JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Syntaxin-binding protein STXBP5 inhibits endothelial exocytosis and promotes platelet secretion.
J. Clin. Invest.
PUBLISHED: 07-24-2014
Show Abstract
Hide Abstract
In humans, vWF levels predict the risk of myocardial infarction and thrombosis; however, the factors that influence vWF levels are not completely understood. Recent genome-wide association studies (GWAS) have identified syntaxin-binding protein 5 (STXBP5) as a candidate gene linked to changes in vWF plasma levels, though the functional relationship between STXBP5 and vWF is unknown. We hypothesized that STXBP5 inhibits endothelial cell exocytosis. We found that STXBP5 is expressed in human endothelial cells and colocalizes with and interacts with syntaxin 4. In human endothelial cells reduction of STXBP5 increased exocytosis of vWF and P-selectin. Mice lacking Stxbp5 had higher levels of vWF in the plasma, increased P-selectin translocation, and more platelet-endothelial interactions, which suggests that STXBP5 inhibits endothelial exocytosis. However, Stxbp5 KO mice also displayed hemostasis defects, including prolonged tail bleeding times and impaired mesenteric arteriole and carotid artery thrombosis. Furthermore, platelets from Stxbp5 KO mice had defects in platelet secretion and activation; thus, STXBP5 inhibits endothelial exocytosis but promotes platelet secretion. Our study reveals a vascular function for STXBP5, validates the functional relevance of a candidate gene identified by GWAS, and suggests that variation within STXBP5 is a genetic risk for venous thromboembolic disease.
Related JoVE Video
Genome-wide association study for circulating tissue plasminogen activator levels and functional follow-up implicates endothelial STXBP5 and STX2.
Jie Huang, Jennifer E Huffman, Munekazu Yamakuchi, Munekazu Yamkauchi, Stella Trompet, Folkert W Asselbergs, Maria Sabater-Lleal, David-Alexandre Trégouët, Wei-Min Chen, Nicholas L Smith, Marcus E Kleber, So-Youn Shin, Diane M Becker, Weihong Tang, Abbas Dehghan, Andrew D Johnson, Vinh Truong, Lasse Folkersen, Qiong Yang, Tiphaine Oudot-Mellkah, Brendan M Buckley, Jason H Moore, Frances M K Williams, Harry Campbell, Günther Silbernagel, Veronique Vitart, Igor Rudan, Geoffrey H Tofler, Gerjan J Navis, Anita DeStefano, Alan F Wright, Ming-Huei Chen, Anton J M de Craen, Bradford B Worrall, Alicja R Rudnicka, Ann Rumley, Ebony B Bookman, Bruce M Psaty, Fang Chen, Keith L Keene, Oscar H Franco, Bernhard O Böhm, André G Uitterlinden, Angela M Carter, J Wouter Jukema, Naveed Sattar, Joshua C Bis, Mohammad A Ikram, , Michèle M Sale, Barbara McKnight, Myriam Fornage, Ian Ford, Kent Taylor, P Eline Slagboom, Wendy L McArdle, Fang-Chi Hsu, Anders Franco-Cereceda, Alison H Goodall, Lisa R Yanek, Karen L Furie, Mary Cushman, Albert Hofman, Jacqueline C M Witteman, Aaron R Folsom, Saonli Basu, Nena Matijevic, Wiek H van Gilst, James F Wilson, Rudi G J Westendorp, Sekar Kathiresan, Muredach P Reilly, Russell P Tracy, Ozren Polašek, Bernhard R Winkelmann, Peter J Grant, Hans L Hillege, Francois Cambien, David J Stott, Gordon D Lowe, Timothy D Spector, James B Meigs, Winfried März, Per Eriksson, Lewis C Becker, Pierre-Emmanuel Morange, Nicole Soranzo, Scott M Williams, Caroline Hayward, Pim van der Harst, Anders Hamsten, Charles J Lowenstein, David P Strachan, Christopher J O'Donnell.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 02-27-2014
Show Abstract
Hide Abstract
Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of plasminogen to plasmin, the major enzyme responsible for endogenous fibrinolysis. In some populations, elevated plasma levels of tPA have been associated with myocardial infarction and other cardiovascular diseases. We conducted a meta-analysis of genome-wide association studies to identify novel correlates of circulating levels of tPA.
Related JoVE Video
Saturated fatty acid palmitate induces extracellular release of histone H3: a possible mechanistic basis for high-fat diet-induced inflammation and thrombosis.
Biochem. Biophys. Res. Commun.
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells to express the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.
Related JoVE Video
Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor.
