JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
LIMP-2 expression is critical for ?-glucocerebrosidase activity and ?-synuclein clearance.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-14-2014
Show Abstract
Hide Abstract
Mutations within the lysosomal enzyme ?-glucocerebrosidase (GC) result in Gaucher disease and represent a major risk factor for developing Parkinson disease (PD). Loss of GC activity leads to accumulation of its substrate glucosylceramide and ?-synuclein. Since lysosomal activity of GC is tightly linked to expression of its trafficking receptor, the lysosomal integral membrane protein type-2 (LIMP-2), we studied ?-synuclein metabolism in LIMP-2-deficient mice. These mice showed an ?-synuclein dosage-dependent phenotype, including severe neurological impairments and premature death. In LIMP-2-deficient brains a significant reduction in GC activity led to lipid storage, disturbed autophagic/lysosomal function, and ?-synuclein accumulation mediating neurotoxicity of dopaminergic (DA) neurons, apoptotic cell death, and inflammation. Heterologous expression of LIMP-2 accelerated clearance of overexpressed ?-synuclein, possibly through increasing lysosomal GC activity. In surviving DA neurons of human PD midbrain, LIMP-2 levels were increased, probably to compensate for lysosomal GC deficiency. Therefore, we suggest that manipulating LIMP-2 expression to increase lysosomal GC activity is a promising strategy for the treatment of synucleinopathies.
Related JoVE Video
Increased expression of (pro)renin receptor does not cause hypertension or cardiac and renal fibrosis in mice.
Lab. Invest.
PUBLISHED: 03-28-2014
Show Abstract
Hide Abstract
Binding of renin and prorenin to the (pro)renin receptor (PRR) increases their enzymatic activity and upregulates the expression of pro-fibrotic genes in vitro. Expression of PRR is increased in the heart and kidney of hypertensive and diabetic animals, but its causative role in organ damage is still unclear. To determine whether increased expression of PRR is sufficient to induce cardiac or renal injury, we generated a mouse that constitutively overexpresses PRR by knocking-in the Atp6ap2/PRR gene in the hprt locus under the control of a CMV immediate early enhancer/chicken beta-actin promoter. Mice were backcrossed in the C57Bl/6 and FVB/N strain and studied at the age of 12 months. In spite of a 25- to 80-fold renal and up to 400-fold cardiac increase in Atp6ap2/PRR expression, we found no differences in systolic blood pressure or albuminuria between wild-type and PRR overexpressing littermates. Histological examination did not show any renal or cardiac fibrosis in mutant mice. This was supported by real-time PCR analysis of inflammatory markers as well as of pro-fibrotic genes in the kidney and collagen in cardiac tissue. To determine whether the concomitant increase of renin would trigger fibrosis, we treated PRR overexpressing mice with the angiotensin receptor-1 blocker losartan over a period of 6 weeks. Renin expression increased eightfold in the kidney but no renal injury could be detected. In conclusion, our results suggest no major role for PRR in organ damage per se or related to its function as a receptor of renin.
Related JoVE Video
Kinetics of porphyrin fluorescence accumulation in pediatric brain tumor cells incubated in 5-aminolevulinic acid.
Acta Neurochir (Wien)
PUBLISHED: 01-25-2014
Show Abstract
Hide Abstract
Fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) enables more complete resections of tumors in adults. 5-ALA elicits accumulation of fluorescent porphyrins in various cancerous tissues, which can be visualized using a modified neurosurgical microscope with blue light. Although this technique is well established in adults, it has not been investigated systematically in pediatric brain tumors. Specifically, it is unknown how quickly, how long, and to what extent various pediatric tumors accumulate fluorescence. The purpose of this study was to determine utility and time course of 5-ALA-induced fluorescence in typical pediatric brain tumors in vitro.
Related JoVE Video
Polo-Like Kinase 2, a Novel ADAM17 Signaling Component, Regulates TNF? Ectodomain Shedding.
