JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Pair bond formation is impaired by VPAC receptor antagonism in the socially monogamous zebra finch.
Behav. Brain Res.
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
A variety of recent data demonstrate that vasoactive intestinal polypeptide (VIP) and VPAC receptors (which bind VIP, and to a lesser extent, pituitary adenylatecyclase activating peptide) are important for numerous social behaviors in songbirds, including grouping and aggression, although VIP relates to these behaviors in a site-specific manner. In order to determine the global effects of central VPAC receptor activation on social behavior, we here infused a VPAC receptor antagonist or vehicle twice daily into the lateral ventricle of colony-housed male and female zebra finches and quantified a wide range of behaviors. Aggressive behaviors were not altered by ventricular infusions, consistent with known opposing, site-specific relationships of VIP innervation to aggression. Courtship and self-maintenance behaviors were likewise not altered. However, VPAC antagonism produced significant deficits in pair bonding. Antagonist subjects took longer to form a pair bond and were paired for significantly fewer observation sessions relative to control subjects (median 1.5 of 6 observation sessions for antagonist subjects versus 4 for control subjects). Antagonist subjects were also significantly less likely to be paired in the final observation session. Based on the known distribution of VPAC receptors in finches and other vertebrates, we propose that VPAC receptors may mediate pair bonding via a variety of brain areas that are known to be important for the establishment of partner preferences in voles, including the lateral septum, ventral tegmental area, nucleus accumbens and ventral pallidum.
Related JoVE Video
Whats in a name? Considerations of homologies and nomenclature for vertebrate social behavior networks.
Horm Behav
PUBLISHED: 03-22-2013
Show Abstract
Hide Abstract
Behavioral neuroendocrinology is an integrative discipline that spans a wide range of taxa and neural systems, and thus the appropriate designation of homology (sameness) across taxa is critical for clear communication and extrapolation of findings from one taxon to another. In the present review we address issues of homology that relate to neural circuits of social behavior and associated systems that mediate reward and aversion. We first address a variety of issues related to the so-called "social behavior network" (SBN), including homologies that are only partial (e.g., whereas the preoptic area of fish and amphibians contains the major vasopressin-oxytocin cell groups, these populations lie in the hypothalamus of other vertebrates). We also discuss recent evidence that clarifies anterior hypothalamus and periaqueductal gray homologies in birds. Finally, we discuss an expanded network model, the "social decision-making network" (SDM) which includes the mesolimbic dopamine system and other structures that provide an interface between the mesolimbic system and the SBN. This expanded model is strongly supported in mammals, based on a wide variety of evidence. However, it is not yet clear how readily the SDM can be applied as a pan-vertebrate model, given insufficient data on numerous proposed homologies and a lack of social behavior data for SDM components (beyond the SBN nodes) for amphibians, reptiles or fish. Functions of SDM components are also poorly known for birds. Nonetheless, we contend that the SDM model provides a very sound and important framework for the testing of many hypotheses in nonmammalian vertebrates.
Related JoVE Video
VPAC receptor signaling modulates grouping behavior and social responses to contextual novelty in a gregarious finch: a role for a putative prefrontal cortex homologue.
Horm Behav
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
In both mammals and birds, vasoactive intestinal polypeptide (VIP) neurons and fibers are present in virtually every brain area that is important for social behavior. VIP influences aggression in birds, social recognition in rodents, and prolactin secretion in both taxa, but other possible functions in social modulation remain little explored. VIP effects are mediated by VPAC receptors, which bind both VIP and pituitary adenylate cyclase activating peptide. Within the lateral septum and medial bed nucleus of the stria terminalis, VPAC receptors are found at higher densities in gregarious finch species relative to territorial species, suggesting that VPAC receptor activation promotes social contact and/or preference for larger groups. Here we here test this hypothesis in zebra finches (Taeniopygia guttata), and also examine the relevance of VPAC receptors to anxiety-like processes. Intraventricular infusions of the VPAC receptor antagonist, neurotensin6-11 mouseVIP7-28, strongly reduce social contact when animals are tested in a novel environment, and exert sex-specific effects on grouping behavior. Specifically, VPAC receptor antagonism reduces gregariousness in females but increases gregariousness in males. Interestingly, VPAC antagonism in the medial pallium (putative prefrontal cortex homologue) significantly reduces gregariousness in both sexes, suggesting site-specific effects of VIP signaling. However, VPAC antagonism does not modulate novel-familiar social preferences in a familiar environment or general anxiety-like behaviors. The current results suggest that endogenous activation of VPAC receptors promotes social contact under novel environmental conditions, a function that may be accentuated in gregarious species. Moreover, endogenous VIP modulates gregariousness in both males and females.
