JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Protein Supplementation Increases Postexercise Plasma Myostatin Concentration After 8 Weeks of Resistance Training in Young Physically Active Subjects.
J Med Food
PUBLISHED: 08-18-2014
Show Abstract
Hide Abstract
Abstract Myostatin (MSTN) is a negative regulator of muscle growth even if some studies have shown a counterintuitive positive correlation between MSTN and muscle mass (MM). Our aim was to investigate the influence of 2 months of resistance training (RT) and diets with different protein contents on plasma MSTN, interleukin 1 beta (IL-1?), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-?), and insulin-like growth factor 1 (IGF-1). Eighteen healthy volunteers were randomly divided in two groups: high protein (HP) and normal protein (NP) groups. Different protein diet contents were 1.8 and 0.85?g of protein·kg bw(-1)·day(-1) for HP and NP, respectively. Subjects underwent 8 weeks of standardized progressive RT. MSTN, IGF-1, IL-1?, IL-6, and TNF-? were analyzed before and after the first and the last training sessions. Lean body mass, MM, upper-limb muscle area, and strength were measured. Plasma MSTN showed a significant increase (P<.001) after the last training in the HP group compared with NP group and with starting value. IGF-1 plasma concentration showed a positive correlation with MSTN in HP after the last training (r(2)=0.6456; P=.0295). No significant differences were found between NP and HP for IL-1?, IL-6, TNF-?, and strength and MM or area. These findings suggest a "paradoxical" postexercise increase of plasma MSTN after 8 weeks of RT and HP diets. This MSTN elevation correlates positively with IGF-1 plasma level. This double increase of opposite (catabolic/anabolic) mediators could explain the substantial overlapping of MM increases in the two groups.
Related JoVE Video
Myosin isoforms and contractile properties of single fibers of human Latissimus Dorsi muscle.
Biomed Res Int
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
The aim of our study was to investigate fiber type distribution and contractile characteristics of Latissimus Dorsi muscle (LDM). Samples were collected from 18 young healthy subjects (9 males and 9 females) through percutaneous fine needle muscle biopsy. The results showed a predominance of fast myosin heavy chain isoforms (MyHC) with 42% of MyHC 2A and 25% of MyHC 2X, while MyHC 1 represented only 33%. The unbalance toward fast isoforms was even greater in males (71%) than in females (64%). Fiber type distribution partially reflected MyHC isoform distribution with 28% type 1/slow fibers and 5% hybrid 1/2A fibers, while fast fibers were divided into 30% type 2A, 31% type A/X, 4% type X, and 2% type 1/2X. Type 1/slow fibers were not only less abundant but also smaller in cross-sectional area than fast fibers. During maximal isometric contraction, type 1/slow fibers developed force and tension significantly lower than the two major groups of fast fibers. In conclusion, the predominance of fast fibers and their greater size and strength compared to slow fibers reveal that LDM is a muscle specialized mainly in phasic and powerful activity. Importantly, such specialization is more pronounced in males than in females.
Related JoVE Video
Mitochondrial Ca2+-handling in fast skeletal muscle fibers from wild type and calsequestrin-null mice.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Mitochondrial calcium handling and its relation with calcium released from sarcoplasmic reticulum (SR) in muscle tissue are subject of lively debate. In this study we aimed to clarify how the SR determines mitochondrial calcium handling using dCASQ-null mice which lack both isoforms of the major Ca(2+)-binding protein inside SR, calsequestrin. Mitochondrial free Ca(2+)-concentration ([Ca(2+)]mito) was determined by means of a genetically targeted ratiometric FRET-based probe. Electron microscopy revealed a highly significant increase in intermyofibrillar mitochondria (+55%) and augmented coupling (+12%) between Ca(2+) release units of the SR and mitochondria in dCASQ-null vs. WT fibers. Significant differences in the baseline [Ca(2+)]mito were observed between quiescent WT and dCASQ-null fibers, but not in the resting cytosolic Ca(2+) concentration. The rise in [Ca(2+)]mito during electrical stimulation occurred in 20-30 ms, while the decline during and after stimulation was governed by 4 rate constants of approximately 40, 1.6, 0.2 and 0.03 s(-1). Accordingly, frequency-dependent increase in [Ca(2+)]mito occurred during sustained contractions. In dCASQ-null fibers the increases in [Ca(2+)]mito were less pronounced than in WT fibers and even lower when extracellular calcium was removed. The amplitude and duration of [Ca(2+)]mito transients were increased by inhibition of mitochondrial Na(+)/Ca(2+) exchanger (mNCX). These results provide direct evidence for fast Ca(2+) accumulation inside the mitochondria, involvement of the mNCX in mitochondrial Ca(2+)-handling and a dependence of mitochondrial Ca(2+)-handling on intracellular (SR) and external Ca(2+) stores in fast skeletal muscle fibers. dCASQ-null mice represent a model for malignant hyperthermia. The differences in structure and in mitochondrial function observed relative to WT may represent compensatory mechanisms for the disease-related reduction of calcium storage capacity of the SR and/or SR Ca(2+)-leakage.
