JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Intrinsically disordered segments affect protein half-life in the cell and during evolution.
Cell Rep
PUBLISHED: 06-12-2014
Show Abstract
Hide Abstract
Precise control of protein turnover is essential for cellular homeostasis. The ubiquitin-proteasome system is well established as a major regulator of protein degradation, but an understanding of how inherent structural features influence the lifetimes of proteins is lacking. We report that yeast, mouse, and human proteins with terminal or internal intrinsically disordered segments have significantly shorter half-lives than proteins without these features. The lengths of the disordered segments that affect protein half-life are compatible with the structure of the proteasome. Divergence in terminal and internal disordered segments in yeast proteins originating from gene duplication leads to significantly altered half-life. Many paralogs that are affected by such changes participate in signaling, where altered protein half-life will directly impact cellular processes and function. Thus, natural variation in the length and position of disordered segments may affect protein half-life and could serve as an underappreciated source of genetic variation with important phenotypic consequences.
Related JoVE Video
The effect of amyloidogenic peptides on bacterial aging correlates with their intrinsic aggregation propensity.
J. Mol. Biol.
PUBLISHED: 09-23-2011
Show Abstract
Hide Abstract
The formation of aggregates by misfolded proteins is thought to be inherently toxic, affecting cell fitness. This observation has led to the suggestion that selection against protein aggregation might be a major constraint on protein evolution. The precise fitness cost associated with protein aggregation has been traditionally difficult to evaluate. Moreover, it is not known if the detrimental effect of aggregates on cell physiology is generic or depends on the specific structural features of the protein deposit. In bacteria, the accumulation of intracellular protein aggregates reduces cell reproductive ability, promoting cellular aging. Here, we exploit the cell division defects promoted by the intracellular aggregation of Alzheimers-disease-related amyloid ? peptide in bacteria to demonstrate that the fitness cost associated with protein misfolding and aggregation is connected to the protein sequence, which controls both the in vivo aggregation rates and the conformational properties of the aggregates. We also show that the deleterious impact of protein aggregation on bacterial division can be buffered by molecular chaperones, likely broadening the sequential space on which natural selection can act. Overall, the results in the present work have potential implications for the evolution of proteins and provide a robust system to experimentally model and quantify the impact of protein aggregation on cell fitness.
Related JoVE Video
Contribution of disulfide bonds to stability, folding, and amyloid fibril formation: the PI3-SH3 domain case.
Antioxid. Redox Signal.
PUBLISHED: 09-15-2011
Show Abstract
Hide Abstract
The failure of proteins to fold or to remain folded very often leads to their deposition into amyloid fibrils and is the origin of a variety of human diseases. Accordingly, mutations that destabilize the native conformation are associated with pathological phenotypes in several protein models. Protein backbone cyclization by disulfide bond crosslinking strongly reduces the entropy of the unfolded state and, usually, increases protein stability. The effect of protein cyclization on the thermodynamic and kinetics of folding has been extensively studied, but little is know on its effect on aggregation reactions.
Related JoVE Video
Biological role of bacterial inclusion bodies: a model for amyloid aggregation.
FEBS J.
PUBLISHED: 05-31-2011
Show Abstract
Hide Abstract
Inclusion bodies are insoluble protein aggregates usually found in recombinant bacteria when they are forced to produce heterologous protein species. These particles are formed by polypeptides that cross-interact through sterospecific contacts and that are steadily deposited in either the cells cytoplasm or the periplasm. An important fraction of eukaryotic proteins form inclusion bodies in bacteria, which has posed major problems in the development of the biotechnology industry. Over the last decade, the fine dissection of the quality control system in bacteria and the recognition of the amyloid-like architecture of inclusion bodies have provided dramatic insights on the dynamic biology of these aggregates. We discuss here the relevant aspects, in the interface between cell physiology and structural biology, which make inclusion bodies unique models for the study of protein aggregation, amyloid formation and prion biology in a physiologically relevant background.
Related JoVE Video
Intrinsically disordered proteins: regulation and disease.
Curr. Opin. Struct. Biol.
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Intrinsically disordered proteins (IDPs) are enriched in signaling and regulatory functions because disordered segments permit interaction with several proteins and hence the re-use of the same protein in multiple pathways. Understanding IDP regulation is important because altered expression of IDPs is associated with many diseases. Recent studies show that IDPs are tightly regulated and that dosage-sensitive genes encode proteins with disordered segments. The tight regulation of IDPs may contribute to signaling fidelity by ensuring that IDPs are available in appropriate amounts and not present longer than needed. The altered availability of IDPs may result in sequestration of proteins through non-functional interactions involving disordered segments (i.e., molecular titration), thereby causing an imbalance in signaling pathways. We discuss the regulation of IDPs, address implications for signaling, disease and drug development, and outline directions for future research.
Related JoVE Video
Linking amyloid protein aggregation and yeast survival.
