JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Limbic networks and epileptiform synchronization: the view from the experimental side.
Int. Rev. Neurobiol.
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
In this review, we summarize findings obtained in acute and chronic epilepsy models and in particular experiments that have revealed how neuronal networks in the limbic system-which is closely involved in the pathophysiogenesis of mesial temporal lobe epilepsy (MTLE)-produce hypersynchronous discharges. MTLE is often associated with a typical pattern of brain damage known as mesial temporal sclerosis, and it is one of the most refractory forms of partial epilepsy in adults. Specifically, we will address the cellular and pharmacological features of abnormal electrographic events that, as in MTLE patients, can occur in in vivo and in vitro animal models; these include interictal and ictal discharges along with high-frequency oscillations. In addition, we will consider how different limbic structures made hyperexcitable by acute pharmacological manipulations interact during epileptiform discharge generation. We will also review the electrographic characteristics of two types of seizure onsets that are most commonly seen in human and experimental MTLE as well as in in vitro models of epileptiform synchronization. Finally, we will address the role played by neurosteroids in reducing epileptiform synchronization and in modulating epileptogenesis.
Related JoVE Video
Is there such a thing as "generalized" epilepsy?
Adv. Exp. Med. Biol.
PUBLISHED: 07-12-2014
Show Abstract
Hide Abstract
The distinction between generalized and partial epilepsies is probably one, if not the most, pregnant assertions in modern epileptology. Both absence and generalized tonic-clonic seizures, the prototypic seizures found in generalized epilepsies, are classically seen as the result of a rapid, synchronous recruitment of neuronal networks resulting in impairment of consciousness and/or convulsive semiology. The term generalized also refers to electroencephalographic presentation, with bilateral, synchronous activity, such as the classical 3 Hz spike and wave discharges of typical absence epilepsy. However, findings obtained from electrophysiological and functional imaging studies over the last few years, contradict this view, showing a rather focal onset for most of the so-called generalized seizure types. Therefore, we ask here the question whether "generalized epilepsy" does indeed exist.
Related JoVE Video
Activity-dependent changes in excitability of perirhinal cortex networks in vitro.
Pflugers Arch.
PUBLISHED: 03-19-2014
Show Abstract
Hide Abstract
Rat brain slices comprising the perirhinal cortex (PC) and a portion of the lateral nucleus of the amygdala (LA), in standard medium, can generate synchronous oscillatory activity that is associated with action potential discharge and reflects the activation of glutamatergic and GABAergic receptors. We report here that similar synchronous oscillatory events are recorded in the PC in response to single-shock, electrical stimuli delivered in LA. In addition, we found that the latency of these responses progressively increased when the stimulus interval was varied from 10 to 1 s; for example, the response latency during stimuli delivered at 1 Hz was more than twofold longer than that seen during stimulation at 0.1 Hz. This prolongation in latency occurred after approximately 5 stimuli, attained a steady value after 24-35 stimuli, and recovered to control values 30 s after stimulation arrest. These frequency-dependent changes in latency continued to occur during NMDA receptor antagonism but weakened following application of GABAA and/or GABAB receptor blockers. Our findings identify a new type of short-term plasticity that is mediated by GABA receptor function and may play a role in decreasing neuronal network synchronization during repeated activation. We propose that this frequency-dependent adaptive mechanism influences the excitability of limbic networks, thus potentially controlling epileptiform synchronization.
Related JoVE Video
Dynamics of interictal spikes and high-frequency oscillations during epileptogenesis in temporal lobe epilepsy.
Neurobiol. Dis.
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Mesial temporal lobe epilepsy (MTLE) is characterized in humans and in animal models by a seizure-free latent phase that follows an initial brain insult; this period is presumably associated to plastic changes in temporal lobe excitability and connectivity. Here, we analyzed the occurrence of interictal spikes and high frequency oscillations (HFOs; ripples: 80-200Hz and fast ripples: 250-500Hz) from 48h before to 96h after the first seizure in the rat pilocarpine model of MTLE. Interictal spikes recorded with depth EEG electrodes from the hippocampus CA3 area and entorhinal cortex (EC) were classified as type 1 (characterized by a spike followed by a wave) or type 2 (characterized by a spike with no wave). We found that: (i) there was a switch in the distribution of both types of interictal spikes before and after the occurrence of the first seizure; during the latent phase both types of interictal spikes predominated in the EC whereas during the chronic phase both types of spikes predominated in CA3; (ii) type 2 spike duration decreased in both regions from the latent to the chronic phase; (iii) type 2 spikes associated to fast ripples occurred at higher rates in EC compared to CA3 during the latent phase while they occurred at similar rates in both regions in the chronic phase; and (iv) rates of fast ripples outside of spikes were higher in EC compared to CA3 during the latent phase. Our findings demonstrate that the transition from the latent to the chronic phase is paralleled by dynamic changes in interictal spike and HFO expression in EC and CA3. We propose that these changes may represent biomarkers of epileptogenicity in MTLE.
Related JoVE Video
Resting state networks in temporal lobe epilepsy.
Epilepsia
PUBLISHED: 08-30-2013
Show Abstract
Hide Abstract
Temporal lobe epilepsy (TLE) is typically described as a neurologic disorder affecting a cerebral network comprising the hippocampus proper and several anatomically related extrahippocampal regions. A new level of complexity was recently added to the study of this disorder by the evidence that TLE also appears to chronically alter the activity of several brain-wide neural networks involved in the control of higher order brain functions and not traditionally linked to epilepsy. Recently developed brain imaging techniques such as functional magnetic resonance imaging (fMRI) analysis of resting state connectivity, have greatly contributed to these observations by allowing the precise characterization of several brain networks with distinct functional signatures in the resting brain, and therefore also known as "resting state networks." These significant advances in imaging represent an opportunity to investigate the still elusive origins of the disabling cognitive and psychiatric manifestations of TLE, and could have important implications for its pathophysiology and, perhaps, its therapy. Herein we review recent studies in this field by focusing on resting state networks that have been implicated in the pathophysiology of psychiatric disorders and cognitive impairment in patients with epilepsy: the default mode network, the attention network, and the reward/emotion network.