Related JoVE Video
Lysophosphatidic acid signaling may initiate fetal hydrocephalus.
Sci Transl Med
PUBLISHED: 09-09-2011
Show Abstract
Hide Abstract
Fetal hydrocephalus (FH), characterized by the accumulation of cerebrospinal fluid, an enlarged head, and neurological dysfunction, is one of the most common neurological disorders of newborns. Although the etiology of FH remains unclear, it is associated with intracranial hemorrhage. Here, we report that lysophosphatidic acid (LPA), a blood-borne lipid that activates signaling through heterotrimeric guanosine 5-triphosphate-binding protein (G protein)-coupled receptors, provides a molecular explanation for FH associated with hemorrhage. A mouse model of intracranial hemorrhage in which the brains of mouse embryos were exposed to blood or LPA resulted in development of FH. FH development was dependent on the expression of the LPA(1) receptor by neural progenitor cells. Administration of an LPA(1) receptor antagonist blocked development of FH. These findings implicate the LPA signaling pathway in the etiology of FH and suggest new potential targets for developing new treatments for FH.
Related JoVE Video
Mammal-like organization of the avian midbrain central gray and a reappraisal of the intercollicular nucleus.
PLoS ONE
PUBLISHED: 05-09-2011
Show Abstract
Hide Abstract
In mammals, rostrocaudal columns of the midbrain periaqueductal gray (PAG) regulate diverse behavioral and physiological functions, including sexual and fight-or-flight behavior, but homologous columns have not been identified in non-mammalian species. In contrast to mammals, in which the PAG lies ventral to the superior colliculus and surrounds the cerebral aqueduct, birds exhibit a hypertrophied tectum that is displaced laterally, and thus the midbrain central gray (CG) extends mediolaterally rather than dorsoventrally as in mammals. We therefore hypothesized that the avian CG is organized much like a folded open PAG. To address this hypothesis, we conducted immunohistochemical comparisons of the midbrains of mice and finches, as well as Fos studies of aggressive dominance, subordinance, non-social defense and sexual behavior in territorial and gregarious finch species. We obtained excellent support for our predictions based on the folded open model of the PAG and further showed that birds possess functional and anatomical zones that form longitudinal columns similar to those in mammals. However, distinguishing characteristics of the dorsal/dorsolateral PAG, such as a dense peptidergic innervation, a longitudinal column of neuronal nitric oxide synthase neurons, and aggression-induced Fos responses, do not lie within the classical avian CG, but in the laterally adjacent intercollicular nucleus (ICo), suggesting that much of the ICo is homologous to the dorsal PAG.
Related JoVE Video
Nonapeptides and the evolution of social group sizes in birds.
Front Neuroanat
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
Species-typical patterns of grouping have profound impacts on many aspects of physiology and behavior. However, prior to our recent studies in estrildid finches, neural mechanisms that titrate species-typical group-size preferences, independent of other aspects of social organization (e.g., mating system and parental care), have been wholly unexplored, likely because species-typical group size is typically confounded with other aspects of behavior and biology. An additional complication is that components of social organization are evolutionarily labile and prone to repeated divergence and convergence. Hence, we cannot assume that convergence in social structure has been produced by convergent modifications to the same neural characters, and thus any comparative approach to grouping must include not only species that differ in their species-typical group sizes, but also species that exhibit convergent evolution in this aspect of social organization. Using five estrildid finch species that differ selectively in grouping (all biparental and monogamous) we have demonstrated that neural motivational systems evolve in predictable ways in relation to species-typical group sizes, including convergence in two highly gregarious species and convergence in two relatively asocial, territorial species. These systems include nonapeptide (vasotocin and mesotocin) circuits that encode the valence of social stimuli (positive-negative), titrate group-size preferences, and modulate anxiety-like behaviors. Nonapeptide systems exhibit functional and anatomical properties that are biased toward gregarious species, and experimental reductions of nonapeptide signaling by receptor antagonism and antisense oligonucleotides significantly decrease preferred group sizes in the gregarious zebra finch. Combined, these findings suggest that selection on species-typical group size may reliably target the same neural motivation systems when a given social structure evolves independently.
Related JoVE Video
Vasotocin neurons and septal V1a-like receptors potently modulate songbird flocking and responses to novelty.