Related JoVE Video
Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 11-02-2011
Show Abstract
Hide Abstract
Amplitude of Ca(2+) transients, ultrastructure of Ca(2+) release units, and molecular composition of sarcoplasmic reticulum (SR) are altered in fast-twitch skeletal muscles of calsequestrin-1 (CASQ1)-null mice. To determine whether such changes are directly caused by CASQ1 ablation or are instead the result of adaptive mechanisms, here we assessed ability of CASQ1 in rescuing the null phenotype. In vivo reintroduction of CASQ1 was carried out by cDNA electro transfer in flexor digitorum brevis muscle of the mouse. Exogenous CASQ1 was found to be correctly targeted to the junctional SR (jSR), as judged by immunofluorescence and confocal microscopy; terminal cisternae (TC) lumen was filled with electron dense material and its width was significantly increased, as judged by electron microscopy; peak amplitude of Ca(2+) transients was significantly increased compared with null muscle fibers transfected only with green fluorescent protein (control); and finally, transfected fibers were able to sustain cytosolic Ca(2+) concentration during prolonged tetanic stimulation. Only the expression of TC proteins, such as calsequestrin 2, sarcalumenin, and triadin, was not rescued as judged by Western blot. Thus our results support the view that CASQ1 plays a key role in both Ca(2+) homeostasis and TC structure.
Related JoVE Video
Lessons from calsequestrin-1 ablation in vivo: much more than a Ca(2+) buffer after all.
J. Muscle Res. Cell. Motil.
PUBLISHED: 09-09-2011
Show Abstract
Hide Abstract
Calsequestrin type-1 (CASQ1), the main sarcoplasmic reticulum (SR) Ca(2+) binding protein, plays a dual role in skeletal fibers: a) it provides a large pool of rapidly-releasable Ca(2+) during excitation-contraction (EC) coupling; and b) it modulates the activity of ryanodine receptors (RYRs), the SR Ca(2+) release channels. We have generated a mouse lacking CASQ1 in order to further characterize the role of CASQ1 in skeletal muscle. Contrary to initial expectations, CASQ1 ablation is compatible with normal motor activity, in spite of moderate muscle atrophy. However, CASQ1 deficiency results in profound remodeling of the EC coupling apparatus: shrinkage of junctional SR lumen; proliferation of SR/transverse-tubule contacts; and increased density of RYRs. While force development during a twitch is preserved, it is nevertheless characterized by a prolonged time course, likely reflecting impaired Ca(2+) re-uptake by the SR. Finally, lack of CASQ1 also results in increased rate of SR Ca(2+) depletion and inability of muscle to sustain tension during a prolonged tetani. All modifications are more pronounced (or only found) in fast-twitch extensor digitorum longus muscle compared to slow-twitch soleus muscle, likely because the latter expresses higher amounts of calsequestrin type-2 (CASQ2). Surprisingly, male CASQ1-null mice also exhibit a marked increased rate of spontaneous mortality suggestive of a stress-induced phenotype. Consistent with this idea, CASQ1-null mice exhibit an increased susceptibility to undergo a hypermetabolic syndrome characterized by whole body contractures, rhabdomyolysis, hyperthermia and sudden death in response to halothane- and heat-exposure, a phenotype remarkably similar to human malignant hyperthermia and environmental heat-stroke. The latter findings validate the CASQ1 gene as a candidate for linkage analysis in human muscle disorders.
Related JoVE Video
The modulation of myogenic cells differentiation using a semiconductor-muscle junction.
Biomaterials
PUBLISHED: 02-12-2011
Show Abstract
Hide Abstract
The present study is aimed to design a prototype of hybrid silicon-muscle cell junction, analog to an artificial neuromuscular junction prototype and relevant to the development of advanced neuro-prostheses and bionic systems. The device achieves focal Electric Capacitive Stimulation (ECS) by coupling of single cells and semiconductors, without electrochemical reaction with the substrate. A voltage change applied to a stimulation spot beneath an electrogenic cell leads to a capacitive current (charge accumulation) that opens voltage-gated ion channels in the membrane and generates an action potential. The myo-electronic junction was employed to chronically stimulate muscle cells via ECS and to induce cytosolic calcium transients in myotubes, fibers isolated from mouse FDB (fast [Ca(2+)](i) transients) and surprisingly also in undifferentiated myoblasts (slow [Ca(2+)](i) waves). The hybrid junction elicited, via chronic ECS, a differential reprogramming of single muscle cells by inducing early muscle contraction maturation and plasticity effects, such as NFAT-C3 nuclear translocation. In addition, in the presence of agrin, chronic ECS induced a modulation of AchR clustering which simulates in vitro synaptogenesis. This methodology can coordinate the myogenic differentiation, thus offering direct but non-invasive single cell/wiring, providing a platform for regenerative medicine strategies.
Related JoVE Video
Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy.
