JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
In vivo RNA interference screens identify regulators of antiviral CD4(+) and CD8(+) T cell differentiation.
Immunity
PUBLISHED: 08-04-2014
Show Abstract
Hide Abstract
Classical genetic approaches to examine the requirements of genes for T cell differentiation during infection are time consuming. Here we developed a pooled approach to screen 30-100+ genes individually in separate antigen-specific T cells during infection using short hairpin RNAs in a microRNA context (shRNAmir). Independent screens using T cell receptor (TCR)-transgenic CD4(+) and CD8(+) T cells responding to lymphocytic choriomeningitis virus (LCMV) identified multiple genes that regulated development of follicular helper (Tfh) and T helper 1 (Th1) cells, and short-lived effector and memory precursor cytotoxic T lymphocytes (CTLs). Both screens revealed roles for the positive transcription elongation factor (P-TEFb) component Cyclin T1 (Ccnt1). Inhibiting expression of Cyclin T1, or its catalytic partner Cdk9, impaired development of Th1 cells and protective short-lived effector CTL and enhanced Tfh cell and memory precursor CTL formation in vivo. This pooled shRNA screening approach should have utility in numerous immunological studies.
Related JoVE Video
MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.
J. Exp. Med.
PUBLISHED: 04-21-2014
Show Abstract
Hide Abstract
Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.
Related JoVE Video
The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells.
Nat. Immunol.
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
Follicular helper T cells (T(FH) cells) are responsible for effective B cell-mediated immunity, and Bcl-6 is a central factor for the differentiation of T(FH) cells. However, the molecular mechanisms that regulate the induction of T(FH) cells remain unclear. Here we found that the E3 ubiquitin ligase Itch was essential for the differentiation of T(FH) cells, germinal center responses and immunoglobulin G (IgG) responses to acute viral infection. Itch acted intrinsically in CD4(+) T cells at early stages of T(FH) cell development. Itch seemed to act upstream of Bcl-6 expression, as Bcl-6 expression was substantially impaired in Itch(-/-) cells, and the differentiation of Itch(-/-) T cells into T(FH) cells was restored by enforced expression of Bcl-6. Itch associated with the transcription factor Foxo1 and promoted its ubiquitination and degradation. The defective T(FH) differentiation of Itch(-/-) T cells was rectified by deletion of Foxo1. Thus, our results indicate that Itch acts as an essential positive regulator in the differentiation of T(FH) cells.
Related JoVE Video
TLR signaling controls lethal encephalitis in WNV-infected brain.
Brain Res.
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
Toll-like receptors (TLRs) are known to be activated in Central Nervous System (CNS) viral infections and are recognized to be a critical component in innate immunity. Several reports state a role for particular TLRs in various CNS viral infections. However, excessive TLR activation was previously reported by us in correlation with a pathogenic, rather than a protective, outcome, in a model of SIV encephalitis. Here we aimed at understanding the impact of TLR-mediated pathways by evaluating the early course of pathogenesis in the total absence of TLR signaling during CNS viral infections. We utilized a mouse model of sublethal West Nile virus (WNV) infection. WNV is an emerging neurotropic flavivirus, and a significant global cause of viral encephalitis. The virus was peripherally injected into animals that simultaneously lacked two key adapter molecules of TLR signaling, MyD88 and TRIF. On day 2 pi (post infection), MyD88/Trif-/- mice showed an increased susceptibility to WNV infection, and revealed an impairment in innate immune cytokines, when compared to wild type mice (WT). By day 6 pi, there was an increase in viral burden and robust expression of inflammatory cytokines as well as higher cell infiltration into the CNS in MyD88/Trif-/-, when compared to infected WT. A drastic increase in microglia activation, astrogliosis, and inflammatory trafficking were also observed on day 6 pi in MyD88/Trif-/-. Our observations show a protective role for TLR signaling pathways in preventing lethal encephalitis at early stages of WNV infection.
Related JoVE Video
Usp18 deficient mammary epithelial cells create an antitumour environment driven by hypersensitivity to IFN-? and elevated secretion of Cxcl10.
EMBO Mol Med
PUBLISHED: 04-04-2013
Show Abstract
Hide Abstract
The theory of cancer immunoediting refers to mechanisms by which the immune system can suppress or promote tumour progression. A major challenge for the development of novel cancer immunotherapies is to find ways to exploit the immune systems antitumour activity while concomitantly reducing its protumour activity. Using the PyVmT model of mammary tumourigenesis, we show that lack of the Usp18 gene significantly inhibits tumour growth by creating a tumour-suppressive microenvironment. Generation of this antitumour environment is driven by elevated secretion of the potent T-cell chemoattractant Cxcl10 by Usp18 deficient mammary epithelial cells (MECs), which leads to recruitment of Th1 subtype CD4(+) T cells. Furthermore, we show that Cxcl10 upregulation in MECs is promoted by interferon-? and that Usp18 is a novel inhibitor of interferon-? signalling. Knockdown of the interferon-? specific receptor subunit IL-28R1 in Usp18 deficient MECs dramatically enhances tumour growth. Taken together, our data suggest that targeting Usp18 may be a viable approach to boost antitumour immunity while suppressing the protumour activity of the immune system.