J. Biol. Chem.
PUBLISHED: 12-13-2013
Show Abstract
Hide Abstract
A disintegrin and metalloprotease 17 (ADAM17) controls pro- and anti-inflammatory signaling events by promoting ectodomain shedding of cytokine-precursors and cytokine receptors. Despite the well documented substrate repertoire of ADAM17 little is known about regulatory mechanisms, leading to substrate recognition and catalytic activation. Here we report a direct interaction of the acidophilic kinase polo-like kinase 2 (PLK2, also known as SNK) with the cytoplasmic portion of ADAM17 through the C-terminal noncatalytic region of PLK2 containing the Polo-box domains (PBDs). PLK2 activity leads to ADAM17 phosphorylation at serine-794, which represents a novel phosphorylation site. Activation of ADAM17 by PLK2 results in the release of pro-TNF? and TNFRs from the cell surface and pharmacological inhibition of PLK2 leads to down-regulation of LPS-induced ADAM17-mediated shedding on primary macrophages and dendritic cells. Importantly, PLK2 expression is upregulated during inflammatory conditions increasing ADAM17-mediated proteolytic events. Our findings suggest a new role of PLK2 in the regulation of inflammatory diseases by modulating ADAM17 activity.
Related JoVE Video
Action myoclonus-renal failure syndrome: diagnostic applications of activity-based probes and lipid analysis.
J. Lipid Res.
PUBLISHED: 11-08-2013
Show Abstract
Hide Abstract
Lysosomal integral membrane protein-2 (LIMP2) mediates trafficking of glucocerebrosidase (GBA) to lysosomes. Deficiency of LIMP2 causes action myoclonus-renal failure syndrome (AMRF). LIMP2-deficient fibroblasts virtually lack GBA like the cells of patients with Gaucher disease (GD), a lysosomal storage disorder caused by mutations in the GBA gene. While GD is characterized by the presence of glucosylceramide-laden macrophages, AMRF patients do not show these. We studied the fate of GBA in relation to LIMP2 deficiency by employing recently designed activity-based probes labeling active GBA molecules. We demonstrate that GBA is almost absent in lysosomes of AMRF fibroblasts. However, white blood cells contain considerable amounts of residual enzyme. Consequently, AMRF patients do not acquire lipid-laden macrophages and do not show increased plasma levels of macrophage markers, such as chitotriosidase, in contrast to GD patients. We next investigated the consequences of LIMP2 deficiency with respect to plasma glycosphingolipid levels. Plasma glucosylceramide concentration was normal in the AMRF patients investigated as well as in LIMP2-deficient mice. However, a marked increase in the sphingoid base, glucosylsphingosine, was observed in AMRF patients and LIMP2-deficient mice. Our results suggest that combined measurements of chitotriosidase and glucosylsphingosine can be used for convenient differential laboratory diagnosis of GD and AMRF.
Related JoVE Video
Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36.
Nature
PUBLISHED: 09-20-2013
Show Abstract
Hide Abstract
Members of the CD36 superfamily of scavenger receptor proteins are important regulators of lipid metabolism and innate immunity. They recognize normal and modified lipoproteins, as well as pathogen-associated molecular patterns. The family consists of three members: SR-BI (which delivers cholesterol to the liver and steroidogenic organs and is a co-receptor for hepatitis C virus), LIMP-2/LGP85 (which mediates lysosomal delivery of ?-glucocerebrosidase and serves as a receptor for enterovirus 71 and coxsackieviruses) and CD36 (a fatty-acid transporter and receptor for phagocytosis of effete cells and Plasmodium-infected erythrocytes). Notably, CD36 is also a receptor for modified lipoproteins and ?-amyloid, and has been implicated in the pathogenesis of atherosclerosis and of Alzheimers disease. Despite their prominent roles in health and disease, understanding the function and abnormalities of the CD36 family members has been hampered by the paucity of information about their structure. Here we determine the crystal structure of LIMP-2 and infer, by homology modelling, the structure of SR-BI and CD36. LIMP-2 shows a helical bundle where ?-glucocerebrosidase binds, and where ligands are most likely to bind to SR-BI and CD36. Remarkably, the crystal structure also shows the existence of a large cavity that traverses the entire length of the molecule. Mutagenesis of SR-BI indicates that the cavity serves as a tunnel through which cholesterol(esters) are delivered from the bound lipoprotein to the outer leaflet of the plasma membrane. We provide evidence supporting a model whereby lipidic constituents of the ligands attached to the receptor surface are handed off to the membrane through the tunnel, accounting for the selective lipid transfer characteristic of SR-BI and CD36.