Mol Biosyst
PUBLISHED: 01-14-2011
Show Abstract
Hide Abstract
Protein aggregation and amyloid formation lie behind an increasing number of human diseases. Here we describe the application of an "aggregation reporter", in which the test protein is fused to dihydrofolate reductase, as a general method to assess the intracellular solubility of amyloid proteins in eukaryotic background. Because the aggregation state of the target protein is linked directly to yeast cells survival in the presence of methotrexate, protein solubility can be monitored in vivo without the requirement of a functional assay for the protein of interest. In addition, the approach allows the in vivo visualization of the cellular location and aggregated state of the target protein. To demonstrate the applicability of the assay in the screening of genes or compounds that modulate amyloid protein aggregation in living cells, we have used as models the Alzheimers amyloid ? peptide, polyglutamine expansions of huntingtin, ?-synuclein and non-aggregating variants thereof. Moreover, the anti-aggregational properties of small molecules and the effects of the yeast protein quality control machinery have also been evaluated using this method.
Related JoVE Video
Modulation of Abeta42 fibrillogenesis by glycosaminoglycan structure.
FASEB J.
PUBLISHED: 06-28-2010
Show Abstract
Hide Abstract
The role of amyloid ? (A?) peptide in the onset and progression of Alzheimers disease is linked to the presence of soluble A? species. Sulfated glycosaminoglycans (GAGs) promote A? fibrillogenesis and reduce the toxicity of the peptide in neuronal cell cultures, but a satisfactory rationale to explain these effects at the molecular level has not been provided yet. We have used circular dichroism, Fourier transform infrared spectroscopy, fluorescence microscopy and spectroscopy, protease digestion, atomic force microscopy (AFM), and molecular dynamics simulations to characterize the association of the 42-residue fragment A?(42) with sulfated GAGs, hyaluronan, chitosan, and poly(vinyl sulfate) (PVS). Our results indicate that the formation of stable A?(42) fibrils is promoted by polymeric GAGs with negative charges placed in-frame with the 4.8-Å separating A?(42) monomers within protofibrillar ?-sheets. Incubation of A?(42) with excess sulfated GAGs and hyaluronan increased amyloid fibril content and resistance to proteolysis 2- to 5-fold, whereas in the presence of the cationic polysaccharide chitosan, A?(42) fibrillar species were reduced by 25% and sensitivity to protease degradation increased ?3-fold. Fibrils of intermediate stability were obtained in the presence of PVS, an anionic polymer with more tightly packed charges than GAGs. Important structural differences between A?(42) fibrils induced by PVS and A?(42) fibrils obtained in the presence of GAGs and hyaluronan were observed by AFM, whereas mainly precursor protofibrillar forms were detected after incubation with chitosan. Computed binding energies per peptide from -11.2 to -13.5 kcal/mol were calculated for GAGs and PVS, whereas a significantly lower value of -7.4 kcal/mol was obtained for chitosan. Taken together, our data suggest a simple and straightforward mechanism to explain the role of GAGs as enhancers of the formation of insoluble A?(42) fibrils trapping soluble toxic forms.
Related JoVE Video
The role of protein sequence and amino acid composition in amyloid formation: scrambling and backward reading of IAPP amyloid fibrils.
J. Mol. Biol.
PUBLISHED: 04-22-2010
Show Abstract
Hide Abstract
The specific functional structure of natural proteins is determined by the way in which amino acids are sequentially connected in the polypeptide. The tight sequence/structure relationship governing protein folding does not seem to apply to amyloid fibril formation because many proteins without any sequence relationship have been shown to assemble into very similar ?-sheet-enriched structures. Here, we have characterized the aggregation kinetics, seeding ability, morphology, conformation, stability, and toxicity of amyloid fibrils formed by a 20-residue domain of the islet amyloid polypeptide (IAPP), as well as of a backward and scrambled version of this peptide. The three IAPP peptides readily aggregate into ordered, ?-sheet-enriched, amyloid-like fibrils. However, the mechanism of formation and the structural and functional properties of aggregates formed from these three peptides are different in such a way that they do not cross-seed each other despite sharing a common amino acid composition. The results confirm that, as for globular proteins, highly specific polypeptide sequential traits govern the assembly pathway, final fine structure, and cytotoxic properties of amyloid conformations.
Related JoVE Video
Protein aggregation profile of the bacterial cytosol.
PLoS ONE
PUBLISHED: 01-30-2010
Show Abstract
Hide Abstract
Protein misfolding is usually deleterious for the cell, either as a consequence of the loss of protein function or the buildup of insoluble and toxic aggregates. The aggregation behavior of a given polypeptide is strongly influenced by the intrinsic properties encoded in its sequence. This has allowed the development of effective computational methods to predict protein aggregation propensity.
Related JoVE Video
Protein folding and aggregation in bacteria.
Cell. Mol. Life Sci.
