JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Dynamic microtubules produce an asymmetric E-cadherin-Bazooka complex to maintain segment boundaries.
J. Cell Biol.
PUBLISHED: 06-12-2013
Show Abstract
Hide Abstract
Distributing junctional components around the cell periphery is key for epithelial tissue morphogenesis and homeostasis. We discovered that positioning of dynamic microtubules controls the asymmetric accumulation of E-cadherin. Microtubules are oriented preferentially along the dorso-ventral axis in Drosophila melanogaster embryonic epidermal cells, and thus more frequently contact E-cadherin at dorso-ventral cell-cell borders. This inhibits RhoGEF2, reducing membrane recruitment of Rho-kinase, and increasing a specific E-cadherin pool that is mobile when assayed by fluorescence recovery after photobleaching. This mobile E-cadherin is complexed with Bazooka/Par-3, which in turn is required for normal levels of mobile E-cadherin. Mobile E-cadherin-Bazooka prevents formation of multicellular rosette structures and cell motility across the segment border in Drosophila embryos. Altogether, the combined action of dynamic microtubules and Rho signaling determines the level and asymmetric distribution of a mobile E-cadherin-Bazooka complex, which regulates cell behavior during the generation of a patterned epithelium.
Related JoVE Video
Dynorphin B induces lateral asymmetric changes in feline spinal cord reflexes.
Front Neurosci
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The effects of dynorphin B (an agonist of ?-opioid receptors) and naloxone (an antagonist of opioid receptors) on the field potentials (FPs) evoked in the lumbar spinal cord of spinalized cats were examined following successive stimulation of pairs of identical peripheral nerves on both sides of the body. The FPs were recorded bilaterally using microelectrodes from symmetrical sites of the gray matter between the L6 and L7 segments of the spinal cord transected at level of Th11. Significant changes (up to 75%) were registered in the areas of the initial positive components of the FPs evoked by sequential stimulation of the nn. gastrocnemius-soleus, flexor digitorum longus, and tibialis at both hind limbs; a difference between the effects of various nerves was not observed. Two-Way ANOVA analysis showed that two factors, the injection type and recording side, as well as a combination of these factors, strongly influenced the amplitudes of the FPs. Statistically significant side- and injection-dependent differences were registered in the majority of the tests. Both the directions of the changes in the FPs and their relative amplitudes were not strongly connected with a definite side of the spinal cord in different animals. Therefore, it is possible to postulate that the ?-opioid receptors are distributed inhomogeneously over the neuronal populations transmitting the peripheral afferent signals from different hind limbs, thus indicating a possible presence of the lateral asymmetry effects.
Related JoVE Video
Antagonistic functions of two stardust isoforms in Drosophila photoreceptor cells.
Mol. Biol. Cell
PUBLISHED: 09-22-2010
Show Abstract
Hide Abstract
Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs-Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis.
Related JoVE Video
A diverse pattern of the spike threshold changes in feline gastrocnemius-soleus motoneurons during stretch reflex activation.
Exp Brain Res
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
The aim of the study was to define the spike threshold changes in motoneurons during naturally evoked activation. Spike activity was evoked in the gastrocnemius-soleus motoneurons of decerebrate cats by controlled stretches of the homonymous muscles. The spike thresholds were defined by using the first derivative of the membrane potential and statistical boundaries of its change. The evoked firing was analyzed in terms of the spike thresholds and the membrane potential trajectories between spikes, which were dependent on the intensity of the firing. The main inference of the study is the absence of a single-valued dependence between the spike rates and thresholds; the last ones can both increase and decrease with a rise in the firing rate; moreover, opposite directions in the threshold changes are often observed at various phases of the stretch-evoked firing. The dependency of the spike thresholds on firing rates was checked in 42 of the total set of 57 motoneurons. In a group of cells (n = 27) showing statistically significant correlation (P < 0.05), this parameter was negative in 18 and positive in 9 motoneurons. The obtained results indicate that the threshold-crossing models with a single-valued dependency of the spike thresholds on the firing rates are not completely suitable to analyze the spike generation processes in the motor unit records.
Related JoVE Video
The Crumbs complex: from epithelial-cell polarity to retinal degeneration.