Related JoVE Video
Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes.
Nat. Genet.
PUBLISHED: 07-18-2013
Show Abstract
Hide Abstract
Idiopathic focal epilepsy (IFE) with rolandic spikes is the most common childhood epilepsy, comprising a phenotypic spectrum from rolandic epilepsy (also benign epilepsy with centrotemporal spikes, BECTS) to atypical benign partial epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic encephalopathy with continuous spike and waves during slow-wave sleep (CSWS). The genetic basis is largely unknown. We detected new heterozygous mutations in GRIN2A in 27 of 359 affected individuals from 2 independent cohorts with IFE (7.5%; P = 4.83 × 10(-18), Fishers exact test). Mutations occurred significantly more frequently in the more severe phenotypes, with mutation detection rates ranging from 12/245 (4.9%) in individuals with BECTS to 9/51 (17.6%) in individuals with CSWS (P = 0.009, Cochran-Armitage test for trend). In addition, exon-disrupting microdeletions were found in 3 of 286 individuals (1.0%; P = 0.004, Fishers exact test). These results establish alterations of the gene encoding the NMDA receptor NR2A subunit as a major genetic risk factor for IFE.
Related JoVE Video
Lysosomal membrane proteins and their central role in physiology.
Traffic
PUBLISHED: 02-01-2013
Show Abstract
Hide Abstract
The lysosomal membrane was thought for a long time to primarily act as a physical barrier separating the luminal acidic milieu from the cytoplasmic environment. Meanwhile, it has been realized that unique lysosomal membranes play essential roles in a number of cellular events ranging from phagocytosis, autophagy, cell death, virus infection to membrane repair. This review provides an overview about the most interesting emerging functions of lysosomal membrane proteins and how they contribute to health and disease. Their importance is exemplified by their role in acidification, transport of metabolites and ions across the membrane, intracellular transport of hydrolases and the regulation of membrane fusion events. Studies in patient cells, non-mammalian model organisms and knockout mice contributed to our understanding of how the different lysosomal membrane proteins affect cellular homeostasis, developmental processes as well as tissue functions. Because these proteins are central for the biogenesis of this compartment they are also considered as attractive targets to modulate the lysosomal machinery in cases where impaired lysosomal degradation leads to cellular pathologies. We are only beginning to understand the complex composition and function of these proteins which are tightly linked to processes occurring throughout the endocytic and biosynthetic pathways.
Related JoVE Video
Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis.
Hum. Mol. Genet.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Kufs disease, an adult-onset neuronal ceroid lipofuscinosis, is challenging to diagnose and genetically heterogeneous. Mutations in CLN6 were recently identified in recessive Kufs disease presenting as progressive myoclonus epilepsy (Type A), whereas the molecular basis of cases presenting with dementia and motor features (Type B) is unknown. We performed genome-wide linkage mapping of two families with recessive Type B Kufs disease and identified a single region on chromosome 11 to which both families showed linkage. Exome sequencing of five samples from the two families identified homozygous and compound heterozygous missense mutations in CTSF within this linkage region. We subsequently sequenced CTSF in 22 unrelated individuals with suspected recessive Kufs disease, and identified an additional patient with compound heterozygous mutations. CTSF encodes cathepsin F, a lysosomal cysteine protease, dysfunction of which is a highly plausible candidate mechanism for a storage disorder like ceroid lipofuscinosis. In silico modeling suggested the missense mutations would alter protein structure and function. Moreover, re-examination of a previously published mouse knockout of Ctsf shows that it recapitulates the light and electron-microscopic pathological features of Kufs disease. Although CTSF mutations account for a minority of cases of type B Kufs, CTSF screening should be considered in cases with early-onset dementia and may avoid the need for invasive biopsies.
Related JoVE Video
Differentially expressed gene profile in the 6-hydroxy-dopamine-induced cell culture model of Parkinsons disease.
Neurosci. Lett.