Related JoVE Video
The kainic acid model of temporal lobe epilepsy.
Neurosci Biobehav Rev
PUBLISHED: 07-23-2013
Show Abstract
Hide Abstract
The kainic acid model of temporal lobe epilepsy has greatly contributed to the understanding of the molecular, cellular and pharmacological mechanisms underlying epileptogenesis and ictogenesis. This model presents with neuropathological and electroencephalographic features that are seen in patients with temporal lobe epilepsy. It is also characterized by a latent period that follows the initial precipitating injury (i.e., status epilepticus) until the appearance of recurrent seizures, as observed in the human condition. Finally, the kainic acid model can be reproduced in a variety of species using either systemic, intrahippocampal or intra-amygdaloid administrations. In this review, we describe the various methodological procedures and evaluate their differences with respect to the behavioral, electroencephalographic and neuropathological correlates. In addition, we compare the kainic acid model with other animal models of temporal lobe epilepsy such as the pilocarpine and the kindling model. We conclude that the kainic acid model is a reliable tool for understanding temporal lobe epilepsy, provided that the differences existing between methodological procedures are taken into account.
Related JoVE Video
Seizure-like discharges induced by 4-aminopyridine in the olfactory system of the in vitro isolated guinea pig brain.
Epilepsia
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
The study of the interactions leading to network- or region-specific propagation of seizures is crucial to understand ictogenesis. We have recently found that systemic (arterial) application of the potassium channel blocker, 4-aminopyridine (4AP), induces different and independent seizure activities in olfactory and in limbic structures. Here, we have characterized the network and cellular features that support 4AP-induced seizure-like events in the olfactory cortex.
Related JoVE Video
Perirhinal cortex and temporal lobe epilepsy.
Front Cell Neurosci
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The perirhinal cortex-which is interconnected with several limbic structures and is intimately involved in learning and memory-plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i) highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii) briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii) focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus.
Related JoVE Video
Adaptive control of epileptiform excitability in an in vitro model of limbic seizures.
Exp. Neurol.
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Deep brain stimulation (DBS) is a promising tool for treating drug-resistant epileptic patients. Currently, the most common approach is fixed-frequency stimulation (periodic pacing) by means of stimulating devices that operate under open-loop control. However, a drawback of this DBS strategy is the impossibility of tailoring a personalized treatment, which also limits the optimization of the stimulating apparatus. Here, we propose a novel DBS methodology based on a closed-loop control strategy, developed by exploiting statistical machine learning techniques, in which stimulation parameters are adapted to the current neural activity thus allowing for seizure suppression that is fine-tuned on the individual scale (adaptive stimulation). By means of field potential recording from adult rat hippocampus-entorhinal cortex (EC) slices treated with the convulsant drug 4-aminopyridine we determined the effectiveness of this approach compared to low-frequency periodic pacing, and found that the closed-loop stimulation strategy: (i) has similar efficacy as low-frequency periodic pacing in suppressing ictal-like events but (ii) is more efficient than periodic pacing in that it requires less electrical pulses. We also provide evidence that the closed-loop stimulation strategy can alternatively be employed to tune the frequency of a periodic pacing strategy. Our findings indicate that the adaptive stimulation strategy may represent a novel, promising approach to DBS for individually-tailored epilepsy treatment.
Related JoVE Video
Evidence-based modeling of network discharge dynamics during periodic pacing to control epileptiform activity.
J. Neurosci. Methods
PUBLISHED: 06-07-2011
Show Abstract
Hide Abstract
Deep brain stimulation (DBS) is a promising therapeutic approach for epilepsy treatment. Recently, research has focused on the implementation of stimulation protocols that would adapt to the patients need (adaptive stimulation) and deliver electrical stimuli only when it is most useful. A formal mathematical description of the effects of electrical stimulation on neuronal networks is a prerequisite for the development of adaptive DBS algorithms. Using tools from non-linear dynamic analysis, we describe an evidence-based, mathematical modeling approach that (1) accurately simulates epileptiform activity at time-scales of single and multiple ictal discharges, (2) simulates modulation of neural dynamics during epileptiform activity in response to fixed, low-frequency electrical stimulation, (3) defines a mapping from real-world observations to model state, and (4) defines a mapping from model state to real-world observations. We validate the real-world utility of the models properties by statistical comparison between the number, duration, and interval of ictal-like discharges observed in vitro and those simulated in silica under conditions of repeated stimuli at fixed-frequency. These validation results confirm that the evidence-based modeling approach captures robust, informative features of neural network dynamics of in vitro epileptiform activity under periodic pacing and support its use for further implementation of adaptive DBS protocols for epilepsy treatment.
Related JoVE Video
GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity.
Prog. Neurobiol.
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
GABA is the main inhibitory neurotransmitter in the adult forebrain, where it activates ionotropic type A and metabotropic type B receptors. Early studies have shown that GABA(A) receptor-mediated inhibition controls neuronal excitability and thus the occurrence of seizures. However, more complex, and at times unexpected, mechanisms of GABAergic signaling have been identified during epileptiform discharges over the last few years. Here, we will review experimental data that point at the paradoxical role played by GABA(A) receptor-mediated mechanisms in synchronizing neuronal networks, and in particular those of limbic structures such as the hippocampus, the entorhinal and perirhinal cortices, or the amygdala. After having summarized the fundamental characteristics of GABA(A) receptor-mediated mechanisms, we will analyze their role in the generation of network oscillations and their contribution to epileptiform synchronization. Whether and how GABA(A) receptors influence the interaction between limbic networks leading to ictogenesis will be also reviewed. Finally, we will consider the role of altered inhibition in the human epileptic brain along with the ability of GABA(A) receptor-mediated conductances to generate synchronous depolarizing events that may lead to ictogenesis in human epileptic disorders as well.