Horm Behav
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
Previous comparisons of territorial and gregarious finches (family Estrildidae) suggest the hypothesis that arginine vasotocin (VT) neurons in the medial bed nucleus of the stria terminalis (BSTm) and V(1a)-like receptors in the lateral septum (LS) promote flocking behavior. Consistent with this hypothesis, we now show that intraseptal infusions of a V(1a) antagonist in male zebra finches (Taeniopygia guttata) reduce gregariousness (preference for a group of 10 versus 2 conspecific males), but have no effect on the amount of time that subjects spend in close proximity to other birds ("contact time"). The antagonist also produces a profound increase in anxiety-like behavior, as exhibited by an increased latency to feed in a novelty-suppressed feeding test. Bilateral knockdown of VT production in the BSTm using LNA-modified antisense oligonucleotides likewise produces increases in anxiety-like behavior and a potent reduction in gregariousness, relative to subjects receiving scrambled oligonucleotides. The antisense oligonucleotides also produced a modest increase in contact time, irrespective of group size. Together, these combined experiments provide clear evidence that endogenous VT promotes preferences for larger flock sizes, and does so in a manner that is coupled to general anxiolysis. Given that homologous peptide circuitry of the BSTm-LS is found across all tetrapod vertebrate classes, these findings may be predictive for other highly gregarious species.
Related JoVE Video
Network structure implied by initial axon outgrowth in rodent cortex: empirical measurement and models.
PLoS ONE
PUBLISHED: 01-11-2011
Show Abstract
Hide Abstract
The developmental mechanisms by which the network organization of the adult cortex is established are incompletely understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability distribution. The networks generated are described by a number of graph theoretic measurements including graph efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network efficiency and robustness. Future work will test the models predictions for connectivity in larger cortices to gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient and economical connectivity in larger brains.
Related JoVE Video
Mesotocin and nonapeptide receptors promote estrildid flocking behavior.
Science
PUBLISHED: 08-15-2009
Show Abstract
Hide Abstract
Proximate neural mechanisms that influence preferences for groups of a given size are almost wholly unknown. In the highly gregarious zebra finch (Estrildidae: Taeniopygia guttata), blockade of nonapeptide receptors by an oxytocin (OT) antagonist significantly reduced time spent with large groups and familiar social partners independent of time spent in social contact. Opposing effects were produced by central infusions of mesotocin (MT, avian homolog of OT). Most drug effects appeared to be female-specific. Across five estrildid finch species, species-typical group size correlates with nonapeptide receptor distributions in the lateral septum, and sociality in female zebra finches was reduced by OT antagonist infusions into the septum but not a control area. We propose that titration of sociality by MT represents a phylogenetically deep framework for the evolution of OTs female-specific roles in pair bonding and maternal functions.
Related JoVE Video
Endogenous vasotocin exerts context-dependent behavioral effects in a semi-naturalistic colony environment.
Horm Behav
PUBLISHED: 03-10-2009
Show Abstract
Hide Abstract
Arginine vasotocin (VT), and its mammalian homologue arginine vasopressin (VP), are neuropeptides involved in the regulation of social behaviors and stress responsiveness. Previous research has demonstrated opposing effects of VT/VP on aggression in different species. However, these divergent effects were obtained in different social contexts, leading to the hypothesis that different populations of VT/VP neurons regulate behaviors in a context-dependent manner. We here use VP antagonists to block endogenous VT function in male zebra finches (Taeniopygia guttata) within a semi-natural, mixed-sex colony setting. We examine the role of VT in the regulation of aggression and courtship, and in pair bond formation and maintenance, over the course of three days. Although our results confirm previous findings, in that antagonist treatment reduces aggressive mate competition during an initial behavioral session during which males encounter novel females, we find that the treatment effects are completely reversed within hours of colony establishment, and the antagonist treatment instead facilitates aggression in later sessions. This reversal occurs as aggression shifts from mate competition to nest defense, but is not causally associated with pairing status per se. Instead, we hypothesize that these divergent effects reflect context-specific activation of hypothalamic and amygdalar VT neurons that exert opposing influences on aggression. Across contexts, effects were highly specific to aggression and the antagonist treatment clearly failed to alter latency to pair bond formation, pair bond stability, and courtship. However, VT may still potentially influence these behaviors via promiscuous oxytocin-like receptors, which are widely distributed in the zebra finch brain.