J. Cell. Sci.
PUBLISHED: 07-24-2009
Show Abstract
Hide Abstract
The evolutionarily conserved Crumbs protein complex is a key regulator of cell polarity and cell shape in both invertebrates and vertebrates. The important role of this complex in normal cell function is illustrated by the finding that mutations in one of its components, Crumbs, are associated with retinal degeneration in humans, mice and flies. Recent results suggest that the Crumbs complex plays a role in the development of other disease processes that are based on epithelial dysfunction, such as tumorigenesis or the formation of cystic kidneys. Localisation of the complex is restricted to a distinct region of the apical plasma membrane that abuts the zonula adherens in epithelia and photoreceptor cells of invertebrates and vertebrates, including humans. In addition to the core components, a variety of other proteins can be recruited to the complex, depending on the cell type and/or developmental stage. Together with diverse post-transcriptional and post-translational mechanisms that regulate the individual components, this provides an enormous functional diversity and flexibility of the complex. In this Commentary, we summarise findings concerning the organisation and modification of the Crumbs complex, and the conservation of its constituents from flies to mammals. In addition, we discuss recent results that suggest its participation in various human diseases, including blindness and tumour formation.
Related JoVE Video
Targeting of Drosophila rhodopsin requires helix 8 but not the distal C-terminus.
PLoS ONE
PUBLISHED: 04-14-2009
Show Abstract
Hide Abstract
The fundamental role of the light receptor rhodopsin in visual function and photoreceptor cell development has been widely studied. Proper trafficking of rhodopsin to the photoreceptor membrane is of great importance. In human, mutations in rhodopsin involving its intracellular mislocalization, are the most frequent cause of autosomal dominant Retinitis Pigmentosa, a degenerative retinal pathology characterized by progressive blindness. Drosophila is widely used as an animal model in visual and retinal degeneration research. So far, little is known about the requirements for proper rhodopsin targeting in Drosophila.
Related JoVE Video
Muscle agonist-antagonist interactions in an experimental joint model.
Exp Brain Res
Show Abstract
Hide Abstract
The experiments presented here and performed in anaesthetized cats aimed at studying the dynamics of interactions between antagonist muscle groups. The tendons of triceps surae muscles of both hindlimbs were connected with an artificial joint (a pulley installed on a shaft). The muscles were activated by the distributed stimulation of five filaments of cut ventral roots L7-S1 on both sides of the spinal cord; movements were evoked by the rate-modulation of the stimulation trains. The study mostly compared programs of reciprocal activation and co-activation, including different changes in stimulation rates of muscle antagonists. The most common feature of the movements in both activation modes was hysteresis of the joint angle changes in dependence on stimulus rate. Reciprocal activation appeared suitable for a precise regulation of both amplitude and velocity of the movements in direction of the agonist shortening; maximal effectiveness was achieved during full switching off the antagonist stimulation at plateaus of the movement traces. The reverse movements during decrease of the agonists stimulation rate demonstrated an explicit nonlinear form with pronounced initial phase of the joint angle fixation. The co-activation pattern distinctly reduced the hysteresis of joint movements and suppressed the stimulation after-effects, such as the lasting residual movements after fixation of the stimulation rates.
Related JoVE Video
Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development.
Curr. Opin. Cell Biol.
Show Abstract
Hide Abstract
We highlight recent progress in understanding cadherin and integrin function in the model organism Drosophila. New functions for these adhesion receptors continue to be discovered in this system, emphasising the importance of cell adhesion within the developing organism and showing that the requirement for cell adhesion changes between cell types. New ways to control adhesion have been discovered, including controlling the expression and recruitment of adhesion components, their posttranslational modification, recycling and turnover. Importantly, even ubiquitous adhesion components can function differently in distinct cellular contexts.
Related JoVE Video
Fluorescent proteins enhance UVC PDT of cancer cells.
Anticancer Res.
Show Abstract
Hide Abstract
Cancer cells, with and without fluorescent protein expression, were irradiated with various doses of UVC (100, 400, and 600 J/m(2)). Dual-color Lewis lung carcinoma cells (LLC) and U87 human glioma cells, expressing GFP in the nucleus and RFP in the cytoplasm and non-colored LLC and U87 cells were cultured in 96-well plates. Eight hours after seeding, the cells were irradiated with the various doses of UVC. The resulting cell number was determined after 24 hours. Compared to non-colored LLC cells, the number of dual-color LLC cells decreased significantly due to UVC irradiation with 100 J/m(2) (p=0.003). Although there was no significant difference in the number of dual-color and non-colored U87 cells after 100 J/m(2) UVC irradiation (p=0.852), the number of dual-color U87 cells decreased significantly with respect to non-colored cells due to UVC irradiation with 400 J/m(2) and 600 J/m(2) (p=0.011 and p=0.009, respectively). Thus, both dual-color LLC and dual-color U87 cells were more sensitive to UVC light than non-colored LLC and U87 cells. These results suggest that the expression of fluorescent proteins in cancer cells can enhance photodynamic therapy (PDT) using UVC and possibly with other wavelengths of light as well.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.