JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-07-2014
Show Abstract
Hide Abstract
Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation.
Related JoVE Video
Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-30-2014
Show Abstract
Hide Abstract
Lung cancer is notorious for its ability to metastasize, but the pathways regulating lung cancer metastasis are largely unknown. An in vitro system designed to discover factors critical for lung cancer cell migration identified brain-derived neurotrophic factor, which stimulates cell migration through activation of tropomyosin-related kinase B (TrkB; also called NTRK2). Knockdown of TrkB in human lung cancer cell lines significantly decreased their migratory and metastatic ability in vitro and in vivo. In an autochthonous lung adenocarcinoma model driven by activated oncogenic Kras and p53 loss, TrkB deficiency significantly reduced metastasis. Hypoxia-inducible factor-1 directly regulated TrkB expression, and, in turn, TrkB activated Akt signaling in metastatic lung cancer cells. Finally, TrkB expression was correlated with metastasis in patient samples, and TrkB was detected more often in tumors that did not have Kras or epidermal growth factor receptor mutations. These studies demonstrate that TrkB is an important therapeutic target in metastatic lung adenocarcinoma.
Related JoVE Video
Luciferase-based reporter to monitor the transcriptional activity of the SIRT3 promoter.
Meth. Enzymol.
PUBLISHED: 06-14-2014
Show Abstract
Hide Abstract
Sirtuin 3 (SIRT3) is a major regulator of oncometabolism. Indeed, the activity of SIRT3 significantly affects the response to oxidative stress, glycolytic proficiency, and tumorigenic potential of malignant cells. Thus, a system to accurately measure the transcriptional activity of the SIRT3 promoter could facilitate the identification of novel antineoplastic agents or have diagnostic applications. Here, we describe all the steps involved in the development of a luciferase-based reporter system to measure the activation of the human SIRT3 promoter, encompassing the design of appropriate primers, the cloning of the promoter fragment, and its site-directed mutagenesis. We validated this system in human embryonic kidney 293T cells, taking advantage of the renowned ability of the transcription factor estrogen-related receptor ? to transactivate SIRT3. Moreover, here we demonstrate that SIRT3 expression is responsive to rapamycin, a small inhibitor of mammalian target of rapamycin that has been extensively employed as a caloric restriction mimetic. Finally, we provide an overview of the complementary molecular biology techniques that might be employed to further verify the reliability of this system.
Related JoVE Video
Mitochondrial Metabolism in T Cell Activation and Senescence: A Mini-Review.
Gerontology
PUBLISHED: 03-27-2014
Show Abstract
Hide Abstract
The aging immune system is unable to optimally respond to pathogens and generate long-term immunological memory against encountered antigens. Amongst the immune components most affected by aging are T lymphocytes. T lymphocytes are cells of the cell-mediated immune system, which can recognize microbial antigens and either directly kill infected cells or support the maturation and activation of other immune cells. When activated, T cells undergo a metabolic switch to accommodate their changing needs at every stage of the immune response. Here we review the different aspects of metabolic regulation of T cell activation, focusing on the emerging role of mitochondrial metabolism, and discuss changes that may contribute to age-related decline in T cell potency. Better understanding of the role of mitochondrial metabolism in immune cell function could provide insights into mechanisms of immune senescence with the potential for developing novel therapeutic approaches to improve immune responses in aged individuals. © 2014 S. Karger AG, Basel.
Related JoVE Video
PGC-1? mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis.
Nat. Cell Biol.
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
Cancer cells can divert metabolites into anabolic pathways to support their rapid proliferation and to accumulate the cellular building blocks required for tumour growth. However, the specific bioenergetic profile of invasive and metastatic cancer cells is unknown. Here we report that migratory/invasive cancer cells specifically favour mitochondrial respiration and increased ATP production. Invasive cancer cells use the transcription coactivator peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PPARGC1A, also known as PGC-1?) to enhance oxidative phosphorylation, mitochondrial biogenesis and the oxygen consumption rate. Clinical analysis of human invasive breast cancers revealed a strong correlation between PGC-1? expression in invasive cancer cells and the formation of distant metastases. Silencing of PGC-1? in cancer cells suspended their invasive potential and attenuated metastasis without affecting proliferation, primary tumour growth or the epithelial-to-mesenchymal program. Inherent genetics of cancer cells can determine the transcriptome framework associated with invasion and metastasis, and mitochondrial biogenesis and respiration induced by PGC-1? are also essential for functional motility of cancer cells and metastasis.