Related JoVE Video
An aggression-specific cell type in the anterior hypothalamus of finches.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
The anterior hypothalamus (AH) is a major integrator of neural processes related to aggression and defense, but cell types in the AH that selectively promote aggression are unknown. We here show that aggression is promoted in a very selective and potent manner by dorsal AH neurons that produce vasoactive intestinal polypeptide (VIP). Fos activity in a territorial finch, the violet-eared waxbill (Estrildidae: Uraeginthus granatina) is positively related to aggression in the dorsal AH, overlapping a population of VIP-producing neurons. VIP is known to promote territorial aggression in songbirds, and thus we used antisense oligonucleotides to selectively block AH VIP production in male and female waxbills. This manipulation virtually abolishes aggression, reducing the median number of displacements in a 3-min resident-intruder test from 38 in control subjects to 0 in antisense subjects. Notably, most antisense and control waxbills exhibit an agonistic response such as a threat or agonistic call within 2 s of intrusion. Thus, antisense subjects clearly classify intruders as offensive, but fail to attack. Other social and anxiety-like behaviors are not affected and VIP cell numbers correlate positively with aggression, suggesting that these cells selectively titrate aggression. Additional experiments in the gregarious zebra finch (Estrildidae: Taeniopygia guttata) underscore this functional specificity. Colony-housed finches exhibit significant reductions in aggression (primarily nest defense) following AH VIP knockdown, but no effects are observed for social preferences, pair bonding, courtship, maintenance behaviors, or anxiety-like behaviors. To our knowledge, these findings represent a unique identification of an aggression-specific cell type in the brain.
Related JoVE Video
Monogamous and promiscuous rodent species exhibit discrete variation in the size of the medial prefrontal cortex.
Brain Behav. Evol.
Show Abstract
Hide Abstract
Limbic-associated cortical areas, such as the medial prefrontal and retrosplenial cortex (mPFC and RS, respectively), are involved in the processing of emotion, motivation, and various aspects of working memory and have been implicated in mating behavior. To determine whether the independent evolution of mating systems is associated with a convergence in cortical mechanisms, we compared the size of mPFC and RS between the monogamous prairie vole (Microtus ochrogaster) and the promiscuous meadow vole (Microtus pennsylvanicus), and between the monogamous California mouse (Peromyscus californicus) and the promiscuous white-footed mouse (Peromyscus leucopus). For both promiscuous mice and voles, the mPFC occupied a significantly larger percentage of total cortex than in the monogamous species. No significant differences were observed for the RS or overall cortex size with respect to mating system, supporting the convergent evolution of mPFC size, specifically. Individual differences in the mating behavior of male prairie voles (wandering versus pair-bonding), presumably facultative tactics, were not reflected in the relative size of the mPFC, which is likely a heritable trait. Given the importance of the mPFC for complex working memory, particularly object-place and temporal order memory, we hypothesize that the relatively greater size of the mPFC in promiscuous species reflects a greater need to remember multiple individuals and the times and locations in which they have been encountered in the home range.
Related JoVE Video
Evolving nonapeptide mechanisms of gregariousness and social diversity in birds.
Horm Behav
Show Abstract
Hide Abstract
Of the major vertebrate taxa, Class Aves is the most extensively studied in relation to the evolution of social systems and behavior, largely because birds exhibit an incomparable balance of tractability, diversity, and cognitive complexity. In addition, like humans, most bird species are socially monogamous, exhibit biparental care, and conduct most of their social interactions through auditory and visual modalities. These qualities make birds attractive as research subjects, and also make them valuable for comparative studies of neuroendocrine mechanisms. This value has become increasingly apparent as more and more evidence shows that social behavior circuits of the basal forebrain and midbrain are deeply conserved (from an evolutionary perspective), and particularly similar in birds and mammals. Among the strongest similarities are the basic structures and functions of avian and mammalian nonapeptide systems, which include mesotocin (MT) and arginine vasotocin (VT) systems in birds, and the homologous oxytocin (OT) and vasopressin (VP) systems, respectively, in mammals. We here summarize these basic properties, and then describe a research program that has leveraged the social diversity of estrildid finches to gain insights into the nonapeptide mechanisms of grouping, a behavioral dimension that is not experimentally tractable in most other taxa. These studies have used five monogamous, biparental finch species that exhibit group sizes ranging from territorial male-female pairs to large flocks containing hundreds or thousands of birds. The results provide novel insights into the history of nonapeptide functions in amniote vertebrates, and yield remarkable clarity on the nonapeptide biology of dinosaurs and ancient mammals. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.