Related JoVE Video
Contact size does not affect high frequency oscillation detection in intracerebral EEG recordings in a rat epilepsy model.
Clin Neurophysiol
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
High frequency oscillations (HFOs) have been implicated in ictogenesis and epileptogenesis. The effect of contact size (in the clinical range: 1-10mm(2)) on HFO detection has not been determined. This study assesses the feasibility of HFO detection in a rat epilepsy model using macrocontacts and clinical amplifiers, and the effect of contact size on HFO detection within the macrocontact range.
Related JoVE Video
High-frequency (80-500 Hz) oscillations and epileptogenesis in temporal lobe epilepsy.
Neurobiol. Dis.
PUBLISHED: 01-02-2011
Show Abstract
Hide Abstract
High-frequency oscillations (HFOs), termed ripples (80-200 Hz) and fast ripples (250-600 Hz), are recorded in the EEG of epileptic patients and in animal epilepsy models; HFOs are thought to reflect pathological activity and seizure onset zones. Here, we analyzed the temporal and spatial evolution of interictal spikes with and without HFOs in the rat pilocarpine model of temporal lobe epilepsy. Depth electrode recordings from dentate gyrus (DG), CA3 region, subiculum and entorhinal cortex (EC), were obtained from rats between the 4th and 15th day after a status epilepticus (SE) induced by i.p. injection of pilocarpine. The first seizure occurred 6.1 ± 2.5 days after SE (n = 7 rats). Five of 7 animals exhibited interictal spikes that co-occurred with fast ripples accounting for 4.9 ± 4.6% of all analyzed interictal spikes (n = 12,886) while all rats showed interictal spikes co-occurring with ripples, accounting for 14.3 ± 3.4% of all events. Increased rates of interictal spikes without HFOs in the EC predicted upcoming seizures on the following day, while rates of interictal spikes with fast ripples in CA3 reflected periods of high seizure occurrence. Finally, interictal spikes co-occurring with ripples did not show any specific relation to seizure occurrence. Our findings identify different temporal and spatial developmental patterns for the rates of interictal spikes with or without HFOs in relation with seizure occurrence. These distinct categories of interictal spikes point at dynamic processes that should bring neuronal networks close to seizure generation.
Related JoVE Video
"Jaspers Basic Mechanisms of the Epilepsies" Workshop.
Epilepsia
PUBLISHED: 11-19-2010
Show Abstract
Hide Abstract
In 1969, H.H. Jasper, A.A. Ward, and A. Pope and the Public Health Service Advisory Committee on the Epilepsies of the National Institutes of Health (NIH) published the first edition on Basic Mechanisms of the Epilepsies (BME). Since then, basic and clinical researchers in epilepsy have gathered together each decade to assess where epilepsy research has been, what it has accomplished, and where it should go. In 1999, the third edition of BME was named in honor of H.H. Jasper. Projected for publication in 2011, the fourth edition of Jaspers BME will (1) synthesize the role of interactions between neurons, synapses, and glia in the initiation, spread, and arrest of seizures; (2) examine the molecular, cellular, and network plasticity mechanisms that subserve excitability, seizure susceptibility, and ultimately epileptogenesis; (3) provide a framework for expanding the genome of rare mendelian epilepsies and understanding the complex heredity responsible for common epilepsies; (4) explore cellular mechanisms of the two main groups of presently known Mendelian epilepsy genes, namely ion channelopathies and developmental epilepsy genes; and (5) for the first time, describe the current efforts to translate the discoveries in epilepsy disease mechanisms into molecular and cellular therapeutic strategies in order to repair and cure the epilepsies. For an expanded treatment of this topic see Jaspers Basic Mechanisms of the Epilepsies, Fourth Edition (Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds) published by Oxford University Press (available on the National Library of Medicine Bookshelf [NCBI] at http://www.ncbi.nlm.nih.gov/books).
Related JoVE Video
The 4-aminopyridine in vitro epilepsy model analyzed with a perforated multi-electrode array.
Neuropharmacology
PUBLISHED: 07-27-2010
Show Abstract
Hide Abstract
Epileptiform discharges recorded in the 4-aminopyridine (4-AP) in vitro epilepsy model are mediated by glutamatergic and GABAergic signaling. Using a 60-channel perforated multi-electrode array (pMEA) on corticohippocampal slices from 2 to 3 week old mice we recorded interictal- and ictal-like events. When glutamatergic transmission was blocked, interictal-like events no longer initiated in the hilus or CA3/CA1 pyramidal layers but originated from the dentate gyrus granule and molecular layers. Furthermore, frequencies of interictal-like events were reduced and durations were increased in these regions while cortical discharges were completely blocked. Following GABA(A) receptor blockade interictal-like events no longer propagated to the dentate gyrus while their frequency in CA3 increased; in addition, ictal-like cortical events became shorter while increasing in frequency. Lastly, drugs that affect tonic and synaptic GABAergic conductance modulated the frequency, duration, initiation and propagation of interictal-like events. These findings confirm and expand on previous studies indicating that multiple synaptic mechanisms contribute to synchronize neuronal network activity in forebrain structures. This article is part of a Special Issue entitled Trends in neuropharmacology: in memory of Erminio Costa.
Related JoVE Video
Selective changes in inhibition as determinants for limited hyperexcitability in the insular cortex of epileptic rats.
Eur. J. Neurosci.
