JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Synchronization by food access modifies the daily variations in expression and activity of liver GABA transaminase.
Biomed Res Int
PUBLISHED: 03-03-2014
Show Abstract
Hide Abstract
Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. ?-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO.
Related JoVE Video
Immunogenicity of a prime-boost vaccine containing the circumsporozoite proteins of Plasmodium vivax in rodents.
Infect. Immun.
PUBLISHED: 01-31-2014
Show Abstract
Hide Abstract
Plasmodium vivax is the most widespread and the second most prevalent malaria-causing species in the world. Current measures used to control the transmission of this disease would benefit from the development of an efficacious vaccine. In the case of the deadly parasite P. falciparum, the recombinant RTS,S vaccine containing the circumsporozoite antigen (CSP) consistently protects 30 to 50% of human volunteers against infection and is undergoing phase III clinical trials in Africa with similar efficacy. These findings encouraged us to develop a P. vivax vaccine containing the three circulating allelic forms of P. vivax CSP. Toward this goal, we generated three recombinant bacterial proteins representing the CSP alleles, as well as a hybrid polypeptide called PvCSP-All-CSP-epitopes. This hybrid contains the conserved N and C termini of P. vivax CSP and the three variant repeat domains in tandem. We also generated simian and human recombinant replication-defective adenovirus vectors expressing PvCSP-All-CSP-epitopes. Mice immunized with the mixture of recombinant proteins in a formulation containing the adjuvant poly(I·C) developed high and long-lasting serum IgG titers comparable to those elicited by proteins emulsified in complete Freund's adjuvant. Antibody titers were similar in mice immunized with homologous (protein-protein) and heterologous (adenovirus-protein) vaccine regimens. The antibodies recognized the three allelic forms of CSP, reacted to the repeated and nonrepeated regions of CSP, and recognized sporozoites expressing the alleles VK210 and VK247. The vaccine formulations described in this work should be useful for the further development of an anti-P. vivax vaccine.
Related JoVE Video
Immunogenicity of recombinant proteins consisting of Plasmodium vivax circumsporozoite protein allelic variant-derived epitopes fused with Salmonella enterica Serovar Typhimurium flagellin.
Clin. Vaccine Immunol.
PUBLISHED: 07-17-2013
Show Abstract
Hide Abstract
A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax.
Related JoVE Video
Effect of investment type and mold temperature on casting accuracy and titanium-ceramic bond.
Braz Dent J
PUBLISHED: 05-10-2013
Show Abstract
Hide Abstract
This study evaluated the casting accuracy of crown margins and metal-ceramic shear bond strength (SBS) of pure titanium injected into casting molds made using 2 investment types at 3 mold temperatures. Sixty crown (30-degree beveled finish line) and 60 cylinder (5mm diameter × 8mm high) patterns were divided into 6 groups (n=10), and cast using a phosphate-bonded investment (P) and a magnesium oxide-bonded investment (U), at 400°C (groups P400 and U400), 550°C (groups P550 and U550) and 700°C (groups P700 and U700) mold temperatures. Crown margins were recorded in impression material, the degree of marginal rounding was measured and margin length deficiencies (µm) were calculated. Titanium-ceramic specimens were prepared using Triceram ceramic (2mm high) and SBS was tested. Failure modes were assessed by optical microscopy. Data were subjected to two-way ANOVA and Tukeys HSD test (?=0.05). For casting accuracy, expressed by marginal deficiency (µm), investment U provided more accurate results (64 ± 11) than P (81 ± 23) (p<0.001). The increase in temperature resulted in different effects for the tested investments (p<0.001), as it provided better casting accuracy for U700 (55 ± 7) and worse for P700 (109 ± 18). Casting accuracy at 700°C (82 ± 31) was significantly different from 400°C (69 ± 9) and 550°C (68 ± 9) (p<0.05). For SBS, there was no significant differences among the groups for factors investment (p=0.062) and temperature (p=0.224), or for their interaction (p=0.149). Investment U provided better casting accuracy than investment P. The SBS was similar for all combinations of investments and temperatures.
Related JoVE Video
FRET peptides reveal differential proteolytic activation in intraerythrocytic stages of the malaria parasites Plasmodium berghei and Plasmodium yoelii.
Int. J. Parasitol.
PUBLISHED: 07-08-2010
Show Abstract
Hide Abstract
Malaria is still a major health problem in developing countries. It is caused by the protist parasite Plasmodium, in which proteases are activated during the cell cycle. Ca(2+) is a ubiquitous signalling ion that appears to regulate protease activity through changes in its intracellular concentration. Proteases are crucial to Plasmodium development, but the role of Ca(2+) in their activity is not fully understood. Here we investigated the role of Ca(2+) in protease modulation among rodent Plasmodium spp. Using fluorescence resonance energy transfer (FRET) peptides, we verified protease activity elicited by Ca(2+) from the endoplasmatic reticulum (ER) after stimulation with thapsigargin (a sarco/endoplasmatic reticulum Ca(2+)-ATPase (SERCA) inhibitor) and from acidic compartments by stimulation with nigericin (a K(+)/H(+) exchanger) or monensin (a Na(+)/H(+) exchanger). Intracellular (BAPTA/AM) and extracellular (EGTA) Ca(2+) chelators were used to investigate the role played by Ca(2+) in protease activation. In Plasmodium berghei both EGTA and BAPTA blocked protease activation, whilst in Plasmodium yoelii these compounds caused protease activation. The effects of protease inhibitors on thapsigargin-induced proteolysis also differed between the species. Pepstatin A and phenylmethylsulphonyl fluoride (PMSF) increased thapsigargin-induced proteolysis in P. berghei but decreased it in P. yoelii. Conversely, E64 reduced proteolysis in P. berghei but stimulated it in P. yoelii. The data point out key differences in proteolytic responses to Ca(2+) between species of Plasmodium.
