JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Oral delivery of nanoparticle-based vaccines.
Expert Rev Vaccines
PUBLISHED: 08-26-2014
Show Abstract
Hide Abstract
Most infectious diseases are caused by pathogenic infiltrations from the mucosal tract. Therefore, vaccines delivered to the mucosal tissues can mimic natural infections and provide protection at the first site of infection. Thus, mucosal, especially, oral delivery is becoming the most preferred mode of vaccination. However, oral vaccines have to overcome several barriers such as the extremely low pH of the stomach, the presence of proteolytic enzymes and bile salts as well as low permeability in the intestine. Several formulations based on nanoparticle strategies are currently being explored to prepare stable oral vaccine formulations. This review briefly discusses several molecular mechanisms involved in intestinal immune cell activation and various aspects of oral nanoparticle-based vaccine design that should be considered for improved mucosal and systemic immune responses.
Related JoVE Video
Levofloxacin and Indolicidinfor Combination Antimicrobial Therapy.
Curr Drug Deliv
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
Despite the increasing need for antibiotics to fight infectious diseases, fewer new antibiotics are available on the market. Unfortunately, developing a new class of antibiotics is associated with high commercial risk. Therefore, modification or combination of existing antibiotics to improve their efficacy is a promising strategy. Herein, we conjugated the antibiotic, levofloxacin, with two peptides, i.e. an antimicrobial peptide indolicidin and a cell penetrating peptide (TAT). Glycolic acid and glycine linkers were used between levofloxacin and peptides. We developed an optimized condition for coupling of levofloxacin via its carboxylic group to glycolic acidusing solid phase peptide synthesis (SPPS). Antibacterial and haemolytic assays were carried out on the conjugates andonly the levofloxacin-indolicidinconjugate demonstrated moderate antibacterial activity. Interestingly, physical mixture of levofloxacinand indolicidin showed improvement in the activity against Gram-positive bacteria.
Related JoVE Video
Self - Adjuvanting Therapeutic Peptide - Based Vaccine Induce CD8+ Cyto-toxic T Lymphocyte Responses in a Murine Human Papillomavirus Tumor Model.
Curr Drug Deliv
PUBLISHED: 05-12-2014
Show Abstract
Hide Abstract
Vaccine candidatesfor the treatment of human papillomavirus (HPV)-associated cancers areaimed to activate T-cells and induce development of cytotoxic anti-tumor specific responses. Peptide epitopes derived from HPV-16 E7 oncogenic proteinhave been identified as promising antigens for vaccine development. However, peptide-based antigens alone elicit poor cytotoxic T lymphocyte (CTL) responses and need to be formulated with an adjuvant (immunostimulant) to achieve the desired immune responses. We have reported the ability of polyacrylate 4-arm star-polymer (S4) conjugated with HPV-16 E744-57 (8Qmin) epitope to reduce and eradicate TC-1 tumor in the mouse model. Herein, we have studied the mechanism of induction of immune responses by this polymer-peptide conjugate and found prompt uptake of conjugate by antigen presenting cells, stimulating stronger CD8+ rather than CD4+ or NK cell responses.
Related JoVE Video
Liposomes as nanovaccine delivery systems.
Curr Top Med Chem
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
Since the discovery of liposomes by Alec Bangham in mid-1960s, these phospholipid vesicles have been widely used as pharmaceutical carriers. Liposomes have been extensively studied in the vaccine delivery field as a carrier and an immune stimulating agent. Liposomes are usually formulated as nanoparticles, mimicking the properties of pathogens, and have the ability to induce humoral and cell-mediated immune responses. In this review, we focused on modern nanotechnology-based approaches for the improvement of liposomal vaccine delivery systems. Topics such as size-dependent uptake, processing and activation of antigen presenting cells, targeting liposomes and route of administration are discussed.
Related JoVE Video
Toll-like receptor agonists: a patent review (2011 - 2013).
Expert Opin Ther Pat
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
Toll-like receptors (TLRs) are a crucial part of the innate immunity and present the first line of defense against pathogens. In humans, there are ten TLRs, with TLR3, 7, 8 and 9 located in intracellular vesicles and the remaining expressed on the cell surface. These transmembrane protein receptors recognize a wide range of pathogen components. A large number of TLR agonists, either derived from pathogen components or modified synthetic molecules, were developed and investigated for their ability to stimulate an immune response.