PUBLISHED: 06-23-2011
Show Abstract
Hide Abstract
Parkinsons disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons of the substantia nigra pars compacta with unknown aetiology. 6-Hydroxydopamine (6-OHDA) treatment of neuronal cells is an established in vivo model for mimicking the effect of oxidative stress found in PD brains. We examined the effects of 6-OHDA treatment on human neuroblastoma cells (SH-SY5Y) and primary mesencephalic cultures. Using a reverse arbitrarily primed polymerase chain reaction (RAP-PCR) approach we generated reproducible genetic fingerprints of differential expression levels in cell cultures treated with 6-OHDA. Of the resulting sequences, 23 showed considerable homology to known human coding sequences. The results of the RAP-PCR were validated by reverse transcription PCR, real-time PCR and, for selected genes, by Western blot analysis and immunofluorescence. In four cases, [tomoregulin-1 (TMEFF-1), collapsin response mediator protein 1 (CRMP-1), neurexin-1, and phosphoribosylaminoimidazole synthetase (GART)], a down-regulation of mRNA and protein levels was detected. Further studies will be necessary on the physiological role of the identified proteins and their impact on pathways leading to neurodegeneration in PD.
Related JoVE Video
A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia.
Am. J. Hum. Genet.
PUBLISHED: 03-05-2011
Show Abstract
Hide Abstract
The progressive myoclonus epilepsies (PMEs) are a group of predominantly recessive disorders that present with action myoclonus, tonic-clonic seizures, and progressive neurological decline. Many PMEs have similar clinical presentations yet are genetically heterogeneous, making accurate diagnosis difficult. A locus for PME was mapped in a consanguineous family with a single affected individual to chromosome 17q21. An identical-by-descent, homozygous mutation in GOSR2 (c.430G>T, p.Gly144Trp), a Golgi vesicle transport gene, was identified in this patient and in four apparently unrelated individuals. A comparison of the phenotypes in these patients defined a clinically distinct PME syndrome characterized by early-onset ataxia, action myoclonus by age 6, scoliosis, and mildly elevated serum creatine kinase. This p.Gly144Trp mutation is equivalent to a loss of function and results in failure of GOSR2 protein to localize to the cis-Golgi.
Related JoVE Video
Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled alpha-subunits.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 12-27-2010
Show Abstract
Hide Abstract
The nicotinic acetylcholine receptor of skeletal muscle is composed of five subunits that are assembled in a stepwise manner. Quality control mechanisms ensure that only fully assembled receptors reach the cell surface. Here, we show that Rer1, a putative Golgi-ER retrieval receptor, is involved in the biogenesis of acetylcholine receptors. Rer1 is expressed in the early secretory pathway in the myoblast line C2C12 and in mouse skeletal muscle, and up-regulated during myogenesis. Upon down-regulation of Rer1 in C2C12 cells, unassembled acetylcholine receptor ?-subunits escape from the ER and are transported to the plasma membrane and lysosomes, where they are degraded. As a result, the amount of fully assembled receptor at the cell surface is reduced. In vivo Rer1 knockdown and genetic inactivation of one Rer1 allele lead to significantly smaller neuromuscular junctions in mice. Our data show that Rer1 is a functionally important unique factor that controls surface expression of muscle acetylcholine receptors by localizing unassembled ?-subunits to the early secretory pathway.
Related JoVE Video
Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand beta-glucocerebrosidase.
Hum. Mol. Genet.
PUBLISHED: 11-20-2009
Show Abstract
Hide Abstract
Action myoclonus-renal failure syndrome (AMRF) is caused by mutations in the lysosomal integral membrane protein type 2 (LIMP-2/SCARB2). LIMP-2 was identified as a sorting receptor for beta-glucocerebrosidase (beta-GC), which is defective in Gaucher disease. To date, six AMRF-causing mutations have been described, including splice site, missense and nonsense mutations. All mutations investigated in this study lead to a retention of LIMP-2 in the endoplasmic reticulum (ER) but affect the binding to beta-GC differentially. From the three nonsense mutations, only the Q288X mutation was still able to bind to beta-GC as efficiently as compared with wild-type LIMP-2, whereas the W146SfsX16 and W178X mutations lost their beta-GC-binding capacity almost completely. The LIMP-2 segment 145-288, comprising the nonsense mutations, contains a highly conserved coiled-coil domain, which we suggest determines beta-GC binding. In fact, disruption of the helical arrangement and amphiphatic nature of the coiled-coil domain abolishes beta-GC binding, and a synthetic peptide comprising the coiled-coil domain of LIMP-2 displays pH-selective multimerization properties. In contrast to the reduced binding properties of the nonsense mutations, the only missense mutation (H363N) found in AMRF leads to increased binding of beta-GC to LIMP-2, indicating that this highly conserved histidine modifies the affinity of LIMP-2 to its ligand. With the present study, we demonstrate that disruption of the coiled-coil structure or AMRF disease-causing mutations abolish beta-GC binding, indicating the importance of an intact coiled-coil structure for the interaction of LIMP-2 and beta-GC.