Related JoVE Video
SIRT4 suppresses tumor formation in genetic models of Myc-induced B cell lymphoma.
J. Biol. Chem.
PUBLISHED: 12-24-2013
Show Abstract
Hide Abstract
Glutamine metabolism plays an essential role for growth and proliferation of many cancer cells by providing metabolites for the maintenance of mitochondrial functions and macromolecular synthesis. Aberrant activation of the transcription factor c-Myc, caused by t(8;14) chromosomal translocation commonly found in Burkitt lymphoma, is a key driver of cellular glutamine metabolism in many tumors, highlighting the need to identify molecular mechanisms that can suppress glutamine usage in these cancers. Recently, the mitochondrial sirtuin SIRT4 has been reported to function as a tumor suppressor by regulating glutamine metabolism, suggesting that it might have therapeutic potential for treating glutamine-dependent cancers. Here, we report that SIRT4 represses Myc-induced B cell lymphomagenesis via inhibition of mitochondrial glutamine metabolism. We found that SIRT4 overexpression can dampen glutamine utilization even in Myc-driven human Burkitt lymphoma cells and inhibit glutamine-dependent proliferation of these cells. Importantly, SIRT4 overexpression sensitizes Burkitt lymphoma cells to glucose depletion and synergizes with pharmacological glycolysis inhibitors to induce cell death. Moreover, SIRT4 loss in a genetic mouse model of Mycinduced Burkitt lymphoma, E?-Myc transgenic mouse, greatly accelerates lymphomagenesis and mortality. Indeed, E?-Myc induced B cell lymphoma cells from SIRT4 null mice exhibit increased glutamine uptake and glutamate dehydrogenase activity. Furthermore, we establish that SIRT4 regulates glutamine metabolism independent of Myc. Together, these results highlight the tumor suppressive role of SIRT4 in Myc-induced B cell lymphoma and raise possibilities regarding SIRT4 as an effective therapeutic target against Mycinduced and/or glutamine-dependent cancers.
Related JoVE Video
The Protein Deacetylase SIRT3 Prevents Oxidative Stress-induced Keratinocyte Differentiation.
J. Biol. Chem.
PUBLISHED: 11-05-2013
Show Abstract
Hide Abstract
Keratinocyte differentiation is a key process in the formation and maintenance of the protective skin barrier. Dysregulation in the balance of reactive oxygen species homeostasis may play a role in keratinocyte differentiation. We have identified the mitochondrial deacetylase SIRT3 as a key regulator of mitochondrial reactive oxygen species in keratinocytes. Our studies demonstrate that SIRT3 expression is down-regulated during keratinocyte differentiation, consistent with an increase in mitochondrial superoxide levels. Importantly, loss of SIRT3 expression in keratinocytes increased superoxide levels and promoted the expression of differentiation markers, whereas overexpression decreased superoxide levels and reduced the expression of differentiation markers. These findings identify a new role for SIRT3 in the suppression of epidermal differentiation via lowering oxidative stress.
Related JoVE Video
SIRT4 represses peroxisome proliferator-activated receptor ? activity to suppress hepatic fat oxidation.
Mol. Cell. Biol.
PUBLISHED: 09-16-2013
Show Abstract
Hide Abstract
Sirtuins are a family of protein deacetylases, deacylases, and ADP-ribosyltransferases that regulate life span, control the onset of numerous age-associated diseases, and mediate metabolic homeostasis. We have uncovered a novel role for the mitochondrial sirtuin SIRT4 in the regulation of hepatic lipid metabolism during changes in nutrient availability. We show that SIRT4 levels decrease in the liver during fasting and that SIRT4 null mice display increased expression of hepatic peroxisome proliferator-activated receptor ? (PPAR?) target genes associated with fatty acid catabolism. Accordingly, primary hepatocytes from SIRT4 knockout (KO) mice exhibit higher rates of fatty acid oxidation than wild-type hepatocytes, and SIRT4 overexpression decreases fatty acid oxidation rates. The enhanced fatty acid oxidation observed in SIRT4 KO hepatocytes requires functional SIRT1, demonstrating a clear cross talk between mitochondrial and nuclear sirtuins. Thus, SIRT4 is a new component of mitochondrial signaling in the liver and functions as an important regulator of lipid metabolism.