PUBLISHED: 05-24-2010
Show Abstract
Hide Abstract
The insular cortex (IC) is involved in the generalization of epileptic discharges in temporal lobe epilepsy (TLE), whereas seizures originating in the IC can mimic the epileptic phenotype seen in some patients with TLE. However, few studies have addressed the changes occurring in the IC in TLE animal models. Here, we analyzed the immunohistochemical and electrophysiological properties of IC networks in non-epileptic control and pilocarpine-treated epileptic rats. Neurons identified with a neuron-specific nuclear protein antibody showed similar counts in the two types of tissue but parvalbumin- and neuropeptide Y-positive interneurons were significantly decreased (parvalbumin, approximately -35%; neuropeptide Y, approximately -38%; P < 0.01) in the epileptic IC. Non-adapting neurons were seen more frequently in the epileptic IC during intracellular injection of depolarizing current pulses. In addition, single-shock electrical stimuli elicited network-driven epileptiform responses in 87% of epileptic and 22% of non-epileptic control neurons (P < 0.01) but spontaneous postsynaptic potentials had similar amplitude, duration and intervals of occurrence in the two groups. Finally, pharmacologically isolated, GABA(A) receptor-mediated inhibitory postsynaptic potentials had more negative reversal potential (P < 0.01) and higher peak conductance (P < 0.05) in epileptic tissue. These data reveal moderate increased network excitability in the IC of pilocarpine-treated epileptic rats. We propose that this limited degree of hyperexcitability originates from the loss of parvalbumin- and neuropeptide Y-positive interneurons that is compensated by an increased drive for GABA(A) receptor-mediated inhibition.
Related JoVE Video
Involvement of inward rectifier and M-type currents in carbachol-induced epileptiform synchronization.
Neuropharmacology
PUBLISHED: 05-10-2010
Show Abstract
Hide Abstract
Exposure to cholinergic agonists is a widely used paradigm to induce epileptogenesis in vivo and synchronous activity in brain slices maintained in vitro. However, the mechanisms underlying these effects remain unclear. Here, we used field potential recordings from the lateral entorhinal cortex in horizontal rat brain slices to explore whether two different K(+) currents regulated by muscarinic receptor activation, the inward rectifier (K(IR)) and the M-type (K(M)) currents, have a role in carbachol (CCh)-induced field activity, a prototypical model of cholinergic-dependent epileptiform synchronization. To establish whether K(IR) or K(M) blockade could replicate CCh effects, we exposed slices to blockers of these currents in the absence of CCh. K(IR) channel blockade with micromolar Ba(2+) concentrations induced interictal-like events with duration and frequency that were lower than those observed with CCh; by contrast, the K(M) blocker linopirdine was ineffective. Pre-treatment with Ba(2+) or linopirdine increased the duration of epileptiform discharges induced by subsequent application of CCh. Baclofen, a GABA(B) receptor agonist that activates K(IR), abolished CCh-induced field oscillations, an effect that was abrogated by the GABA(B) receptor antagonist CGP 55845, and prevented by Ba(2+). Finally, when applied after CCh, the K(M) activators flupirtine and retigabine shifted leftward the cumulative distribution of CCh-induced event duration; this effect was opposite to what seen during linopirdine application under similar experimental conditions. Overall, our findings suggest that K(IR) rather than K(M) plays a major regulatory role in controlling CCh-induced epileptiform synchronization.
Related JoVE Video
Convulsive status epilepticus duration as determinant for epileptogenesis and interictal discharge generation in the rat limbic system.
Neurobiol. Dis.
PUBLISHED: 04-15-2010
Show Abstract
Hide Abstract
We analyzed with EEG-video monitoring the epileptic activity recorded during the latent and chronic periods in rats undergoing 30 or 120 min pilocarpine-induced convulsive status epilepticus (SE). Interictal discharges frequency in the entorhinal cortex (EC) of animals exposed to 120 min SE was significantly higher in the chronic than in the latent period. Following seizure appearance, interictal spikes diminished in duration in the CA3 of the 120 min SE group, and occurred at higher rates in the amygdala in all animals. Rats exposed to 120 min SE generated shorter seizures but presented twice as many non-convulsive seizures per day as the 30 min group. Finally, seizures most frequently initiated in CA3 in the 120 min SE group but had similar onset in CA3 and EC in the 30 min group. These findings indicate that convulsive SE duration influences the development of interictal and ictal activity, and that interictal discharges undergo structure-specific changes after seizure appearance.
Related JoVE Video
Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders.
Lancet Neurol
PUBLISHED: 03-20-2010
Show Abstract
Hide Abstract
Voltage-gated sodium channels (VGSCs) are key mediators of intrinsic neuronal and muscle excitability. Abnormal VGSC activity is central to the pathophysiology of epileptic seizures, and many of the most widely used antiepileptic drugs, including phenytoin, carbamazepine, and lamotrigine, are inhibitors of VGSC function. These antiepileptic drugs might also be efficacious in the treatment of other nervous system disorders, such as migraine, multiple sclerosis, neurodegenerative diseases, and neuropathic pain. In this Review, we summarise the structure and function of VGSCs and their involvement in the pathophysiology of several neurological disorders. We also describe the biophysical and molecular bases for the mechanisms of action of antiepileptic VGSC blockers and discuss the efficacy of these drugs in the treatment of epileptic and non-epileptic disorders. Overall, clinical and experimental data indicate that these drugs are efficacious for a range of diseases, and that the development of drugs with enhanced selectivity for specific VGSC isoforms might be an effective and novel approach for the treatment of several neurological diseases.
Related JoVE Video
Independent epileptiform discharge patterns in the olfactory and limbic areas of the in vitro isolated Guinea pig brain during 4-aminopyridine treatment.
J. Neurophysiol.
PUBLISHED: 03-10-2010
Show Abstract
Hide Abstract
In vitro studies performed on brain slices demonstrate that the potassium channel blocker 4-aminopyridine (4AP, 50 microM) discloses electrographic seizure activity and interictal discharges. These epileptiform patterns have been further analyzed here in a isolated whole guinea pig brain in vitro by using field potential recordings in olfactory and limbic structures. In 8 of 13 experiments runs of fast oscillatory activity (fast runs, FRs) in the piriform cortex (PC) propagated to the lateral entorhinal cortex (EC), hippocampus and occasionally to the medial EC. Early and late FRs were asynchronous in the hemispheres showed different duration [1.78 +/- 0.51 and 27.95 +/- 4.55 (SD) s, respectively], frequency of occurrence (1.82 +/- 0.49 and 34.16 +/- 6.03 s) and frequency content (20-40 vs. 40-60 Hz). Preictal spikes independent from the FRs appeared in the hippocampus/EC and developed into ictal-like discharges that did not propagate to the PC. Ictal-like activity consisted of fast activity with onset either in the hippocampus (n = 6) or in the mEC (n = 2), followed by irregular spiking and sequences of diffusely synchronous bursts. Perfusion of the N-methyl-d-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid (100 microM) did not prevent FRs, increased the duration of limbic ictal-like discharges and favored their propagation to olfactory structures. The AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (50 microM) blocked ictal-like events and reduced FRs. In conclusion, 4AP-induced epileptiform activities are asynchronous and independent in olfactory and hippocampal-entorhinal regions. Epileptiform discharges in the isolated guinea pig brain show different pharmacological properties compared with rodent in vitro slices.
