JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Recurrent RHOA mutations in pediatric Burkitt lymphoma treated according to the NHL-BFM protocols.
Genes Chromosomes Cancer
PUBLISHED: 04-11-2014
Show Abstract
Hide Abstract
Burkitt lymphoma (BL) is the most frequent B-cell lymphoma in childhood. Genetically, it is characterized by the presence of an IG-MYC translocation which is supposed to be an initiating but not sufficient event in Burkitt lymphomagenesis. In a recent whole-genome sequencing study of four cases, we showed that the gene encoding the ras homolog family member A (RHOA) is recurrently mutated in pediatric BL. Here, we analyzed RHOA by Sanger sequencing in a cohort of 101 pediatric B-cell lymphoma patients treated according to Non-Hodgkin's Lymphoma Berlin-Frankfurt-Münster (NHL-BFM) study protocols. Among the 78 BLs in this series, an additional five had RHOA mutations resulting in a total incidence of 7/82 (8.5%) with c.14G>A (p.R5Q) being present in three cases. Modeling the mutational effect suggests that most of them inactivate the RHOA protein. Thus, deregulation of RHOA by mutation is a recurrent event in Burkitt lymphomagenesis in children.
Related JoVE Video
Mature B-cell lymphoma and leukemia in children and adolescents-review of standard chemotherapy regimen and perspectives.
Pediatr Hematol Oncol
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
Mature B-cell non-Hodgkin lymphoma (B-NHL) comprises more than 50% of all non-Hodgkin lymphoma (NHL) in children and adolescents. Many B-NHL subtypes frequently observed in adults are rarely diagnosed in children and adolescents. In this age group, Burkitt lymphoma (BL), Burkitt leukemia or FAB L3 leukemia (B-AL), diffuse large B-cell lymphoma (DLBCL), primary mediastinal large B-cell lymphoma (PMLBL), follicular lymphoma (FL), and aggressive mature B-NHL not further classifiable (B-NHL nfc) are the most common subtypes. Diverse clinical trials demonstrated similar results of current combination chemotherapy regimens succeeding in overall survival rates of more than 80%. However, treatment-related toxicity and the poor prognosis of relapse are serious concerns. Furthermore, specific histological B-NHL subtypes are rare in children and optimal treatment is not established. New treatment modalities are urgently needed for these patient groups. Rituximab, a monoclonal antibody that is already established in the treatment of adults with mature B-NHL, demonstrated promising results in pediatric patients. The definitive role of rituximab in the treatment of children and adolescents with B-NHL needs to be evaluated in prospective controlled clinical trials. This review provides a comprehensive overview of chemotherapy regimens and the perspectives for children and adolescents with mature B-cell lymphoma and leukemia.
Related JoVE Video
Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence.
Blood
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Probability of event-free survival (pEFS) in pediatric T-cell lymphoblastic lymphoma is about 80%, whereas survival in relapsed patients is very poor. No stratification criteria have been established so far. Recently, activating NOTCH1 mutations were reported to be associated with favorable prognosis, and loss of heterozygosity at chromosome 6q (LOH6q) was reported to be associated with increased relapse risk. The current project was intended to evaluate the prognostic effect of these markers. Mutations in hot spots of NOTCH1 and FBXW7 were analyzed in 116 patients. Concerning LOH6q status, 118 patients were investigated, using microsatellite marker analysis, in addition to an earlier reported cohort of 99 available patients. Ninety-two cases were evaluable for both analyses. All patients were treated with T-cell lymphoblastic lymphoma-Berlin-Frankfurt-Münster group (BFM)-type treatment. LOH6q was observed in 12% of patients (25/217) and associated with unfavorable prognosis (pEFS 27% ± 9% vs 86% ± 3%; P < .0001). In 60% (70/116) of the patients, NOTCH1 mutations were detected and associated with favorable prognosis (pEFS 84% ± 5% vs 66% ± 7%; P = .021). Interestingly, NOTCH1 mutations were rarely observed in patients with LOH in 6q16. Both prognostic markers will be used as stratification criteria in coming Non-Hodgkin Lymphoma-BFM trials.
Related JoVE Video
Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing.
Nat. Genet.
Show Abstract
Hide Abstract
Burkitt lymphoma is a mature aggressive B-cell lymphoma derived from germinal center B cells. Its cytogenetic hallmark is the Burkitt translocation t(8;14)(q24;q32) and its variants, which juxtapose the MYC oncogene with one of the three immunoglobulin loci. Consequently, MYC is deregulated, resulting in massive perturbation of gene expression. Nevertheless, MYC deregulation alone seems not to be sufficient to drive Burkitt lymphomagenesis. By whole-genome, whole-exome and transcriptome sequencing of four prototypical Burkitt lymphomas with immunoglobulin gene (IG)-MYC translocation, we identified seven recurrently mutated genes. One of these genes, ID3, mapped to a region of focal homozygous loss in Burkitt lymphoma. In an extended cohort, 36 of 53 molecularly defined Burkitt lymphomas (68%) carried potentially damaging mutations of ID3. These were strongly enriched at somatic hypermutation motifs. Only 6 of 47 other B-cell lymphomas with the IG-MYC translocation (13%) carried ID3 mutations. These findings suggest that cooperation between ID3 inactivation and IG-MYC translocation is a hallmark of Burkitt lymphomagenesis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.