PUBLISHED: 01-18-2010
Show Abstract
Hide Abstract
Proteins might experience many conformational changes and interactions during their lifetimes, from their synthesis at ribosomes to their controlled degradation. Because, in most cases, only folded proteins are functional, protein folding in bacteria is tightly controlled genetically, transcriptionally, and at the protein sequence level. In addition, important cellular machinery assists the folding of polypeptides to avoid misfolding and ensure the attainment of functional structures. When these redundant protective strategies are overcome, misfolded polypeptides are recruited into insoluble inclusion bodies. The protein embedded in these intracellular deposits might display different conformations including functional and beta-sheet-rich structures. The latter assemblies are similar to the amyloid fibrils characteristic of several human neurodegenerative diseases. Interestingly, bacteria exploit the same structural principles for functional properties such as adhesion or cytotoxicity. Overall, this review illustrates how prokaryotic organisms might provide the bedrock on which to understand the complexity of protein folding and aggregation in the cell.
Related JoVE Video
Amyloids in bacterial inclusion bodies.
Trends Biochem. Sci.
PUBLISHED: 02-06-2009
Show Abstract
Hide Abstract
Protein misfolding and aggregation into amyloid structures are associated with dozens of human diseases. Recent studies have provided compelling evidence for the existence of highly ordered, amyloid-like conformations in the insoluble inclusion bodies produced during heterologous protein expression in bacteria. Thus, amyloid aggregation seems to be an omnipresent process in both eukaryotic and prokaryotic organisms. Amyloid formation inside cell factories raises important safety concerns with regard to the toxicity and infectivity of recombinant proteins. Yet such findings also suggest that prokaryotic cells could be useful systems for studying how and why proteins aggregate in vivo, and they could also provide a biologically relevant background for screening therapeutic approaches to pathologic protein deposition.
Related JoVE Video
Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimers disease.
J. Am. Chem. Soc.
PUBLISHED: 01-13-2009
Show Abstract
Hide Abstract
Metal chelation is considered a rational therapeutic approach for interdicting Alzheimers amyloid pathogenesis. At present, enhancing the targeting and efficacy of metal-ion chelating agents through ligand design is a main strategy in the development of the next generation of metal chelators. Inspired by the traditional dye Thioflavin-T, we have designed new multifunctional molecules that contain both amyloid binding and metal chelating properties. In silico techniques have enabled us to identify commercial compounds that enclose the designed molecular framework (M1), include potential antioxidant properties, facilitate the formation of iodine-labeled derivatives, and can be permeable through the blood-brain barrier. Iodination reactions of the selected compounds, 2-(2-hydroxyphenyl)benzoxazole (HBX), 2-(2-hydroxyphenyl)benzothiazole (HBT), and 2-(2-aminophenyl)-1H-benzimidazole (BM), have led to the corresponding iodinated derivatives HBXI, HBTI, and BMI, which have been characterized by X-ray diffraction. The chelating properties of the latter compounds toward Cu(II) and Zn(II) have been examined in the solid phase and in solution. The acidity constants of HBXI, HBTI, and BMI and the formation constants of the corresponding ML and ML2 complexes [M = Cu(II), Zn(II)] have been determined by UV-vis pH titrations. The calculated values for the overall formation constants for the ML2 complexes indicate the suitability of the HBXI, HBTI, and BMI ligands for sequestering Cu(II) and Zn(II) metal ions present in freshly prepared solutions of beta-amyloid (Abeta) peptide. This was confirmed by Abeta aggregation studies showing that these compounds are able to arrest the metal-promoted increase in amyloid fibril buildup. The fluorescence features of HBX, HBT, BM, and the corresponding iodinated derivatives, together with fluorescence microscopy studies on two types of pregrown fibrils, have shown that HBX and HBT compounds could behave as potential markers for the presence of amyloid fibrils, whereas HBXI and HBTI may be especially suitable for radioisotopic detection of Abeta deposits. Taken together, the results reported in this work show the potential of new multifunctional thioflavin-based chelating agents as Alzheimers disease therapeutics.
Related JoVE Video
Evolutionary selection for protein aggregation.
Biochem. Soc. Trans.
Show Abstract
Hide Abstract
Protein aggregation is being found to be associated with an increasing number of human diseases. Aggregation can lead to a loss of function (lack of active protein) or to a toxic gain of function (cytotoxicity associated with protein aggregates). Although potentially harmful, protein sequences predisposed to aggregation seem to be ubiquitous in all kingdoms of life, which suggests an evolutionary advantage to having such segments in polypeptide sequences. In fact, aggregation-prone segments are essential for protein folding and for mediating certain protein-protein interactions. Moreover, cells use protein aggregates for a wide range of functions. Against this background, life has adapted to tolerate the presence of potentially dangerous aggregation-prone sequences by constraining and counteracting the aggregation process. In the present review, we summarize the current knowledge of the advantages associated with aggregation-prone stretches in proteomes and the strategies that cellular systems have developed to control the aggregation process.
Related JoVE Video
Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors.
Microb. Cell Fact.
Show Abstract
Hide Abstract
The amyloid-? peptide (A?42) is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimers disease (AD). The mechanism by which A?42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.