Related JoVE Video
Recent progress in adjuvant discovery for peptide-based subunit vaccines.
Hum Vaccin Immunother
PUBLISHED: 12-05-2013
Show Abstract
Hide Abstract
Peptide-based subunit vaccines are of great interest in modern immunotherapy as they are safe, easy to produce and well defined. However, peptide antigens produce a relatively weak immune response, and thus require the use of immunostimulants (adjuvants) for optimal efficacy. Developing a safe and effective adjuvant remains a challenge for peptide-based vaccine design. Recent advances in immunology have allowed researchers to have a better understanding of the immunological implication of related diseases, which facilitates more rational design of adjuvant systems. Understanding the molecular structure of the adjuvants allows the establishment of their structure-activity relationships which is useful for the development of next-generation adjuvants. This review summarizes the current state of adjuvants development in the field of synthetic peptide-based vaccines. The structural, chemical and biological properties of adjuvants associated with their immunomodulatory effects are discussed.
Related JoVE Video
Lipid core peptide targeting the cathepsin D hemoglobinase of Schistosoma mansoni as a component of a schistosomiasis vaccine.
Hum Vaccin Immunother
PUBLISHED: 11-14-2013
Show Abstract
Hide Abstract
The self-adjuvanting lipid core peptide (LCP) system offers a safe alternative vaccine delivery strategy, eliminating the need for additional adjuvants such as CpG Alum. In this study, we adopted the LCP as a scaffold for an epitope located on the surface of the cathepsin D hemoglobinase (Sm-catD) of the human blood fluke Schistosoma mansoni. Sm-catD plays a pivotal role in digestion of the flukes bloodmeal and has been shown to be efficacious as a subunit vaccine in a murine model of human schistosomiasis. Using molecular modeling we showed that S. mansoni cathepsin D possesses a predicted surface exposed ?-helix (A 263K) that corresponds to an immunodominant helix and target of enzyme-neutralizing antibodies against Necator americanus APR-1 (Na-APR-1), the orthologous protease and vaccine antigen from blood-feeding hookworms. The A 263K epitope was engineered as two peptide variants, one of which was flanked at both termini with a coil maintaining sequence, thereby promoting the helical characteristics of the native A 263K epitope. Some of the peptides were fused to a self-adjuvanting lipid core scaffold to generate LCPs. Mice were vaccinated with unadjuvanted peptides, peptides formulated with Freunds adjuvants, or LCPs. Antibodies generated to LCPs recognized native Sm-catD within a soluble adult schistosome extract, and almost completely abolished its enzymatic activity in vitro. Using immunohistochemistry we showed that anti-LCP antibodies bound to the native Sm-catD protein in the esophagus and anterior regions of the gastrodermis of adult flukes. Vaccines offer an alternative control strategy in the fight against schistosomiasis, and further development of LCPs containing multiple epitopes from this and other vaccine antigens should become a research priority.
Related JoVE Video
Peptide Conjugation via CuAAC Click Chemistry.
Molecules
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
The copper (I)-catalyzed alkyne azide 1,3-dipolar cycloaddition (CuAAC) or click reaction, is a highly versatile reaction that can be performed under a variety of reaction conditions including various solvents, a wide pH and temperature range, and using different copper sources, with or without additional ligands or reducing agents. This reaction is highly selective and can be performed in the presence of other functional moieties. The flexibility and selectivity has resulted in growing interest in the application of CuAAC in various fields. In this review, we briefly describe the importance of the structural folding of peptides and proteins and how the 1,4-disubstituted triazole product of the CuAAC reaction is a suitable isoster for an amide bond. However the major focus of the review is the application of this reaction to produce peptide conjugates for tagging and targeting purpose, linkers for multifunctional biomacromolecules, and reporter ions for peptide and protein analysis.
Related JoVE Video
M-protein-derived conformational peptide epitope vaccine candidate against Group A Streptococcus.