Related JoVE Video
Neurosteroids and epilepsy.
Curr. Opin. Neurol.
PUBLISHED: 02-18-2010
Show Abstract
Hide Abstract
Neurosteroids are a family of compounds synthesized directly in the brain by transforming cholesterol into pregnenolone, which is then converted to compounds such as allopregnanolone and allotetrahydrodeoxycorticosterone. In view of their ability to modulate neurotransmission, neurosteroids may influence the clinical course of epileptic disorders. In this review, we highlight two emerging properties of neurosteroids, that is, their anticonvulsant and antiepileptogenic activities.
Related JoVE Video
Perirhinal cortex hyperexcitability in pilocarpine-treated epileptic rats.
Hippocampus
PUBLISHED: 01-22-2010
Show Abstract
Hide Abstract
The perirhinal cortex (PC), which is heavily connected with several epileptogenic regions of the limbic system such as the entorhinal cortex and amygdala, is involved in the generation and spread of seizures. However, the functional alterations occurring within an epileptic PC network are unknown. Here, we analyzed this issue by using in vitro electrophysiology and immunohistochemistry in brain tissue obtained from pilocarpine-treated epileptic rats and age-matched, nonepileptic controls (NECs). Neurons recorded intracellularly from the PC deep layers in the two experimental groups had similar intrinsic and firing properties and generated spontaneous depolarizing and hyperpolarizing postsynaptic potentials with comparable duration and amplitude. However, spontaneous and stimulus-induced epileptiform discharges were seen with field potential recordings in over one-fifth of pilocarpine-treated slices but never in NEC tissue. These network events were reduced in duration by antagonizing NMDA receptors and abolished by NMDA + non-NMDA glutamatergic receptor antagonists. Pharmacologically isolated isolated inhibitory postsynaptic potentials had reversal potentials for the early GABA(A) receptor-mediated component that were significantly more depolarized in pilocarpine-treated cells. Experiments with a potassium-chloride cotransporter 2 antibody identified, in pilocarpine-treated PC, a significant immunostaining decrease that could not be explained by neuronal loss. However, interneurons expressing parvalbumin and neuropeptide Y were found to be decreased throughout the PC, whereas cholecystokinin-positive cells were diminished in superficial layers. These findings demonstrate synaptic hyperexcitability that is contributed by attenuated inhibition in the PC of pilocarpine-treated epileptic rats and underscore the role of PC networks in temporal lobe epilepsy.
Related JoVE Video
Treating epilepsy via adaptive neurostimulation: a reinforcement learning approach.
Int J Neural Syst
PUBLISHED: 09-05-2009
Show Abstract
Hide Abstract
This paper presents a new methodology for automatically learning an optimal neurostimulation strategy for the treatment of epilepsy. The technical challenge is to automatically modulate neurostimulation parameters, as a function of the observed EEG signal, so as to minimize the frequency and duration of seizures. The methodology leverages recent techniques from the machine learning literature, in particular the reinforcement learning paradigm, to formalize this optimization problem. We present an algorithm which is able to automatically learn an adaptive neurostimulation strategy directly from labeled training data acquired from animal brain tissues. Our results suggest that this methodology can be used to automatically find a stimulation strategy which effectively reduces the incidence of seizures, while also minimizing the amount of stimulation applied. This work highlights the crucial role that modern machine learning techniques can play in the optimization of treatment strategies for patients with chronic disorders such as epilepsy.
Related JoVE Video
Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome.
Cereb. Cortex
PUBLISHED: 08-27-2009
Show Abstract
Hide Abstract
The absence of fragile X mental retardation protein results in the fragile X syndrome (FXS), a common form of mental retardation associated with attention deficit, autistic behavior, and epileptic seizures. The phenotype of FXS is reproduced in fragile X mental retardation 1 (fmr1) knockout (KO) mice that have region-specific altered expression of some gamma-aminobutyric acid (GABA(A)) receptor subunits. However, little is known about the characteristics of GABAergic inhibition in the subiculum of these animals. We employed patch-clamp recordings from subicular pyramidal cells in an in vitro slice preparation. In addition, semiquantitative polymerase chain reaction and western blot experiments were performed on subiculum obtained from wild-type (WT) and KO mice. We found that tonic GABA(A) currents were downregulated in fmr1 KO compared with WT neurons, whereas no significant differences were observed in phasic GABA(A) currents. Molecular biology analysis revealed that the tonic GABA(A) receptor subunits alpha5 and delta were underexpressed in the fmr1 KO mouse subiculum compared with WT. Because the subiculum plays a role in both cognitive functions and epileptic disorders, we propose that altered tonic inhibition in this structure contributes to the behavioral deficits and epileptic activity seen in FXS patients. This conclusion is in line with evidence implicating tonic GABA(A) inhibition in learning and memory.
Related JoVE Video
Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro.
Epilepsia
PUBLISHED: 08-19-2009
Show Abstract
Hide Abstract
We established the effects of the antiepileptic drugs (AEDs) carbamazepine (CBZ), topiramate (TPM), and valproic acid (VPA) on the epileptiform activity induced by 4-aminopyridine (4AP) in the rat entorhinal cortex (EC) in an in vitro brain slice preparation.
Related JoVE Video
Lacosamide: a new approach to target voltage-gated sodium currents in epileptic disorders.