J. Biol. Chem.
PUBLISHED: 02-15-2011
Show Abstract
Hide Abstract
Exocytosis involves membrane fusion between granules and the plasma membrane. Nitric oxide (NO) inhibits exocytosis by chemically modifying N-ethylmaleimide-sensitive factor (NSF), a key component of the exocytic machinery. However, cells recover the ability to release messenger molecules within hours of exposure to NO through unknown mechanisms. We now identify thioredoxin (TRX1) as a denitrosylase that reverses NO inhibition of exocytosis. Endogenously synthesized NO increases S-nitrosylated NSF levels, but S-nitrosylated NSF levels decrease within 3 h after exposure to NO. We found that NO increases the interaction between TRX1 and NSF, and endogenous TRX1 removes NO from S-nitrosylated NSF. Knockdown of TRX1 increases the level of S-nitrosylated NSF, prolongs the inhibition of exocytosis, and suppresses leukocyte adhesion. Taken together, these data show that TRX1 promotes exocytosis by denitrosylating NSF. Our findings suggest that TRX1 might regulate exocytosis in a variety of physiological settings, such as vascular inflammation, thrombosis, and insulin release.
Related JoVE Video
MicroRNA-22 regulates hypoxia signaling in colon cancer cells.
PLoS ONE
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
MicroRNAs (MiRNAs) are short, non-coding RNA that regulate a variety of cellular functions by suppressing target protein expression. We hypothesized that a set of microRNA regulate tumor responses to hypoxia by inhibiting components of the hypoxia signaling pathway. We found that miR-22 expression in human colon cancer is lower than in normal colon tissue. We also found that miR-22 controls hypoxia inducible factor 1? (HIF-1?) expression in the HCT116 colon cancer cell line. Over-expression of miR-22 inhibits HIF-1? expression, repressing vascular endothelial growth factor (VEGF) production during hypoxia. Conversely, knockdown of endogenous miR-22 enhances hypoxia induced expression of HIF-1? and VEGF. The conditioned media from cells over-expressing miR-22 contain less VEGF protein than control cells, and also induce less endothelial cell growth and invasion, suggesting miR-22 in adjacent cells influences endothelial cell function. Taken together, our data suggest that miR-22 might have an anti-angiogenic effect in colon cancer.
Related JoVE Video
Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 07-29-2010
Show Abstract
Hide Abstract
MicroRNA plays important roles in vascular biology, but the regulation of endothelial-specific microRNA is not well characterized. MicroRNA-126 (miR-126) is highly expressed in endothelial cells, and it regulates angiogenesis and vascular inflammation. Here we show that the transcription factors Ets-1 and Ets-2 regulate miR-126 expression.
Related JoVE Video
MicroRNA-34a regulation of endothelial senescence.
Biochem. Biophys. Res. Commun.
PUBLISHED: 07-06-2010
Show Abstract
Hide Abstract
Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelial cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.
Related JoVE Video
Platelet factor 4 regulation of monocyte KLF4 in experimental cerebral malaria.
PLoS ONE
PUBLISHED: 04-08-2010
Show Abstract
Hide Abstract
Cerebral malaria continues to be a difficult to treat complication of Plasmodium falciparum infection in children. We have shown that platelets can have major deleterious immune functions in experimental cerebral malaria (ECM). One of the platelet derived mediators we have identified as particularly important is platelet factor 4/CXCL4. Our prior work demonstrated that PF4(-/-) mice are protected from ECM, have reduced plasma cytokines, and have reduced T-cell trafficking to the brain. We now show that PF4 drives monocyte cytokine production in a Kruppel like factor 4 (KLF4) dependent manner. Monocyte depleted Plasmodium berghei infected mice have improved survival, and KLF4 is greatly increased in control, but not monocyte depleted mice. PF4(-/-) mice have less cerebral monocyte trafficking and no change in KLF4 expression. These data indicate that PF4 induction of monocyte KLF4 expression may be an important step in the pathogenesis of ECM.
Related JoVE Video
P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-22-2010
Show Abstract
Hide Abstract
The pathway involving the tumor suppressor gene TP53 can regulate tumor angiogenesis by unclear mechanisms. Here we show that p53 regulates hypoxic signaling through the transcriptional regulation of microRNA-107 (miR-107). We found that miR-107 is a microRNA expressed by human colon cancer specimens and regulated by p53. miR-107 decreases hypoxia signaling by suppressing expression of hypoxia inducible factor-1beta (HIF-1beta). Knockdown of endogenous miR-107 enhances HIF-1beta expression and hypoxic signaling in human colon cancer cells. Conversely, overexpression of miR-107 inhibits HIF-1beta expression and hypoxic signaling. Furthermore, overexpression of miR-107 in tumor cells suppresses tumor angiogenesis, tumor growth, and tumor VEGF expression in mice. Finally, in human colon cancer specimens, expression of miR-107 is inversely associated with expression of HIF-1beta. Taken together these data suggest that miR-107 can mediate p53 regulation of hypoxic signaling and tumor angiogenesis.