Curr Drug Deliv
PUBLISHED: 08-27-2013
Show Abstract
Hide Abstract
Identification of the most relevant epitopes is the initial challenge of peptide-based vaccine design. Chimeric conserved epitopes of the Group A Streptococcus (GAS) M-protein were used in the development of an anti-GAS vaccine candidate. Previously, these epitopes have incorporated a GCN4 peptide from yeast to maintain their native helical structure. Here, we designed a new peptide epitope based on the minimal B-cell epitope from GAS M-protein. This new epitope was able to adopt the desired helical conformation without the need for the foreign GCN4 flanking sequence. The selected epitope induced significant immune responses upon administration with external adjuvant, and when incorporated into the Lipid Core Peptide (LCP) system. Moreover, the antibodies produced against this epitope were able to recognize the native p145 sequence from M-protein.
Related JoVE Video
Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer.
Biomacromolecules
PUBLISHED: 07-22-2013
Show Abstract
Hide Abstract
Dendrimers are structurally well-defined, synthetic polymers with sizes and physicochemical properties often resembling those of biomacromolecules (e.g., proteins). As a result, they are promising candidates for peptide-based vaccine delivery platforms. Herein, we established a synthetic pathway to conjugate a human papillomavirus (HPV) E7 protein-derived peptide antigen to a star-polymer to create a macromolecular vaccine candidate to treat HPV-related cancers. These conjugates were able to reduce tumor growth and eradicate E7-expressing TC-1 tumors in mice after a single immunization, without the help of any external adjuvant.
Related JoVE Video
Polymer-peptide hybrids as a highly immunogenic single-dose nanovaccine.
Nanomedicine (Lond)
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
Aim: To explore four-arm star poly(t-butyl)acrylate (P(t)BA)-peptide and linear P(t)BA-peptide conjugates as a vaccine-delivery system against Group A Streptococcus. Materials & methods: P(t)BA nanoparticles bearing J14 peptide epitopes were prepared via alkyne-azide 1,3-dipolar cycloaddition click reaction. The conjugated products were self-assembled into small or large nanoparticles. These nanoparticle vaccine candidates were evaluated in vivo and J14-specific antibody titers were assessed. Results & discussion: Mice vaccinated with the nanoparticles were able to produce J14-specific IgG antibodies without the use of an external adjuvant after a single immunization. We have demonstrated for the first time that the immune responses against self-assembled P(t)BA nanoparticles are stronger for the smaller sized (˜20 nm) nanoparticles compared with the larger (˜500nm) P(t)BA nanoparticles. Conclusion: PtBA analogs have the potential to be developed as potent carrier systems for single-dose synthetic vaccines. Original submitted 29 August 2012; Revised submitted 6 December 2012; Published online 23 April 2013.
Related JoVE Video
Microwave-assisted synthesis of difficult sequence-containing peptides using the isopeptide method.
Org. Biomol. Chem.
PUBLISHED: 02-23-2013
Show Abstract
Hide Abstract
Microwave-assisted Fmoc solid phase peptide synthesis (SPPS) was applied in combination with the isopeptide strategy to establish a new method for the rapid synthesis of difficult sequence-containing peptide. A model peptide (8Q(Ser)) was produced in one day using the method developed, in contrast with two weeks using the isopeptide method. Both methods produced the desired peptide in high yield and purity, while classical SPPS did not result in the desired product.
Related JoVE Video
Lipid-core-peptide system for self-adjuvanting synthetic vaccine delivery.
Methods Mol. Biol.
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
Disadvantages of classical vaccines, such as the risk of an autoimmune reaction, might be overcome by using a subunit vaccine containing the minimal microbial components necessary to stimulate appropriate immune responses. However, vaccines based on minimal epitopes suffer from poor immunogenicity and require the use of an additional immunostimulant (adjuvant). Only a few adjuvants have been permitted for use with vaccines intended for human administration. We have developed several vaccine candidates based on a lipid-core-peptide (LCP) system. This system has self-adjuvanting properties, and it can be used for the delivery of a variety of epitopes to produce vaccine candidates against a targeted disease. The LCP system is easily assembled by simple stepwise Boc solid-phase peptide synthesis.
Related JoVE Video
Peptide-based subunit nanovaccines.
Curr Drug Deliv
PUBLISHED: 02-05-2011
Show Abstract
Hide Abstract
Classical vaccines incorporating live or attenuated microorganisms possess several disadvantages and cannot be applied against cancer and some pathogens. Modern vaccines utilizing immunogenic subunits derived from a particular pathogen are able to overcome these obstacles but need a specific delivery system for their efficacy. Nanotechnology has opened a new window into these delivery methodologies. A nano-sized formulation of subunit vaccines has been proven to be very effective in inducing cellular and humoral immune responses. Here, we review a number of peptide vaccine delivery strategies based on nanoparticles composed of polymers, peptides, lipids, and inorganic materials.
