
Show Abstract
Hide Abstract
In addition to patch-level attributes (i.e., area and isolation), the nature of land cover between habitat patches (the matrix) may drive colonization and extinction dynamics in fragmented landscapes. Despite a long-standing recognition of matrix effects in fragmented systems, an understanding of the relative impacts of different types of land cover on patterns and dynamics of species occurrence remains limited. We employed multi-season occupancy models to determine the relative influence of patch area, patch isolation, within-patch vegetation structure, and landscape matrix on occupancy dynamics of nine Neotropical insectivorous birds in 99 forest patches embedded in four matrix types (agriculture, suburban development, bauxite mining, and forest) in central Jamaica. We found that within-patch vegetation structure and the matrix type between patches were more important than patch area and patch isolation in determining local colonization and local extinction probabilities, and that the effects of patch area, isolation, and vegetation structure on occupancy dynamics tended to be matrix and species dependent. Across the avian community, the landscape matrix influenced local extinction more than local colonization, indicating that extinction processes, rather than movement, likely drive interspecific differences in occupancy dynamics. These findings lend crucial empirical support to the hypothesis that species occupancy dynamics in fragmented systems may depend greatly upon the landscape context.
Related JoVE Video
Taxonomic and geographic patterns of decline for threatened and endangered species in the United States.
Conserv. Biol.
PUBLISHED: 06-15-2011
Show Abstract
Hide Abstract
Species listed under the U.S. Endangered Species Act (i.e., listed species) have declined to the point that the probability of their extinction is high. The decline of these species, however, may manifest itself in different ways, including reductions in geographic range, number of populations, or overall abundance. Understanding the pattern of decline can help managers assess extinction probability and define recovery objectives. Although quantitative data on changes in geographic range, number of populations, and abundance usually do not exist for listed species, more often qualitative data can be obtained. We used qualitative data in recovery plans for federally listed species to determine whether each listed species declined in range size, number of populations, or abundance relative to historical levels. We calculated the proportion of listed species in each state (or equivalent) that declined in each of those ways. Nearly all listed species declined in abundance, and range size or number of populations declined in approximately 80% of species for which those data were available. Patterns of decline, however, differed taxonomically and geographically. Declines in range were more common among vertebrates than plants, whereas population extirpations were more common among plants. Invertebrates had high incidence of range and population declines. Narrowly distributed plants and invertebrates may be subject to acute threats that may result in population extirpations, whereas vertebrates may be affected by chronic threats that reduce the extent and size of populations. Additionally, in the eastern United States and U.S. coastal areas, where the level of land conversion is high, a greater percentage of species ranges declined and more populations were extirpated than in other areas. Species in the Southwest, especially plants, had fewer range and population declines than other areas. Such relations may help in the selection of species recovery criteria.
Related JoVE Video
A sequential approach using genetic and morphological analyses to test species status: the case of United States federally endangered Agalinis acuta (Orobanchaceae).
Am. J. Bot.
PUBLISHED: 05-27-2011
Show Abstract
Hide Abstract
Given that inaccurate taxonomy can have negative consequences for species of conservation concern and result in erroneous conclusions regarding macroecological patterns, efficient methods for resolving taxonomic uncertainty are essential. The primary objective of this study was to assess the evolutionary distinctiveness of the federally endangered plant species Agalinis acuta (Orobanchaceae) to ensure it represents a distinct taxon warranting protection under the United States Endangered Species Act.
Related JoVE Video
An evaluation of candidate plant DNA barcodes and assignment methods in diagnosing 29 species in the genus Agalinis (Orobanchaceae).
Am. J. Bot.
PUBLISHED: 07-20-2010
Show Abstract
Hide Abstract
• Premise of the study: DNA barcoding has been proposed as a useful technique within many disciplines (e.g., conservation biology and forensics) for determining the taxonomic identity of a sample based on nucleotide similarity to samples of known taxonomy. Application of DNA barcoding to plants has primarily focused on evaluating the success of candidate barcodes across a broad spectrum of evolutionary divergence. Less attention has been paid to evaluating performance when distinguishing congeners or to differential success of analytical techniques despite the fact that the practical application and utility of barcoding hinges on the ability to distinguish closely related species. • Methods: We tested the ability to distinguish among 92 samples representing 29 putative species in the genus Agalinis (Orobanchaceae) using 13 candidate barcodes and three analytical methods (i.e., threshold genetic distances, hierarchical tree-based, and diagnostic character differences). Due to questions regarding evolutionary distinctiveness of some taxa, we evaluated success under two taxonomic hypotheses. • Key results: The psbA-trnH and trnT-trnL barcodes in conjunction with the "best close match" distance-based method best met the objectives of DNA barcoding. Success was also a function of the taxonomy used. • Conclusions: In addition to accurately identifying query sequences, our results showed that DNA barcoding is useful for detecting taxonomic uncertainty; determining whether erroneous taxonomy or incomplete lineage sorting is the cause requires additional information provided by traditional taxonomic approaches. The magnitude of differentiation within and among the Agalinis species sampled suggests that our results inform how DNA barcoding will perform among closely related species in other genera.
Related JoVE Video
Development of 11 polymorphic microsatellite markers in a macrophyte of conservation concern, Vallisneria americana Michaux (Hydrocharitaceae).
Mol Ecol Resour
PUBLISHED: 02-25-2009
Show Abstract
Hide Abstract
Vallisneria americana Michaux (wild celery) is currently a target of submersed aquatic vegetation restoration efforts in the Chesapeake Bay watershed. To aid these efforts, we have developed 11 polymorphic microsatellite markers to assess the distribution and degree of genetic diversity in both restored and naturally occurring populations in the Chesapeake Bay. In 59 individuals from two populations, we detected two to 10 total alleles per locus. Observed heterozygosity ranged from 0.125 to 0.929, and two loci exhibited significant deviations from Hardy-Weinberg equilibrium in at least one of the populations assayed.
Related JoVE Video
Testing surrogacy assumptions: can threatened and endangered plants be grouped by biological similarity and abundances?
PLoS ONE
Show Abstract
Hide Abstract
There is renewed interest in implementing surrogate species approaches in conservation planning due to the large number of species in need of management but limited resources and data. One type of surrogate approach involves selection of one or a few species to represent a larger group of species requiring similar management actions, so that protection and persistence of the selected species would result in conservation of the group of species. However, among the criticisms of surrogate approaches is the need to test underlying assumptions, which remain rarely examined. In this study, we tested one of the fundamental assumptions underlying use of surrogate species in recovery planning: that there exist groups of threatened and endangered species that are sufficiently similar to warrant similar management or recovery criteria. Using a comprehensive database of all plant species listed under the U.S. Endangered Species Act and tree-based random forest analysis, we found no evidence of species groups based on a set of distributional and biological traits or by abundances and patterns of decline. Our results suggested that application of surrogate approaches for endangered species recovery would be unjustified. Thus, conservation planning focused on individual species and their patterns of decline will likely be required to recover listed species.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.