Related JoVE Video
Refinement of the binding site and mode of action of the anticonvulsant Retigabine on KCNQ K+ channels.
Mol. Pharmacol.
PUBLISHED: 02-24-2009
Show Abstract
Hide Abstract
The discovery of retigabine has provided access to alternative anticonvulsant compounds with a novel mode of action. Acting as potassium channel opener, retigabine exclusively activates neuronal KCNQ-type K(+) channels, mainly by shifting the voltage-dependence of channel activation to hyperpolarizing potentials. So far, only parts of the retigabine-binding site have been described, including Trp-265 and Gly-340 (according to KCNQ3 numbering) within transmembrane segments S5 and S6, respectively. Using a refined chimeric strategy, we additionally identified a Leu-314 within the pore region of KCNQ3 as crucial for the retigabine effect. Both Trp-265 and Leu-314 are likely to interact with the retigabine molecule, representing the upper and lower margins of the putative binding site. Guided by a structural model of KCNQ3, which was constructed based on the Kv1.2 crystal structure, further residues affecting retigabine-binding could be proposed and were experimentally verified as mediators for the action of the compound. These results strongly suggest that, besides Trp-265 and Leu-314, it is highly likely that another S5 residue, Leu-272, which is conserved in all KCNQ subunits, contributes to the binding site in KCNQ3. More importantly, Leu-338, extending from S6 of the neighboring subunit is also apparently involved in lining the hydrophobic binding pocket for the drug. This pocket, which is formed at the interface of two adjacent subunits, may be present only in the open state of the channel, consistent with the idea that retigabine stabilizes an open-channel conformation.
Related JoVE Video
Parallel regulation of renin and lysosomal integral membrane protein 2 in renin-producing cells: further evidence for a lysosomal nature of renin secretory vesicles.
Pflugers Arch.
Show Abstract
Hide Abstract
The protease renin is the key enzyme in the renin-angiotensin system (RAS) that regulates extracellular volume and blood pressure. Renin is synthesized in renal juxtaglomerular cells (JG cells) as the inactive precursor prorenin. Activation of prorenin by cleavage of the prosegment occurs in renin storage vesicles that have lysosomal properties. To characterize the renin storage vesicles more precisely, the expression and functional relevance of the major lysosomal membrane proteins lysosomal-associated membrane protein 1 (LAMP-1), LAMP-2, and lysosomal integral membrane protein 2 (LIMP-2) were determined in JG cells. Immunostaining experiments revealed strong coexpression of renin with the LIMP-2 (SCARB2), while faint staining of LAMP-1 and LAMP-2 was detected in some JG cells only. Stimulation of the renin system (ACE inhibitor, renal hypoperfusion) resulted in the recruitment of renin-producing cells in the afferent arterioles and parallel upregulation of LIMP-2, but not LAMP-1 or LAMP-2. Despite the coregulation of renin and LIMP-2, LIMP-2-deficient mice had normal renal renin mRNA levels, renal renin and prorenin contents, and plasma renin and prorenin concentrations under control conditions and in response to stimulation with a low salt diet (with or without angiotensin-converting enzyme (ACE) inhibition). No differences in the size or number of renin vesicles were detected using electron microscopy. Acute stimulation of renin release by isoproterenol exerted similar responses in both genotypes in vivo and in isolated perfused kidneys. Renin and the major lysosomal protein LIMP-2 are colocalized and coregulated in renal JG cells, further corroborating the lysosomal nature of renin storage vesicles. LIMP-2 does not appear to play an obvious role in the regulation of renin synthesis or release.
Related JoVE Video
A critical histidine residue within LIMP-2 mediates pH sensitive binding to its ligand ?-glucocerebrosidase.