Related JoVE Video
MiR-34, SIRT1 and p53: the feedback loop.
Cell Cycle
PUBLISHED: 03-02-2009
Show Abstract
Hide Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. Several studies have linked dysregulation of miRNA with tumorigenesis. The TP53 is one of the most commonly mutated genes in human cancers, and its gene product p53 activates transcription of a set of miRNA including the miR-34 family of miRNA. The miR-34 family regulates cell cycle progression, cellular senescence and apoptosis, but the targets of miR-34 are not completely defined. We recently found that miR-34a inhibits SIRT1, a gene that regulates cellular senescence and limits longevity. SIRT1 also regulates p53 dependent apoptosis through deacetylating and stabilizing p53. We also discovered that SIRT1 mediates miR-34a activation of apoptosis by regulating p53 activity. Based on this observation, we propose a positive feedback loop, in which p53 induces expression of miR-34a which suppresses SIRT1, increasing p53 activity.
Related JoVE Video
Aldosterone activates endothelial exocytosis.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-17-2009
Show Abstract
Hide Abstract
Although elevated levels of aldosterone are associated with vascular inflammation, the proinflammatory pathways of aldosterone are not completely defined. We now show that aldosterone triggers endothelial cell exocytosis, the first step in leukocyte trafficking. Exogenous aldosterone stimulates endothelial exocytosis of Weibel-Palade bodies, externalizing P-selectin and releasing von Willebrand factor. Spironolactone, a nonselective mineralocorticoid receptor (MR) blocker, antagonizes aldosterone-induced endothelial exocytosis. Knockdown of the MR also decreases exocytosis, suggesting that the MR mediates exocytosis. Aldosterone triggers exocytosis within minutes, and this effect is not inhibited by actinomycin D, suggesting a nongenomic effect of aldosterone. Aldosterone treatment of endothelial cells increases leukocyte adherence to endothelial cells in culture. Taken together, our data suggest that aldosterone activates vascular inflammation in part through nongenomic, MR-mediated pathways. Aldosterone antagonism may decrease vascular inflammation and cardiac fibrosis in part by blocking endothelial exocytosis.
Related JoVE Video
MicroRNAs in Vascular Biology.
Int J Vasc Med
Show Abstract
Hide Abstract
Vascular inflammation is an important component of the pathophysiology of cardiovascular diseases, such as hypertension, atherosclerosis, and aneurysms. All vascular cells, including endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and infiltrating cells, such as macrophages, orchestrate a series of pathological events. Despite dramatic improvements in the treatment of atherosclerosis, the molecular basis of vascular inflammation is not well understood. In the last decade, microRNAs (miRNAs) have been revealed as novel regulators of vascular inflammation. Each miRNAs suppresses a set of genes, forming complex regulatory network. This paper provides an overview of current advances that have been made in revealing the roles of miRNAs during vascular inflammation. Recent studies show that miRNAs not only exist inside cells but also circulate in blood. These circulating miRNAs are useful biomarkers for diagnosis of cardiovascular diseases. Furthermore, recent studies demonstrate that circulating miRNAs are delivered into certain recipient cells and act as messengers. These studies suggest that miRNAs provide new therapeutic opportunities.
Related JoVE Video
MicroRNA Regulation of SIRT1.
Front Physiol
Show Abstract
Hide Abstract
SIRT1 is an NAD-dependent deacetylase that regulates stress response pathways. By deacetylating transcription factors and co-factors, SIRT1 modulates metabolism, inflammation, hypoxic responses, circadian rhythms, cell survival, and longevity. Since SIRT1 plays a key role in regulating pathways involved in cardiovascular diseases and metabolic diseases cancer, the regulation of SIRT1 has received intense scrutiny. The post-transcriptional regulation of SIRT1 is mediated by two classes of molecules, RNA-binding proteins (RBPs) and non-coding small RNAs. MicroRNAs (miRNAs) are short non-coding RNAs that regulate target gene expression in a post-transcriptional manner. More than 16 miRNAs modulate SIRT1 expression, including miR-34a. miR-34a induces colon cancer apoptosis through SIRT1, and miR-34a also promotes senescence in endothelial cells via SIRT1. This review describes the impact of miRNAs on SIRT1. The background of SIRT1 and miRNAs will be summarized, followed by the mechanism by which several key miRNAs alter SIRT1 levels, and how the RBP HuR regulates SIRT1. MicroRNA regulation of SIRT1 might affect a wide variety of pathways in humans, from metabolic diseases such as diabetes to cardiovascular diseases and cancer.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.