JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Conducting polymer electrodes for gel electrophoresis.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that ?-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.
Related JoVE Video
Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR.
Nature
PUBLISHED: 06-04-2013
Show Abstract
Hide Abstract
Rett syndrome (RTT) is an X-linked human neurodevelopmental disorder with features of autism and severe neurological dysfunction in females. RTT is caused by mutations in methyl-CpG-binding protein 2 (MeCP2), a nuclear protein that, in neurons, regulates transcription, is expressed at high levels similar to that of histones, and binds to methylated cytosines broadly across the genome. By phosphotryptic mapping, we identify three sites (S86, S274 and T308) of activity-dependent MeCP2 phosphorylation. Phosphorylation of these sites is differentially induced by neuronal activity, brain-derived neurotrophic factor, or agents that elevate the intracellular level of 3,5-cyclic AMP (cAMP), indicating that MeCP2 may function as an epigenetic regulator of gene expression that integrates diverse signals from the environment. Here we show that the phosphorylation of T308 blocks the interaction of the repressor domain of MeCP2 with the nuclear receptor co-repressor (NCoR) complex and suppresses the ability of MeCP2 to repress transcription. In knock-in mice bearing the common human RTT missense mutation R306C, neuronal activity fails to induce MeCP2 T308 phosphorylation, suggesting that the loss of T308 phosphorylation might contribute to RTT. Consistent with this possibility, the mutation of MeCP2 T308A in mice leads to a decrease in the induction of a subset of activity-regulated genes and to RTT-like symptoms. These findings indicate that the activity-dependent phosphorylation of MeCP2 at T308 regulates the interaction of MeCP2 with the NCoR complex, and that RTT in humans may be due, in part, to the loss of activity-dependent MeCP2 T308 phosphorylation and a disruption of the phosphorylation-regulated interaction of MeCP2 with the NCoR complex.
Related JoVE Video
Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor.
Nat. Neurosci.
PUBLISHED: 02-15-2013
Show Abstract
Hide Abstract
Rett syndrome (RTT) is a severe neurological disorder that is caused by mutations in the MECP2 gene. Many missense mutations causing RTT are clustered in the DNA-binding domain of MeCP2, suggesting that association with chromatin is critical for its function. We identified a second mutational cluster in a previously uncharacterized region of MeCP2. We found that RTT mutations in this region abolished the interaction between MeCP2 and the NCoR/SMRT co-repressor complexes. Mice bearing a common missense RTT mutation in this domain exhibited severe RTT-like phenotypes. Our data are compatible with the hypothesis that brain dysfunction in RTT is caused by a loss of the MeCP2 bridge between the NCoR/SMRT co-repressors and chromatin.
Related JoVE Video
(R)-?-lysine-modified elongation factor P functions in translation elongation.
J. Biol. Chem.
PUBLISHED: 01-02-2013
Show Abstract
Hide Abstract
Post-translational modification of bacterial elongation factor P (EF-P) with (R)-?-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in translation, and how this correlates to its physiological role in the cell, have recently been linked to the synthesis of polyproline stretches in proteins. Polysome analysis indicated that EF-P functions in translation elongation, rather than initiation as proposed previously. This was further supported by the inability of EF-P to enhance the rate of formation of fMet-Lys or fMet-Phe, indicating that the role of EF-P is not to specifically stimulate formation of the first peptide bond. Investigation of hydroxyl-(?)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the ?-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate that EF-P functions in translation elongation, a role critically dependent on post-translational ?-lysylation but not hydroxylation.
Related JoVE Video
Electrolysis-reducing electrodes for electrokinetic devices.
Electrophoresis
PUBLISHED: 03-23-2011
Show Abstract
Hide Abstract
Direct current electrokinetic systems generally require Faradaic reactions to occur at a pair of electrodes to maintain an electric field in an electrolyte connecting them. The vast majority of such systems, e.g. electrophoretic separations (capillary electrophoresis) or electroosmotic pumps (EOPs), employ electrolysis of the solvent in these reactions. In many cases, the electrolytic products, such as H+ and OH? in the case of water, can negatively influence the chemical or biological species being transported or separated, and gaseous products such as O? and H? can break the electrochemical circuit in microfluidic devices. This article presents an EOP that employs the oxidation/reduction of the conjugated polymer poly(3,4-ethylenedioxythiophene), rather than electrolysis of a solvent, to drive flow in a capillary. Devices made with poly(3,4-ethylenedioxythiophene) electrodes are compared with devices made with Pt electrodes in terms of flow and local pH change at the electrodes. Furthermore, we demonstrate that flow is driven for applied potentials under 2?V, and the electrodes are stable for potentials of at least 100?V. Electrochemically active electrodes like those presented here minimize the disadvantage of integrated EOP in, e.g. lab-on-a-chip applications, and may open new possibilities, especially for battery-powered disposable point-of-care devices.
Related JoVE Video
Flexible and metal-free light-emitting electrochemical cells based on graphene and PEDOT-PSS as the electrode materials.
ACS Nano
PUBLISHED: 12-28-2010
Show Abstract
Hide Abstract
We report flexible and metal-free light-emitting electrochemical cells (LECs) using exclusively solution-processed organic materials and illustrate interesting design opportunities offered by such conformable devices with transparent electrodes. Flexible LEC devices based on chemically derived graphene (CDG) as the cathode and poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate) as the anode exhibit a low turn-on voltage for yellow light emission (V = 2.8 V) and a good efficiency 2.4 (4.0) cd/A at a brightness of 100 (50) cd/m(2). We also find that CDG is electrochemically inert over a wide potential range (+1.2 to -2.8 V vs ferrocene/ferrocenium) and exploit this property to demonstrate planar LEC devices with CDG as both the anode and the cathode.
Related JoVE Video
Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices.
ACS Nano
PUBLISHED: 02-06-2010
Show Abstract
Hide Abstract
The emerging field of "organic" or "plastic" electronics has brought low-voltage, ultrathin, and energy-efficient lighting and displays to market as organic light-emitting diode (OLED) televisions and displays in cameras and mobile phones. Despite using carbon-based materials as the light-emitting layer, previous efficient organic electronic light-emitting devices have required at least one metal electrode. Here, we utilize chemically derived graphene for the transparent cathode in an all-plastic sandwich-structure device, similar to an OLED, called a light-emitting electrochemical cell (LEC). Using a screen-printable conducting polymer as a partially transparent anode and a micrometer-thick active layer solution-deposited from a blend of a light-emitting polymer and a polymer electrolyte, we demonstrate a light-emitting device based solely on solution-processable carbon-based materials. Our results demonstrate that low-voltage, inexpensive, and efficient light-emitting devices can be made without using metals. In other words, electronics can truly be "organic".
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.