Traffic
Show Abstract
Hide Abstract
The lysosomal membrane protein type 2 is a novel identified lysosomal sorting receptor for ?-glucocerebrosidase (GC). Mutations in both genes underlie human pathologies causing action myoclonus-renal failure syndrome (AMRF) and Gaucher disease (GD), respectively. We now demonstrate that the lumenal acidification mediated by the vacuolar (H(+) )-ATPase triggers the dissociation of LIMP-2 and GC in late endosomal/lysosomal compartments. Moreover, we identified a single histidine residue in LIMP-2 that is necessary for LIMP-2 and GC binding. This residue is in close proximity to a proposed coiled-coil domain, which determines the binding to GC and may function as a critical pH sensor.
Related JoVE Video
Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10.
Cell. Mol. Life Sci.
Show Abstract
Hide Abstract
A disintegrin and metalloproteinase10 (ADAM10) has been implicated as a major sheddase responsible for the ectodomain shedding of a number of important surface molecules including the amyloid precursor protein and cadherins. Despite a well-documented role of ADAM10 in health and disease, little is known about the regulation of this protease. To address this issue we conducted a split-ubiquitin yeast two-hybrid screen to identify membrane proteins that interact with ADAM10. The yeast experiments and co-immunoprecipitation studies in mammalian cell lines revealed tetraspanin15 (TSPAN15) to specifically associate with ADAM10. Overexpression of TSPAN15 or RNAi-mediated knockdown of TSPAN15 led to significant changes in the maturation process and surface expression of ADAM10. Expression of an endoplasmic reticulum (ER) retention mutant of TSPAN15 demonstrated an interaction with ADAM10 already in the ER. Pulse-chase experiments confirmed that TSPAN15 accelerates the ER-exit of the ADAM10-TSPAN15 complex and stabilizes the active form of ADAM10 at the cell surface. Importantly, TSPAN15 also showed the ability to mediate the regulation of ADAM10 protease activity exemplified by an increased shedding of N-cadherin and the amyloid precursor protein. In conclusion, our data show that TSPAN15 is a central modulator of ADAM10-mediated ectodomain shedding. Therapeutic manipulation of its expression levels may be an additional approach to specifically regulate the activity of the amyloid precursor protein alpha-secretase ADAM10.
Related JoVE Video
Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries.
Br. J. Pharmacol.
Show Abstract
Hide Abstract
The aim of this study was to characterize the functional impact of KCNQ1-encoded voltage-dependent potassium channels (K(v)7.1) in the vasculature.
Related JoVE Video
GRIN2B mutations in west syndrome and intellectual disability with focal epilepsy.
Ann. Neurol.
Show Abstract
Hide Abstract
Objective: To identify novel epilepsy genes using a panel approach and describe the functional consequences of mutations. Methods: Using a panel approach, we screened 357 patients comprising a vast spectrum of epileptic disorders for defects in genes known to contribute to epilepsy and/or intellectual disability (ID). After detection of mutations in a novel epilepsy gene, we investigated functional effects in Xenopus laevis oocytes and screened a follow-up cohort. Results: We revealed de novo mutations in GRIN2B encoding the NR2B subunit of the NMDA receptor in two individuals with West syndrome and severe developmental delay as well as one individual with ID and focal epilepsy. The patient with ID and focal epilepsy had a missense mutation in the extracellular glutamate-binding domain (p.Arg540His) whereas both West syndrome patients carried missense mutations within the NR2B ion channel-forming re-entrant loop (p.Asn615Ile, p.Val618Gly). Subsequent screening of 47 patients with unexplained infantile spasms did not reveal additional de novo mutations, but detected a carrier of a novel inherited GRIN2B splice site variant in close proximity (c.2011-5_2011-4delTC). Mutations p.Asn615Ile and p.Val618Gly cause a significantly reduced Mg(2+) block and higher Ca(2+) permeability leading to a dramatically increased Ca(2+) influx, whereas p.Arg540His caused less severe disturbance of channel function, corresponding to the milder patient phenotype. Interpretation: We identified GRIN2B gain-of-function mutations as a cause of West syndrome with severe developmental delay as well as of ID with childhood-onset focal epilepsy. Severely disturbed channel function corresponded to severe clinical phenotypes, underlining the important role of facilitated NMDA-receptor signaling in epileptogenesis. ANN NEUROL 2013. © 2013 American Neurological Association.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.