CNS Drugs
PUBLISHED: 06-26-2009
Show Abstract
Hide Abstract
The mechanism of action of several antiepileptic drugs (AEDs) rests on their ability to modulate the activity of voltage-gated sodium currents that are responsible for fast action potential generation. Recent data indicate that lacosamide (a compound with analgesic and anticonvulsant effects in animal models) shares a similar mechanism. When compared with other AEDs, lacosamide has the unique ability to interact with sodium channel slow inactivation without affecting fast inactivation. This article reviews these findings and discusses their relevance within the context of neuronal activity seen during epileptiform discharges generated by limbic neuronal networks in the presence of chemical convulsants. These seizure-like events are characterized by sustained discharges of sodium-dependent action potentials supported by robust depolarizations, thus providing synchronization within neuronal networks. Generally, AEDs such as phenytoin, carbamazepine and lamotrigine block sodium channels when activated. In contrast, lacosamide facilitates slow inactivation of sodium channels both in terms of kinetics and voltage dependency. This effect may be relatively selective for repeatedly depolarized neurons, such as those participating in seizure activity in which the persistence of sodium currents is more pronounced and promotes neuronal excitation. The clinical effectiveness of lacosamide has been demonstrated in randomized, double-blind, parallel-group, placebo-controlled, adjunctive-therapy trials in patients with refractory partial seizures. Further studies should determine whether the effects of lacosamide in animal models and in clinical settings are fully explained by its selective action on sodium current slow inactivation or whether other effects (e.g. interactions with the collapsin-response mediator protein-2) play a contributory role.
Related JoVE Video
Synchronous GABA-receptor-dependent potentials in limbic areas of the in-vitro isolated adult guinea pig brain.
Eur. J. Neurosci.
PUBLISHED: 03-18-2009
Show Abstract
Hide Abstract
Epileptiform discharges are known to reflect the hypersynchronous glutamatergic activation of cortical neurons. However, experimental evidence has revealed that epileptiform synchronization is also contributed to by population events mediated by GABA(A) receptors. Here, we analysed the spatial distribution of GABA(A)-receptor-dependent interictal events in the hippocampal/parahippocampal region of the adult guinea pig brain isolated in vitro. We found that arterial perfusion of this preparation with 4-aminopyridine caused the appearance of glutamatergic-independent interictal potentials that were reversibly abolished by GABA(A) receptor antagonism. Laminar profiles and current source density analysis performed in different limbic areas demonstrated that these GABA(A)-receptor-mediated events were independently generated in different areas of the hippocampal/parahippocampal formation (most often in the medial entorhinal cortex) and propagated between interconnected limbic structures of both hemispheres. Finally, intracellular recordings from principal neurons of the medial entorhinal cortex demonstrated that the GABAergic field potential correlated to inhibitory postsynaptic potentials (membrane potential reversal, -68.12 +/- 8.01 mV, n = 5) that were interrupted by ectopic spiking. Our findings demonstrate that, in an acute seizure model developed in the adult guinea pig brain, hypersynchronous GABA(A)-receptor-mediated interictal events are generated from independent sources and propagate within limbic cortices in the absence of excitatory synaptic transmission. As spared or enhanced inhibition was reported in models of epilepsy, our data may support a role of GABA-mediated signaling in ictogenesis and epileptogenesis.
Related JoVE Video
Epileptiform synchronization in the cingulate cortex.
Epilepsia
PUBLISHED: 01-31-2009
Show Abstract
Hide Abstract
The anterior cingulate cortex (ACC)--which plays a role in pain, emotions and behavior--can generate epileptic seizures. To date, little is known on the neuronal mechanisms leading to epileptiform synchronization in this structure. Therefore, we investigated the role of excitatory and inhibitory synaptic transmission in epileptiform activity in this cortical area. In addition, since the ACC presents with a high density of opioid receptors, we studied the effect of opioid agonism on epileptiform synchronization in this brain region.
Related JoVE Video
Diminished presynaptic GABA(B) receptor function in the neocortex of a genetic model of absence epilepsy.
Neurosignals
PUBLISHED: 01-29-2009
Show Abstract
Hide Abstract
Changes in GABA(B) receptor subunit expression have been recently reported in the neocortex of epileptic WAG/Rij rats that are genetically prone to experience absence seizures. These alterations may lead to hyperexcitability by downregulating the function of presynaptic GABA(B) receptors in neocortical networks as suggested by a reduction in paired-pulse depression. Here, we tested further this hypothesis by analyzing the effects induced by the GABA(B) receptor agonist baclofen (0.1-10 microM) on the inhibitory events recorded in vitro from neocortical slices obtained from epileptic (>180 day-old) WAG/Rij and age-matched, non-epileptic control (NEC) rats. We found that higher doses of baclofen were required to depress pharmacologically isolated, stimulus-induced IPSPs generated by WAG/Rij neurons as compared to NEC. We also obtained similar evidence by comparing the effects of baclofen on the rate of occurrence of synchronous GABAergic events recorded by WAG/Rij and NEC neocortical slices treated with 4-aminopyridine + glutamatergic receptor antagonists. In conclusion, these data highlight a decreased function of presynaptic GABA(B) receptors in the WAG/Rij rat neocortex. We propose that this alteration may contribute to neocortical hyperexcitability and thus to absence seizures.
Related JoVE Video
Neurosteroids and epileptogenesis in the pilocarpine model: evidence for a relationship between P450scc induction and length of the latent period.
Epilepsia
PUBLISHED: 01-08-2009
Show Abstract
Hide Abstract
Cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) catalyzes the initial step in the biosynthesis of neurosteroids within the brain. We sought to determine which cells express P450cc and whether neurosteroids play a role in the regulation of epileptogenesis following pilocarpine-induced status epilepticus (SE).
Related JoVE Video
Temporal lobe epileptiform activity following systemic administration of 4-aminopyridine in rats.