Related JoVE Video
HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant K-RAS.
Mol. Cancer Res.
PUBLISHED: 05-30-2013
Show Abstract
Hide Abstract
Activating point mutations in K-RAS are extremely common in cancers of the lung, colon, and pancreas and are highly predictive of poor therapeutic response. One potential strategy for overcoming the deleterious effects of mutant K-RAS is to alter its posttranslational modification. Although therapies targeting farnesylation have been explored, and have ultimately failed, the therapeutic potential of targeting other modifications remains to be seen. Recently, it was shown that acetylation of lysine 104 attenuates K-RAS transforming activity by interfering with GEF-induced nucleotide exchange. Here, the deacetylases HDAC6 and SIRT2 were shown to regulate the acetylation state of K-RAS in cancer cells. By extension, inhibition of either of these enzymes has a dramatic impact on the growth properties of cancer cells expressing activation mutants of K-RAS. These results suggest that therapeutic targeting of HDAC6 and/or SIRT2 may represent a new way to treat cancers expressing mutant forms of K-RAS.
Related JoVE Video
SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase.
Mol. Cell
PUBLISHED: 03-22-2013
Show Abstract
Hide Abstract
Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis, whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism, leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis.
Related JoVE Video
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4.
Cell
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
Proliferating mammalian cells use glutamine as a source of nitrogen and as a key anaplerotic source to provide metabolites to the tricarboxylic acid cycle (TCA) for biosynthesis. Recently, mammalian target of rapamycin complex 1 (mTORC1) activation has been correlated with increased nutrient uptake and metabolism, but no molecular connection to glutaminolysis has been reported. Here, we show that mTORC1 promotes glutamine anaplerosis by activating glutamate dehydrogenase (GDH). This regulation requires transcriptional repression of SIRT4, the mitochondrial-localized sirtuin that inhibits GDH. Mechanistically, mTORC1 represses SIRT4 by promoting the proteasome-mediated destabilization of cAMP-responsive element binding 2 (CREB2). Thus, a relationship between mTORC1, SIRT4, and cancer is suggested by our findings. Indeed, SIRT4 expression is reduced in human cancer, and its overexpression reduces cell proliferation, transformation, and tumor development. Finally, our data indicate that targeting nutrient metabolism in energy-addicted cancers with high mTORC1 signaling may be an effective therapeutic approach.
Related JoVE Video
SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism.
Cancer Cell
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here, we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into tricarboxylic acid cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest, and tumor suppression.
Related JoVE Video
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway.
Nature
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
Cancer cells have metabolic dependencies that distinguish them from their normal counterparts. Among these dependencies is an increased use of the amino acid glutamine to fuel anabolic processes. Indeed, the spectrum of glutamine-dependent tumours and the mechanisms whereby glutamine supports cancer metabolism remain areas of active investigation. Here we report the identification of a non-canonical pathway of glutamine use in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for tumour growth. Whereas most cells use glutamate dehydrogenase (GLUD1) to convert glutamine-derived glutamate into ?-ketoglutarate in the mitochondria to fuel the tricarboxylic acid cycle, PDAC relies on a distinct pathway in which glutamine-derived aspartate is transported into the cytoplasm where it can be converted into oxaloacetate by aspartate transaminase (GOT1). Subsequently, this oxaloacetate is converted into malate and then pyruvate, ostensibly increasing the NADPH/NADP(+) ratio which can potentially maintain the cellular redox state. Importantly, PDAC cells are strongly dependent on this series of reactions, as glutamine deprivation or genetic inhibition of any enzyme in this pathway leads to an increase in reactive oxygen species and a reduction in reduced glutathione. Moreover, knockdown of any component enzyme in this series of reactions also results in a pronounced suppression of PDAC growth in vitro and in vivo. Furthermore, we establish that the reprogramming of glutamine metabolism is mediated by oncogenic KRAS, the signature genetic alteration in PDAC, through the transcriptional upregulation and repression of key metabolic enzymes in this pathway. The essentiality of this pathway in PDAC and the fact that it is dispensable in normal cells may provide novel therapeutic approaches to treat these refractory tumours.