Related JoVE Video
Time course of retinal degeneration associated with the absence of 1, 4, 5-inositol trisphosphate receptor in Drosophila melanogaster.
Exp. Biol. Med. (Maywood)
PUBLISHED: 04-21-2010
Show Abstract
Hide Abstract
The absence of the inositol trisphosphate receptor is associated with a gradual retinal degeneration in Drosophila melanogaster. To characterize the time-course profile of this process, mosaic flies expressing a null allele of the itp gene in the eye were studied by electroretinograms and electronic microscopy. Membrane contour alterations, disrupted mitochondria, altered morphology and even loss of photoreceptors were increased progressively starting 5 d after hatching, were more evident during days 10-15 and promoted highly disorganized structures thereafter. Comparison between electroretinograms recorded in wild type and mutant tissues showed progressive differences in the on and off transients as well as in the magnitude of the summed receptor potentials of photoreceptor cells from day 5 of hatching, [corrected] and the functional defects became progressively more severe. Unexpectedly, these alterations were detected not only in the non-pigmented mutant ommatidia, but also in the pigmented ommatidia, including heterozygous and twin clones expressing 1, 4, 5-inositol trisphosphate receptor (IP(3)R). To explore the mechanism underlying this degenerative process, the progression of pro-oxidant and apoptotic reactions was characterized by immunohistochemical techniques. Mutant ommatidia showed intermittent episodes of increased pro-oxidant reactions (detected as adducts of 4-hydroxy-nonenal) throughout the flys life. Similarly, several episodes of active caspase 3, an apoptotic effector, were evident with the same time pattern. Episodes of enhanced lipid peroxidation and apoptosis were also observed in the pigmented ommatidia of the mosaic eyes. The results indicate that photoreceptors lacking IP(3)R suffer episodes of increased lipid peroxidation, which eventually perturb the retinal subcellular organization and disrupt the phototransduction process and cell viability. Pigmented ommatidia also showed a similar pattern of damage, indicating that the degenerative process is non-autonomous and is so intense that it propagated to the non-mutant retinal cells in the mosaic eyes. In conclusion, ommatidia with a null mutation of IP(3)R degenerate by a process associated with intermittent lipid peroxidation and apoptotic activities.
Related JoVE Video
Effect of casting atmosphere on the shear bond strength of a ceramic to Ni-Cr and Ni-Cr-Be alloys.
Braz Dent J
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
The success of metal-ceramic restorations depends on an optimal bond between metal and ceramic. This study evaluated the effect of 3 casting atmospheres on the metal-ceramic bond strength (MCBS) of 2 Ni-Cr alloys, with beryllium (Fit Cast V) and without beryllium (Fit Cast SB). Sixty acrylic resin patterns (8 mm long and 5 mm diameter) were obtained using a fluorocarbon resin matrix. Wax was used to refine the surface of acrylic resin patterns that were invested and cast in an induction casting machine under normal, vacuum, and argon atmospheres at a temperature of 1340 degrees C. The castings were divested manually and airborne-particle abraded with 100-microm aluminum-oxide. Ten castings were obtained for each group. The IPS Classic V ceramic was applied (2 mm high and 5 mm diameter). The shear bond strength was tested in a mechanical testing machine with a crosshead speed of 2.0 mm/min. The MCBS data (MPa) were subjected to 2-way analysis of variance (alpha=0.05). There was no statistically significant difference (p>0.05) between the alloys or among the casting atmospheres. Within the limitations of this study, it may be concluded that the presence of beryllium and the casting atmosphere did not interfere in the MCBS of the evaluated metal-ceramic combinations.
Related JoVE Video
Correlation between metal-ceramic bond strength and coefficient of linear thermal expansion difference.
J Appl Oral Sci
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS) of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics) and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs) of the metals and ceramics. Verabond (VB) Ni-Cr-Be alloy, Verabond II (VB2), Ni-Cr alloy, Pors-on 4 (P), Pd-Ag alloy, and IPS (I) and Duceram (D) ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length) made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length) of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukeys test revealed significant differences (p=0.01) for the MCBS test results (MPa), with PI showing higher MCBS (67.72) than the other pairs, which did not present any significant differences. The CTE (10(-6) oC(-1)) differences were: VBI (0.54), VBD (1.33), VB2I (-0.14), VB2D (0.63), PI (1.84) and PD (2.62). Pearsons correlation test (r=0.17) was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.