J. Appl. Physiol.
PUBLISHED: 11-12-2009
Show Abstract
Hide Abstract
It is commonly accepted that skeletal muscles from dystrophin-deficient mdx mice are more susceptible than those from wild-type mice to damage from eccentric contractions. However, the downstream mechanisms involved in this enhanced force drop remain controversial. We studied the reduction of contractile force induced by eccentric contractions elicited in vivo in the gastrocnemius muscle of wild-type mice and three distinct models of muscle dystrophy: mdx, alpha-sarcoglycan (Sgca)-null, and collagen 6A1 (Col6a1)-null mice. In mdx and Sgca-null mice, force decreased 35% compared with 14% in wild-type mice. Drop of force in Col6a1-null mice was comparable to that in wild-type mice. To identify the determinants of the force drop, we measured force generation in permeabilized fibers dissected from gastrocnemius muscle that had been exposed in vivo to eccentric contractions and from the contralateral unstimulated muscle. A force loss in skinned fibers after in vivo eccentric contractions was detectable in fibers from mdx and Sgca-null, but not wild-type and Col6a1-null, mice. The enhanced force reduction in mdx and Sgca-null mice was observed only when eccentric contractions were elicited in vivo, since eccentric contractions elicited in vitro had identical effects in wild-type and dystrophic skinned fibers. These results suggest that 1) the enhanced force loss is due to a myofibrillar impairment that is present in all fibers, and not to individual fiber degeneration, and 2) the mechanism causing the enhanced force reduction is active in vivo and is lost after fiber permeabilization.
Related JoVE Video
Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation.
FASEB J.
PUBLISHED: 08-06-2009
Show Abstract
Hide Abstract
A better understanding of the signaling pathways that control muscle growth is required to identify appropriate countermeasures to prevent or reverse the loss of muscle mass and force induced by aging, disuse, or neuromuscular diseases. However, two major issues in this field have not yet been fully addressed. The first concerns the pathways involved in leading to physiological changes in muscle size. Muscle hypertrophy based on perturbations of specific signaling pathways is either characterized by impaired force generation, e.g., myostatin knockout, or incompletely studied from the physiological point of view, e.g., IGF-1 overexpression. A second issue is whether satellite cell proliferation and incorporation into growing muscle fibers is required for a functional hypertrophy. To address these issues, we used an inducible transgenic model of muscle hypertrophy by short-term Akt activation in adult skeletal muscle. In this model, Akt activation for 3 wk was followed by marked hypertrophy ( approximately 50% of muscle mass) and by increased force generation, as determined in vivo by ankle plantar flexor stimulation, ex vivo in intact isolated diaphragm strips, and in single-skinned muscle fibers. No changes in fiber-type distribution and resistance to fatigue were detectable. Bromodeoxyuridine incorporation experiments showed that Akt-dependent muscle hypertrophy was accompanied by proliferation of interstitial cells but not by satellite cell activation and new myonuclei incorporation, pointing to an increase in myonuclear domain size. We can conclude that during a fast hypertrophic growth myonuclear domain can increase without compromising muscle performance.
Related JoVE Video
Anesthetic- and heat-induced sudden death in calsequestrin-1-knockout mice.
FASEB J.
PUBLISHED: 02-23-2009
Show Abstract
Hide Abstract
Calsequestrin-1 (CASQ1) is a moderate-affinity, high-capacity Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) terminal cisternae of skeletal muscle. CASQ1 functions as both a Ca(2+)-binding protein and a luminal regulator of ryanodine receptor (RYR1)-mediated Ca(2+) release. Mice lacking skeletal CASQ1 are viable but exhibit reduced levels of releasable Ca(2+) and altered contractile properties. Here we report that CASQ1-null mice exhibit increased spontaneous mortality and susceptibility to heat- and anesthetic-induced sudden death. Exposure of CASQ1-null mice to either 2% halothane or heat stress triggers lethal episodes characterized by whole-body contractures, elevated core temperature, and severe rhabdomyolysis, which are prevented by prior dantrolene administration. The characteristics of these events are remarkably similar to analogous episodes observed in humans with malignant hyperthermia (MH) and animal models of MH and environmental heat stroke (EHS). In vitro studies indicate that CASQ1-null muscle exhibits increased contractile sensitivity to temperature and caffeine, temperature-dependent increases in resting Ca(2+), and an increase in the magnitude of depolarization-induced Ca(2+) release. These results demonstrate that CASQ1 deficiency alters proper control of RYR1 function and suggest CASQ1 as a potential candidate gene for linkage analysis in families with MH/EHS where mutations in the RYR1 gene are excluded.
Related JoVE Video
Inflammation in muscular dystrophy and the beneficial effects of non-steroidal anti-inflammatory drugs.
Muscle Nerve
Show Abstract
Hide Abstract
Glucocorticoids are the only drugs available for the treatment of Duchenne muscular dystrophy (DMD), but it is unclear whether their efficacy is dependent on their anti-inflammatory activity.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.