Related JoVE Video
Altered social behavior and neuronal development in mice lacking the Uba6-Use1 ubiquitin transfer system.
Mol. Cell
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
The Uba6 (E1)-Use1 (E2) ubiquitin transfer cascade is a poorly understood alternative arm of the ubiquitin proteasome system (UPS) and is required for mouse embryonic development, independent of the canonical Uba1-E2-E3 pathway. Loss of neuronal Uba6 during embryonic development results in altered patterning of neurons in the hippocampus and the amygdala, decreased dendritic spine density, and numerous behavioral disorders. The levels of the E3 ubiquitin ligase Ube3a (E6-AP) and Shank3, both linked with dendritic spine function, are elevated in the amygdala of Uba6-deficient mice, while levels of the Ube3a substrate Arc are reduced. Uba6 and Use1 promote proteasomal turnover of Ube3a in mouse embryo fibroblasts (MEFs) and catalyze Ube3a ubiquitylation in vitro. These activities occur in parallel with an independent pathway involving Uba1-UbcH7, but in a spatially distinct manner in MEFs. These data reveal an unanticipated role for Uba6 in neuronal development, spine architecture, mouse behavior, and turnover of Ube3a.
Related JoVE Video
A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels.
Cell. Mol. Life Sci.
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
Reduction of nutrient intake without malnutrition positively influences lifespan and healthspan from yeast to mice and exerts some beneficial effects also in humans. The AMPK-FoxO axis is one of the evolutionarily conserved nutrient-sensing pathways, and the FOXO3A locus is associated with human longevity. Interestingly, FoxO3A has been reported to be also a mitochondrial protein in mammalian cells and tissues. Here we report that glucose restriction triggers FoxO3A accumulation into mitochondria of fibroblasts and skeletal myotubes in an AMPK-dependent manner. A low-glucose regimen induces the formation of a protein complex containing FoxO3A, SIRT3, and mitochondrial RNA polymerase (mtRNAPol) at mitochondrial DNA-regulatory regions causing activation of the mitochondrial genome and a subsequent increase in mitochondrial respiration. Consistently, mitochondrial transcription increases in skeletal muscle of fasted mice, with a mitochondrial DNA-bound FoxO3A/SIRT3/mtRNAPol complex detectable also in vivo. Our results unveil a mitochondrial arm of the AMPK-FoxO3A axis acting as a recovery mechanism to sustain energy metabolism upon nutrient restriction.
Related JoVE Video
Role of sirtuins and calorie restriction in neuroprotection: implications in Alzheimers and Parkinsons diseases.
Curr. Pharm. Des.
PUBLISHED: 07-25-2011
Show Abstract
Hide Abstract
Aging is the major known risk factor for the onset of neurodegenerative diseases such as Alzheimers disease (AD) and Parkinsons disease (PD). Mitochondria play a central role in aging as mitochondrial dysfunction increases with age and produces harmful levels of reactive oxygen species which leads to cellular oxidative stress (free-radical theory of aging). Oxidative stress is highly damaging to cellular macromolecules and is also a major cause of the loss and impairment of neurons in neurodegenerative disorders. A growing body of evidence suggests that modulation of sirtuin activity and restricting calorie intake has a strong neuroprotective effect. SIRT1 induction by the use of pharmacological activators or by calorie restriction (CR) diet regimen has been shown to protect against neuronal loss and impairment in the cellular and animal models of AD and PD. Here, we review the current knowledge and recent data related to the role of sirtuins and CR in neurodegeneration and discuss the potential underlying signaling pathways of neuroprotection that might serve as attractive targets for the future therapeutic intervention of these age-related neurodegenerative diseases.
Related JoVE Video
Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity.