Related JoVE Video
Synthesis of glycolipopeptidic building blocks for carbohydrate receptor discovery.
Carbohydr. Res.
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
A class of glycolipopeptides for use as building blocks for a new type of dynamic combinatorial library is reported. The members of the library consist of a variable carbohydrate moiety, coded amino acids, and lipoamino acids in order to convert them into amphiphiles. Glycolipopeptidic amphiphiles interact through non-covalent bonding when mixed together in aqueous phase and form micelles in dynamic close-packed fluid mosaic arrays. The head groups of amphiphiles are exposed on the micelle surface, providing entities which could be screened in biological assays to find the most potent combination of building blocks in order to identify new bioactive carbohydrate ligands.
Related JoVE Video
Self-adjuvanting polyacrylic nanoparticulate delivery system for group A streptococcus (GAS) vaccine.
Nanomedicine
PUBLISHED: 07-28-2010
Show Abstract
Hide Abstract
Infection with Streptococcus pyogenes, commonly known as group A Streptococcus (GAS), is responsible for acute and postinfectious complications, including rheumatic fever and rheumatic heart disease (RHD). RHD is a global health burden, and Australias indigenous population has one of the highest incidences of RHD worldwide. A potential peptide (J14) vaccine candidate has been previously identified from the C-terminal region of the M protein. However, such peptide-based vaccine development is hampered by a lack of carriers and adjuvants suitable for humans use. We have developed a fully synthetic peptide subunit vaccine candidate based on polyacrylate dendritic polymer. Intranasal administration of this nanoparticulate construct without additional adjuvant induced J14-specific IgG, which was also capable of in vitro opsonization of GAS, highlighting the potential of self-adjuvanting polyacrylate nanoparticle-based construct as a peptide vaccine delivery platform that may afford promising opportunities for treating systemic GAS infection.
Related JoVE Video
Pro-apoptotic activity of lipidic ?-amino acids isolated from Protopalythoa variabilis.
Bioorg. Med. Chem.
PUBLISHED: 03-31-2010
Show Abstract
Hide Abstract
Lipidic ?-amino acids (LAAs) have been described as non-natural amino acids with long saturated or unsaturated aliphatic chains. In the continuing prospect to discover anticancer agents from marine sources, we have obtained a mixture of two cytotoxic LAAs (1a and 1b) from the zoanthid Protopalythoa variabilis. The anti-proliferative potential of 14 synthetic LAAs and 1a/1b were evaluated on four tumor cell lines (HCT-8, SF-295, MDA-MB-435, and HL-60). Five of the synthetic LAAs showed high percentage of tumor cell inhibition, while 1a/1b completely inhibited tumor cell growth. Additionally, apoptotic effects of 1a/1b were studied on HL-60 cell line. 1a/1b-treated cells showed apoptosis morphology, loss of mitochondrial potential, and DNA fragmentation.
Related JoVE Video
Thymine, adenine and lipoamino acid based gene delivery systems.
Chem. Commun. (Camb.)
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
A novel class of thymine, adenine and lipoamino acid based non-viral carriers for gene delivery has been developed. Their ability to bind to DNA by hydrogen bonding was confirmed by NMR diffusion, isothermal titration calorimetry and transmission electron microscopy experiments.
Related JoVE Video
Development of conformational mimetics of conserved Streptococcus pyogenes minimal epitope as vaccine candidates.
Curr Drug Deliv
PUBLISHED: 09-09-2009
Show Abstract
Hide Abstract
One of the factors responsible for the poor immunogenicity of synthetic peptide antigens is the lack of conformational integrity. Embedding the minimal epitopes in helix-promoting peptide sequences has successfully enhanced the immunogenicity of the epitopes derived from the alpha-helical regions of the M protein of group A streptococci (Streptococcus pyogenes, GAS). However, the introduction of "foreign" peptide sequences is believed to have an unfavourable impact on the antigen specificity. In the current study, we employed a non-peptide approach, using topological carbohydrate templates, to induce helical conformation of the peptide antigens. Utilized together with the advances of the lipid core peptide system and chemoselective ligation, five GAS vaccine candidates incorporating the minimal epitope J14i (ASREAKKQVEKALE) were synthesized with high purity. Circular dichroism studies indicated that the template-assembled peptides formed alpha-helix bundles. This atom-economic strategy also reduces the complexity and cost of vaccine production by simply reducing the peptide epitope size.
