JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 11-02-2011
Show Abstract
Hide Abstract
Amplitude of Ca(2+) transients, ultrastructure of Ca(2+) release units, and molecular composition of sarcoplasmic reticulum (SR) are altered in fast-twitch skeletal muscles of calsequestrin-1 (CASQ1)-null mice. To determine whether such changes are directly caused by CASQ1 ablation or are instead the result of adaptive mechanisms, here we assessed ability of CASQ1 in rescuing the null phenotype. In vivo reintroduction of CASQ1 was carried out by cDNA electro transfer in flexor digitorum brevis muscle of the mouse. Exogenous CASQ1 was found to be correctly targeted to the junctional SR (jSR), as judged by immunofluorescence and confocal microscopy; terminal cisternae (TC) lumen was filled with electron dense material and its width was significantly increased, as judged by electron microscopy; peak amplitude of Ca(2+) transients was significantly increased compared with null muscle fibers transfected only with green fluorescent protein (control); and finally, transfected fibers were able to sustain cytosolic Ca(2+) concentration during prolonged tetanic stimulation. Only the expression of TC proteins, such as calsequestrin 2, sarcalumenin, and triadin, was not rescued as judged by Western blot. Thus our results support the view that CASQ1 plays a key role in both Ca(2+) homeostasis and TC structure.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.