PLoS ONE
PUBLISHED: 06-05-2011
Show Abstract
Hide Abstract
Sirtuins (SIRT1-7) are a family of NAD-dependent deacetylases and/or ADP-ribosyltransferases that are involved in metabolism, stress responses and longevity. SIRT3 is localized to mitochondria, where it deacetylates and activates a number of enzymes involved in fuel oxidation and energy production.
Related JoVE Video
Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors.
Cancer Cell
PUBLISHED: 05-27-2011
Show Abstract
Hide Abstract
Ras-driven tumors are often refractory to conventional therapies. Here we identify a promising targeted therapeutic strategy for two Ras-driven cancers: Nf1-deficient malignancies and Kras/p53 mutant lung cancer. We show that agents that enhance proteotoxic stress, including the HSP90 inhibitor IPI-504, induce tumor regression in aggressive mouse models, but only when combined with rapamycin. These agents synergize by promoting irresolvable ER stress, resulting in catastrophic ER and mitochondrial damage. This process is fueled by oxidative stress, which is caused by IPI-504-dependent production of reactive oxygen species, and the rapamycin-dependent suppression of glutathione, an important endogenous antioxidant. Notably, the mechanism by which these agents cooperate reveals a therapeutic paradigm that can be expanded to develop additional combinations.
Related JoVE Video
Pancreatic cancers require autophagy for tumor growth.
Genes Dev.
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
Macroautophagy (autophagy) is a regulated catabolic pathway to degrade cellular organelles and macromolecules. The role of autophagy in cancer is complex and may differ depending on tumor type or context. Here we show that pancreatic cancers have a distinct dependence on autophagy. Pancreatic cancer primary tumors and cell lines show elevated autophagy under basal conditions. Genetic or pharmacologic inhibition of autophagy leads to increased reactive oxygen species, elevated DNA damage, and a metabolic defect leading to decreased mitochondrial oxidative phosphorylation. Together, these ultimately result in significant growth suppression of pancreatic cancer cells in vitro. Most importantly, inhibition of autophagy by genetic means or chloroquine treatment leads to robust tumor regression and prolonged survival in pancreatic cancer xenografts and genetic mouse models. These results suggest that, unlike in other cancers where autophagy inhibition may synergize with chemotherapy or targeted agents by preventing the up-regulation of autophagy as a reactive survival mechanism, autophagy is actually required for tumorigenic growth of pancreatic cancers de novo, and drugs that inactivate this process may have a unique clinical utility in treating pancreatic cancers and other malignancies with a similar dependence on autophagy. As chloroquine and its derivatives are potent inhibitors of autophagy and have been used safely in human patients for decades for a variety of purposes, these results are immediately translatable to the treatment of pancreatic cancer patients, and provide a much needed, novel vantage point of attack.
Related JoVE Video
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1? destabilization.
Cancer Cell
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
Tumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates required for biomass generation. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. Mechanistically, SIRT3 mediates metabolic reprogramming by destabilizing hypoxia-inducible factor-1? (HIF1?), a transcription factor that controls glycolytic gene expression. SIRT3 loss increases reactive oxygen species production, leading to HIF1? stabilization. SIRT3 expression is reduced in human breast cancers, and its loss correlates with the upregulation of HIF1? target genes. Finally, we find that SIRT3 overexpression represses glycolysis and proliferation in breast cancer cells, providing a metabolic mechanism for tumor suppression.
Related JoVE Video
The aging stress response.
Mol. Cell
PUBLISHED: 09-07-2010
Show Abstract
Hide Abstract
Aging is the outcome of a balance between damage and repair. The rate of aging and the appearance of age-related pathology are modulated by stress response and repair pathways that gradually decline, including the proteostasis and DNA damage repair networks and mitochondrial respiratory metabolism. Highly conserved insulin/IGF-1, TOR, and sirtuin signaling pathways in turn control these critical cellular responses. The coordinated action of these signaling pathways maintains cellular and organismal homeostasis in the face of external perturbations, such as changes in nutrient availability, temperature, and oxygen level, as well as internal perturbations, such as protein misfolding and DNA damage. Studies in model organisms suggest that changes in signaling can augment these critical stress response systems, increasing life span and reducing age-related pathology. The systems biology of stress response signaling thus provides a new approach to the understanding and potential treatment of age-related diseases.
Related JoVE Video
Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling.