Related JoVE Video
Liposome-based delivery system for vaccine candidates: constructing an effective formulation.
Nanomedicine (Lond)
Show Abstract
Hide Abstract
The discovery of liposomes in 1965 by Bangham and coworkers changed the prospects of drug delivery systems. Since then, the application of liposomes as vaccine delivery systems has been studied extensively. Liposomal vaccine delivery systems are made up of nano- or micro-sized vesicles consisting of phospholipid bilayers, in which the bioactive molecule is encapsulated/entrapped, adsorbed or surface coupled. In general, liposomes are not immunogenic on their own; thus, liposomes combined with immunostimulating ligands (adjuvants) or various other formulations have been used as vaccine delivery systems. A thorough understanding of formulation parameters allows the design of effective liposomal vaccine delivery systems. This article provides an overview of various factors that influence liposomal immunogenicity. In particular, the effects of vesicle size, surface charge, bilayer composition, lamellarity, pegylation and targeting of liposomes are described.
Related JoVE Video
Peptide-based subunit vaccine against hookworm infection.
PLoS ONE
Show Abstract
Hide Abstract
Hookworms infect more people than HIV and malaria combined, predominantly in third world countries. Treatment of infection with chemotherapy can have limited efficacy and re-infections after treatment are common. Heavy infection often leads to debilitating diseases. All these factors suggest an urgent need for development of vaccine. In an attempt to develop a vaccine targeting the major human hookworm, Necator americanus, a B-cell peptide epitope was chosen from the apical enzyme in the hemoglobin digestion cascade, the aspartic protease Na-APR-1. The A(291)Y alpha helical epitope is known to induce neutralizing antibodies that inhibit the enzymatic activity of Na-APR-1, thus reducing the capacity for hookworms to digest hemoglobin and obtain nutrients. A(291)Y was engineered such that it was flanked on both termini by a coil-promoting sequence to maintain native conformation, and subsequently incorporated into a Lipid Core Peptide (LCP) self-adjuvanting system. While A(291)Y alone or the chimeric epitope with or without Freunds adjuvants induced negligible IgG responses, the LCP construct incorporating the chimeric peptide induced a strong IgG response in mice. Antibodies produced were able to bind to and completely inhibit the enzymatic activity of Na-APR-1. The results presented show that the new chimeric LCP construct can induce effective enzyme-neutralising antibodies in mice, without the help of any additional toxic adjuvants. This approach offers promise for the development of vaccines against helminth parasites of humans and their livestock and companion animals.
Related JoVE Video
Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.
PLoS ONE
Show Abstract
Hide Abstract
Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP) vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+) and/or CD8(+) T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+) T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+) T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.
Related JoVE Video
Advances in peptide-based human papillomavirus therapeutic vaccines.
Curr Top Med Chem
Show Abstract
Hide Abstract
Cervical cancer is the second leading cause of cancer in women worldwide. Human papillomavirus (HPV) is responsible for all cases of cervical cancer. Commercial prophylactic HPV vaccines are now available, but unfortunately these vaccines have no therapeutic effect against established HPV infections. In order to accelerate the control of cervical cancer and treat established HPV infections, it is necessary to develop therapeutic vaccines to eradicate HPV by generating cell-mediated immunity against HPV infected cells. Two HPV-encoded early proteins, the E6 and E7 oncoproteins, are the preferred targets because they are consistently expressed in virtually all cervical cancer cells and are necessary for the induction and maintenance of HPV-associated disease. A variety of vaccine strategies have been employed targeting immune responses to these proteins. Peptide-based vaccines are a promising strategy for the development of therapeutic HPV vaccines because of their safety, stability, and ease of production. This review summarizes the prospects of peptide-based vaccines for the treatment of established HPV infections. We address the challenges that scientists currently face for developing peptide-based vaccines and explore feasible strategies for improving the potency of the induced immune response with the aim of treating established HPV infections.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.