Epilepsia
Show Abstract
Hide Abstract
Purpose:? The K(+) channel blocker 4-aminopyridine (4AP) induces epileptiform synchronization in brain slices maintained in vitro without interfering with ?-aminobutyric acid (GABA)A receptor-mediated inhibition and, actually, even enhancing it. The hypothesis that similar electrographic epileptiform patterns occur in vivo following systemic 4AP injection was tested here. Methods:? Sprague-Dawley rats (n?=?13) were implanted with bipolar electrodes aimed at the hippocampal CA3 region, entorhinal cortex, subiculum, dentate gyrus, and amygdala. They were then injected with a single dose of 4AP (4-5?mg/kg, i.p.), and video-monitoring/electroencephalography (EEG) recordings were performed. Key Findings:? 4AP induced convulsive or nonconvulsive seizures in 12 of 13 rats, along with generalized fascicular twitching, wet-dog shakes, and myoclonic jerks. On EEG, we observed in 7 (58.3%) of 12 animals long-lasting interictal spikes from the subiculum before the occurrence of the first seizure. Once seizures had started, interictal spikes occurred in all areas with no fixed site of origin. Most seizures (41/60, 68.3%) were characterized by a low-voltage fast-activity onset pattern and were convulsive (48/60, 80%). 4AP also induced highly rhythmic theta (6-11?Hz) oscillations in CA3 and entorhinal cortex before seizure occurrence. Significance:? Our study shows that systemic 4AP administration in vivo can enhance theta oscillations and induce slow interictal spikes and low-voltage fast-onset seizures similar to those reported in brain slices. We propose that these effects may reflect, at least in part, enhanced GABAA receptor-mediated inhibition as reported in in vitro studies.
Related JoVE Video
Two different interictal spike patterns anticipate ictal activity in vitro.
Neurobiol. Dis.
Show Abstract
Hide Abstract
4-Aminopyridine (4AP, 50 ?M) induces interictal- and ictal-like discharges in brain slices including parahippocampal areas such as the entorhinal cortex (EC) but the relation between these two types of epileptiform activity remains undifined. Here, by employing field potential recordings in rat EC slices during 4AP application, we found that: (i) interictal events have a wide range of duration (0.4-3.3 s) and interval of occurrence (1.4-84 s); (ii) ictal discharges are either preceded by an isolated "slow" interictal discharge (ISID; duration=1.5 ± 0.1s, interval of occurrence=33.8 ± 1.8 s) or suddenly initiate from a pattern of frequent polispike interictal discharge (FPID; duration=0.8 ± 0.1 s; interval of occurrence=2.7 ± 0.2 s); and (iii) ISID-triggered ictal events have longer duration (116 ± 7.3s) and interval of occurrence (425.8 ± 42.3 s) than those initiating suddenly during FPID (58.3 ± 7.8 s and 202.1 ± 21.8 s, respectively). Glutamatergic receptor antagonists abolished ictal discharges in all experiments, markedly reduced FPIDs but did not influence ISIDs. We also discovered that high-frequency oscillations (HFOs, 80-500 Hz) occur more frequently during ISIDs as compared to FPIDs, and mainly coincide with the onset of ISID-triggered ictal discharges. These findings indicate that interictal events may define ictal onset features resembling those seen in vivo in low-voltage fast activity onset seizures. We propose a similar condition to occur in vivo in temporal lobe epileptic patients and animal models.
Related JoVE Video
Cell type-specific properties of subicular GABAergic currents shape hippocampal output firing mode.
PLoS ONE
Show Abstract
Hide Abstract
GABAergic function of the subiculum is central to the regulation of hippocampal output activity. Subicular neuronal networks are indeed under potent control by local inhibition. However, information about the properties of GABAergic currents generated by neurons of this parahippocampal area in normal tissue is still missing. Here, we describe GABA(A) receptor (GABA(A)R)-mediated phasic and tonic currents generated by principal cells (PCs) and interneurons (INs) of the rat subiculum. We show that in spite of similar synaptic current densities, INs generate spontaneous IPSCs (sIPSCs) that occur less frequently and exhibit smaller charge transfer, thus receiving less synaptic total current than PCs. Further distinction of PCs between intrinsically bursting (IB) and regular-spiking (RS) neurons suggested that sIPSCs generated by the two PC sub-types are likely to be similar. PCs and INs are also controlled by a similar tonic inhibition. However, whereas a comparable tonic current density is found in RS cells and INs, IB neurons are constrained by a greater inhibitory tone. Finally, pharmacological blockade of GABA(A)R did not promote functional switch of RS neurons to IB mode, but influenced the bursting propensity of IB cells and released fast spiking activity in INs. Our findings reveal differences in GABAergic currents between PCs and INs as well as within PC sub-types. We propose that GABAergic inhibition may shape hippocampal output activity by providing cell type-specific fine-tuning of subicular excitatory and inhibitory drives.
Related JoVE Video
Two seizure-onset types reveal specific patterns of high-frequency oscillations in a model of temporal lobe epilepsy.
J. Neurosci.
Show Abstract
Hide Abstract
High-frequency oscillations (HFOs; 80-500 Hz) are thought to mirror the pathophysiological changes occurring in epileptic brains. However, the distribution of HFOs during seizures remains undefined. Here, we recorded from the hippocampal CA3 subfield, subiculum, entorhinal cortex, and dentate gyrus to quantify the occurrence of ripples (80-200 Hz) and fast ripples (250-500 Hz) during low-voltage fast-onset (LVF) and hypersynchronous-onset (HYP) seizures in the rat pilocarpine model of temporal lobe epilepsy. We discovered in LVF seizures that (1) progression from preictal to ictal activity was characterized in seizure-onset zones by an increase of ripple rates that were higher when compared with fast ripple rates and (2) ripple rates during the ictal period were higher compared with fast ripple rates in seizure-onset zones and later in regions of secondary spread. In contrast, we found in HYP seizures that (1) fast ripple rates increased during the preictal period and were higher compared with ripple rates in both seizure-onset zones and in regions of secondary spread and (2) they were still higher compared with ripple rates in both seizure-onset zones and regions of secondary spread during the ictal period. Our findings demonstrate that ripples and fast ripples show distinct time- and region-specific patterns during LVF and HYP seizures, thus suggesting that they play specific roles in ictogenesis.