Trends Biochem. Sci.
PUBLISHED: 03-16-2010
Show Abstract
Hide Abstract
Sirtuins are a highly conserved family of proteins whose activity can prolong the lifespan of model organisms such as yeast, worms and flies. Mammals contain seven sirtuins (SIRT1-7) that modulate distinct metabolic and stress response pathways. Three sirtuins, SIRT3, SIRT4 and SIRT5, are located in the mitochondria, dynamic organelles that function as the primary site of oxidative metabolism and play crucial roles in apoptosis and intracellular signaling. Recent findings have shed light on how the mitochondrial sirtuins function in the control of basic mitochondrial biology, including energy production, metabolism, apoptosis and intracellular signaling.
Related JoVE Video
Mammalian sirtuins: biological insights and disease relevance.
Annu Rev Pathol
PUBLISHED: 01-19-2010
Show Abstract
Hide Abstract
Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years.
Related JoVE Video
Sirtuins regulate key aspects of lipid metabolism.
Biochim. Biophys. Acta
PUBLISHED: 09-08-2009
Show Abstract
Hide Abstract
Members of the sirtuin family of NAD(+)-dependent protein deacetylases are important regulators of longevity in yeast, worms, and flies. Mammals have seven sirtuins (SIRT1-7), each characterized by differences in subcellular localization, substrate preference, and biological function. While it is unclear whether sirtuins regulate aging in mammals, it is clear that sirtuins influence diverse aspects of their metabolism. Indeed, SIRT1 promotes oxidation of fatty acids in liver and skeletal muscle, cholesterol metabolism in liver, and lipid mobilization in white adipose tissue. Moreover, small-molecule activators of SIRT1 have recently been shown to protect mice from the negative effects of a high-fat diet. These findings suggest that sirtuins might provide important new targets for the treatment of obesity and related diseases. In this review, we discuss the major findings linking sirtuins with the regulation of lipid metabolism.
Related JoVE Video
SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle.
Cell
PUBLISHED: 02-09-2009
Show Abstract
Hide Abstract
Sirtuins are NAD-dependent protein deacetylases that connect metabolism and aging. In mammals, there are seven sirtuins (SIRT1-7), three of which are associated with mitochondria. Here, we show that SIRT5 localizes in the mitochondrial matrix and interacts with carbamoyl phosphate synthetase 1 (CPS1), an enzyme, catalyzing the initial step of the urea cycle for ammonia detoxification and disposal. SIRT5 deacetylates CPS1 and upregulates its activity. During fasting, NAD in liver mitochondria increases, thereby triggering SIRT5 deacetylation of CPS1 and adaptation to the increase in amino acid catabolism. Indeed, SIRT5 KO mice fail to upregulate CPS1 activity and show elevated blood ammonia during fasting. Similar effects occur during long-term calorie restriction or a high protein diet. These findings demonstrate SIRT5 plays a pivotal role in ammonia detoxification and disposal by activating CPS1.
Related JoVE Video
The coordination of nuclear and mitochondrial communication during aging and calorie restriction.
Ageing Res. Rev.
PUBLISHED: 01-16-2009
Show Abstract
Hide Abstract
Mitochondria are dynamic organelles that integrate environmental signals to regulate energy production, apoptosis and Ca(2+) homeostasis. Not surprisingly, mitochondrial dysfunction is associated with aging and the pathologies observed in age-related diseases. The vast majority of mitochondrial proteins are encoded in the nuclear genome, and so communication between the nucleus and mitochondria is essential for maintenance of appropriate mitochondrial function. Several proteins have emerged as major regulators of mitochondrial gene expression, capable of increasing transcription of mitochondrial genes in response to the physiological demands of the cell. In this review, we will focus on PGC-1alpha, SIRT1, AMPK and mTOR and discuss how these proteins regulate mitochondrial function and their potential involvement in aging, calorie restriction and age-related disease. We will also discuss the pathways through which mitochondria signal to the nucleus. Although such retrograde signaling is not well studied in mammals, there is growing evidence to suggest that it may be an important area for future aging research. Greater understanding of the mechanisms by which mitochondria and the nucleus communicate will facilitate efforts to slow or reverse the mitochondrial dysfunction that occurs during aging.
Related JoVE Video
From sirtuin biology to human diseases: an update.
J. Biol. Chem.
Show Abstract
Hide Abstract
Originally rising to notoriety for their role in the regulation of aging, sirtuins are a family of NAD(+)-dependent enzymes that have been connected to a steadily growing set of biological processes. In addition to regulating aging, sirtuins play key roles in the maintenance of organismal metabolic homeostasis. These enzymes also have primarily protective functions in the development of many age-related diseases, including cancer, neurodegeneration, and cardiovascular disease. In this minireview, we provide an update on the known roles for each of the seven mammalian sirtuins in these areas.
Related JoVE Video
SIRT3 regulation of mitochondrial oxidative stress.
Exp. Gerontol.
Show Abstract
Hide Abstract
Mitochondria play a central role in the production of reactive oxygen species as byproducts of metabolism and energy production. In order to protect cellular structures from oxidative stress-induced damage, cells have evolved elegant mechanisms for mitochondrial ROS detoxification. The mitochondrial sirtuin, SIRT3, is emerging as a pivotal regulator of oxidative stress by deacetylation of substrates involved in both ROS production and detoxification. This review will summarize recent findings on the regulation of mitochondrial ROS homeostasis by SIRT3.
Related JoVE Video
A metabolic prosurvival role for PML in breast cancer.
J. Clin. Invest.
Show Abstract
Hide Abstract
Cancer cells exhibit an aberrant metabolism that facilitates more efficient production of biomass and hence tumor growth and progression. However, the genetic cues modulating this metabolic switch remain largely undetermined. We identified a metabolic function for the promyelocytic leukemia (PML) gene, uncovering an unexpected role for this bona fide tumor suppressor in breast cancer cell survival. We found that PML acted as both a negative regulator of PPAR? coactivator 1A (PGC1A) acetylation and a potent activator of PPAR signaling and fatty acid oxidation. We further showed that PML promoted ATP production and inhibited anoikis. Importantly, PML expression allowed luminal filling in 3D basement membrane breast culture models, an effect that was reverted by the pharmacological inhibition of fatty acid oxidation. Additionally, immunohistochemical analysis of breast cancer biopsies revealed that PML was overexpressed in a subset of breast cancers and enriched in triple-negative cases. Indeed, PML expression in breast cancer correlated strikingly with reduced time to recurrence, a gene signature of poor prognosis, and activated PPAR signaling. These findings have important therapeutic implications, as PML and its key role in fatty acid oxidation metabolism are amenable to pharmacological suppression, a potential future mode of cancer prevention and treatment.
Related JoVE Video
Acetylation-dependent regulation of Skp2 function.
Cell
Show Abstract
Hide Abstract
Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration.
Related JoVE Video
Metabolic regulation by SIRT3: implications for tumorigenesis.
Trends Mol Med
Show Abstract
Hide Abstract
Cancer cells meet their needs for energy and biomass production by consuming high levels of nutrients and rewiring metabolism to support macromolecular biosynthesis. Mitochondrial enzymes play central roles in anabolic growth, and acetylation may provide a key layer of regulation over mitochondrial metabolic pathways. As a major mitochondrial deacetylase, SIRT3 regulates the activity of enzymes to coordinate global shifts in cellular metabolism. SIRT3 promotes the function of the tricarboxylic acid (TCA) cycle and the electron transport chain and reduces oxidative stress. Loss of SIRT3 triggers oxidative damage, reactive oxygen species (ROS)-mediated signaling, and metabolic reprogramming to support proliferation and tumorigenesis. Thus, SIRT3 is an intriguing example of how nutrient-sensitive, post-translational regulation may provide integrated regulation of metabolic pathways to promote metabolic homeostasis in response to diverse nutrient signals.