Related JoVE Video
A comparison between automated detection methods of high-frequency oscillations (80-500 Hz) during seizures.
J. Neurosci. Methods
Show Abstract
Hide Abstract
High-frequency oscillations (HFOs, ripples: 80-200 Hz, fast ripples: 250-500 Hz) recorded from the epileptic brain are thought to reflect abnormal network-driven activity. They are also better markers of seizure onset zones compared to interictal spikes. There is thus an increasing number of studies analysing HFOs in vitro, in vivo and in the EEG of human patients with refractory epilepsy. However, most of these studies have focused on HFOs during interictal events or at seizure onset, and few have analysed HFOs during seizures. In this study, we are comparing three different automated methods of HFO detection to two methods of visual analysis, during the pre-ictal, ictal and post-ictal periods on multiple channels using the rat pilocarpine model of temporal lobe epilepsy. The first method (method 1) detected HFOs using the average of the normalised period, the second (method 2) detected HFOs using the average of the normalised period in 1s windows and the third (method 3) detected HFOs using the average of a reference period before seizure onset. Overall, methods 2 and 3 showed higher sensitivity compared to method 1. When dividing the analysed traces in pre-, ictal and post-ictal periods, method 3 showed the highest sensitivity during the ictal period compared to method 1, while method 2 was not significantly different from method 1. These findings suggest that method 3 could be used for automated and reliable detection of HFOs on large data sets containing multiple channels during the ictal period.
Related JoVE Video
Hippocampal neuron firing and local field potentials in the in vitro 4-aminopyridine epilepsy model.
J. Neurophysiol.
Show Abstract
Hide Abstract
Excessive synchronous neuronal activity is a defining feature of epileptic activity. We previously characterized the properties of distinct glutamatergic and GABAergic transmission-dependent synchronous epileptiform discharges in mouse hippocampal slices using the 4-aminopyridine model of epilepsy. In the present study, we sought to identify the specific hippocampal neuronal populations that initiate and underlie these local field potentials (LFPs). A perforated multielectrode array was used to simultaneously record multiunit action potential firing and LFPs during spontaneous epileptiform activity. LFPs had distinct components based on the initiation site, extent of propagation, and pharmacological sensitivity. Individual units, located in different hippocampal subregions, fired action potentials during these LFPs. A specific neuron subgroup generated sustained action potential firing throughout the various components of the LFPs. The activity of this subgroup preceded the LFPs observed in the presence of antagonists of ionotropic glutamatergic synaptic transmission. In the absence of ionotropic glutamatergic and GABAergic transmission, LFPs disappeared, but units with shorter spike duration and high basal firing rates were still active. These spontaneously active units had an increased level of activity during LFPs and consistently preceded all LFPs recorded before blockade of synaptic transmission. Our findings reveal that neuronal subpopulations with interneuron properties are likely responsible for initiating synchronous activity in an in vitro model of epileptiform discharges.
Related JoVE Video
Does interictal synchronization influence ictogenesis?
Neuropharmacology
Show Abstract
Hide Abstract
The EEG recorded from epileptic patients presents with interictal discharges that are not associated with detectable clinical symptoms but are valuable for diagnostic purposes. Experimental studies have shown that interictal discharges and ictal events (i.e., seizures) are characterized intracellularly by similar (but for duration) neuronal depolarizations leading to sustained action potential firing, thus indicating that they may share similar cellular and pharmacological mechanisms. It has also been proposed that interictal discharges may herald the onset of electrographic seizures, but other studies have demonstrated that interictal events interfere with the occurrence of ictal activity. The relationship between interictal and ictal activity thus remains ambiguous. Here we will review this issue in animal models of limbic seizures that are electrographically close to those seen in TLE patients. In particular we will: (i) focus on the electrophysiological and pharmacological characteristics of, at least, two types of interictal discharge; (ii) propose that they play opposite roles in leading to ictogenesis; and (iii) discuss the possibility that mimicking one of these two types of interictal activity by low frequency repetitive stimulation can control ictogenesis. Finally, we will also review evidence indicating that specific types of interictal discharge may play a role in epileptogenesis. This article is part of the Special Issue entitled New Targets and Approaches to the Treatment of Epilepsy.
Related JoVE Video
Mechanisms of physiological and epileptic HFO generation.
Prog. Neurobiol.
Show Abstract
Hide Abstract
High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs.
Related JoVE Video
On the ictogenic properties of the piriform cortex in vitro.
Epilepsia
Show Abstract
Hide Abstract
The piriform cortex (PC) is known to be epileptic-prone and it may be involved in the manifestation of limbic seizures. Herein, we have characterized some electrophysiologic and pharmacologic properties of the spontaneous epileptiform activity generated by PC networks maintained in vitro.
Related JoVE Video
A brief history on the oscillating roles of thalamus and cortex in absence seizures.
Epilepsia
Show Abstract
Hide Abstract
This review summarizes the findings obtained over the past 70?years on the fundamental mechanisms underlying generalized spike-wave (SW) discharges associated with absence seizures. Thalamus and cerebral cortex are the brain areas that have attracted most of the attention from both clinical and experimental researchers. However, these studies have often favored either one or the other structure in playing a major role, thus leading to conflicting interpretations. Beginning with Jasper and Penfields topistic view of absence seizures as the result of abnormal functions in the so-called centrencephalon, we witness the naissance of a broader concept that considered both thalamus and cortex as equal players in the process of SW discharge generation. Furthermore, we discuss how recent studies have identified fine changes in cortical and thalamic excitability that may account for the expression of absence seizures in naturally occurring genetic rodent models and knockout mice. The end of this fascinating tale is presumably far from being written. However, I can confidently conclude that in the unfolding of this "novel," we have discovered several molecular, cellular, and pharmacologic mechanisms that govern forebrain excitability, and thus consciousness, during the awake state and sleep.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.