Related JoVE Video
Regulation of RAS oncogenicity by acetylation.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Members of the RAS small GTPase family regulate cellular responses to extracellular stimuli by mediating the flux through downstream signal transduction cascades. RAS activity is strongly dependent on its subcellular localization and its nucleotide-binding status, both of which are modulated by posttranslational modification. We have determined that RAS is posttranslationally acetylated on lysine 104. Molecular dynamics simulations suggested that this modification affects the conformational stability of the Switch II domain, which is critical for the ability of RAS to interact with guanine nucleotide exchange factors. Consistent with this model, an acetylation-mimetic mutation in K-RAS4B suppressed guanine nucleotide exchange factor-induced nucleotide exchange and inhibited in vitro transforming activity. These data suggest that lysine acetylation is a negative regulatory modification on RAS. Because mutations in RAS family members are extremely common in cancer, modulation of RAS acetylation may constitute a therapeutic approach.
Related JoVE Video
SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis.
Cancer Res.
Show Abstract
Hide Abstract
Tumors exhibit metabolic reprogramming characterized by increased cellular reactive oxygen species (ROS) and the preferential use of glucose, which is known as the Warburg effect. However, the mechanisms by which these processes are linked remain largely elusive. Murine tumors lacking Sirt3 exhibit abnormally high levels of ROS that directly induce genomic instability and increase hypoxia-inducible factor 1? (HIF-1?) protein levels. The subsequent transcription of HIF?-dependent target genes results in cellular metabolic reprogramming and increased cellular glucose consumption. In addition, agents that scavenge ROS or reverse the Warburg effect prevent the transformation and malignant phenotype observed in cells lacking Sirt3. Thus, mice lacking Sirt3 provide a model that mechanistically connects aberrant ROS, the Warburg effect, and carcinogenesis.
Related JoVE Video
Short-term calorie restriction enhances skeletal muscle stem cell function.
Cell Stem Cell
Show Abstract
Hide Abstract
Calorie restriction (CR) extends life span and ameliorates age-related pathologies in most species studied, yet the mechanisms underlying these effects remain unclear. Using mouse skeletal muscle as a model, we show that CR acts in part by enhancing the function of tissue-specific stem cells. Even short-term CR significantly enhanced stem cell availability and activity in the muscle of young and old animals, in concert with an increase in mitochondrial abundance and induction of conserved metabolic and longevity regulators. Moreover, CR enhanced endogenous muscle repair and CR initiated in either donor or recipient animals improved the contribution of donor cells to regenerating muscle after transplant. These studies indicate that metabolic factors play a critical role in regulating stem cell function and that this regulation can influence the efficacy of recovery from injury and the engraftment of transplanted cells.
Related JoVE Video
Systemic elevation of PTEN induces a tumor-suppressive metabolic state.
Cell
Show Abstract
Hide Abstract
Decremental loss of PTEN results in cancer susceptibility and tumor progression. PTEN elevation might therefore be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with PTEN expression elevated to varying levels by taking advantage of bacterial artificial chromosome (BAC)-mediated transgenesis. The "Super-PTEN" mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake and increased mitochondrial oxidative phosphorylation and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and -independent pathways and negatively impacting two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect.
Related JoVE Video
Skeletal muscle transcriptional coactivator PGC-1? mediates mitochondrial, but not metabolic, changes during calorie restriction.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Calorie restriction (CR) is a dietary intervention that extends lifespan and healthspan in a variety of organisms. CR improves mitochondrial energy production, fuel oxidation, and reactive oxygen species (ROS) scavenging in skeletal muscle and other tissues, and these processes are thought to be critical to the benefits of CR. PGC-1? is a transcriptional coactivator that regulates mitochondrial function and is induced by CR. Consequently, many of the mitochondrial and metabolic benefits of CR are attributed to increased PGC-1? activity. To test this model, we examined the metabolic and mitochondrial response to CR in mice lacking skeletal muscle PGC-1? (MKO). Surprisingly, MKO mice demonstrated a normal improvement in glucose homeostasis in response to CR, indicating that skeletal muscle PGC-1? is dispensable for the whole-body benefits of CR. In contrast, gene expression profiling and electron microscopy (EM) demonstrated that PGC-1? is required for the full CR-induced increases in mitochondrial gene expression and mitochondrial density in skeletal muscle. These results demonstrate that PGC-1? is a major regulator of the mitochondrial response to CR in skeletal muscle, but surprisingly show that neither PGC-1? nor mitochondrial biogenesis in skeletal muscle are required for the whole-body metabolic benefits of CR.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.