Related JoVE Video
The Tpl2 mutation Sluggish impairs type I IFN production and increases susceptibility to group B streptococcal disease.
J. Immunol.
PUBLISHED: 11-18-2009
Show Abstract
Hide Abstract
Sluggish was identified in a population of third generation mice descended from N-ethyl-N-nitrosourea-mutagenized sires. Macrophages from homozygotes exhibited impaired TNF-alpha production in response to all TLR ligands tested and displayed impaired type I IFN production in response to TLR7 and TLR9 stimulations. The phenotype was confined to a critical region on mouse chromosome 18 and then ascribed to a T to A transversion in the acceptor splice site of intron 4 at position 13346 of the Map3k8 gene, resulting in defective splicing. The Map3k8(Sluggish) mutation does not result in susceptibility to viral infections, but Sluggish mice displayed high susceptibility to group B streptococcus infection, with impaired TNF-alpha and type I IFN production in infected macrophages. Our data demonstrate that the encoded protein kinase Tpl2 plays an essential role in cell signaling in the immune response to certain pathogens.
Related JoVE Video
Soluble CD36 ectodomain binds negatively charged diacylglycerol ligands and acts as a co-receptor for TLR2.
PLoS ONE
PUBLISHED: 05-19-2009
Show Abstract
Hide Abstract
Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes, such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria.
Related JoVE Video
Enhanced sensitivity to DSS colitis caused by a hypomorphic Mbtps1 mutation disrupting the ATF6-driven unfolded protein response.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-06-2009
Show Abstract
Hide Abstract
Here, we describe an N-ethyl-N-nitrosourea (ENU)-induced missense error in the membrane-bound transcription factor peptidase site 1 (S1P)-encoding gene (Mbtps1) that causes enhanced susceptibility to dextran sodium sulfate (DSS)-induced colitis. S1P cleaves and activates cAMP response element binding protein/ATF transcription factors, the sterol regulatory element-binding proteins (SREBPs), and other proteins of both endogenous and viral origin. Because S1P has a nonredundant function in the ATF6-dependent unfolded protein response (UPR), woodrat mice show diminished levels of major endoplasmic reticulum chaperones GRP78 (BiP) and GRP94 in the colon upon DSS administration. Experiments with bone marrow chimeric mice reveal a requirement for S1P in nonhematopoietic cells, without which a diminished UPR and colitis develop.
Related JoVE Video
Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-21-2009
Show Abstract
Hide Abstract
gC1qR is one of the C1q receptors implicated in the regulation of innate and adaptive immunity. We found that gC1qR inhibits RIG-I and MDA5-dependent antiviral signaling. Double stranded RNA and virus trigger the translocation of gC1qR to the mitochondrial outer membrane leading to the interaction of gC1qR with the RIG-I and MDA5 adaptor, VISA/MAVS/IPS-1/Cardif. The interaction of gC1qR with VISA/MAVS/IPS-1/Cardif at mitochondria results in the disruption of RIG-I and MDA5 signaling and the promotion of virus replication. Knockdown of endogenous gC1qR enhances RIG-I-dependent antiviral signaling, and augments the inhibition of virus proliferation. Therefore, gC1qR is a physiological inhibitor of the RIG-I and MDA5-mediated antiviral signaling pathway. These data uncover a new viral mechanism used to negatively control antiviral signaling in host cells.
Related JoVE Video
ENU-induced phenovariance in mice: inferences from 587 mutations.
BMC Res Notes
Show Abstract
Hide Abstract
We present a compendium of N-ethyl-N-nitrosourea (ENU)-induced mouse mutations, identified in our laboratory over a period of 10 years either on the basis of phenotype or whole genome and/or whole exome sequencing, and archived in the Mutagenetix database. Our purpose is threefold: 1) to formally describe many point mutations, including those that were not previously disclosed in peer-reviewed publications; 2) to assess the characteristics of these mutations; and 3) to estimate the likelihood that a missense mutation induced by ENU will create a detectable phenotype.
Related JoVE Video
?-TrCP-mediated IRAK1 degradation releases TAK1-TRAF6 from the membrane to the cytosol for TAK1-dependent NF-?B activation.
Mol. Cell. Biol.
Show Abstract
Hide Abstract
Interleukin-1 (IL-1) receptor-associated kinase (IRAK1) is phosphorylated, ubiquitinated, and degraded upon IL-1 stimulation. IRAK1 can be ubiquitinated through both K48- and K63-linked polyubiquitin chains upon IL-1 stimulation. While the Pellino proteins have been shown to meditate K63-linked polyubiquitination on IRAK1, the E3 ligase for K48-linked ubiquitination of IRAK1 has not been identified. In this study, we report that the SCF (Skp1-Cullin1-F-box)-?-TrCP complex functions as the K48-linked ubiquitination E3 ligase for IRAK1. IL-1 stimulation induced the interaction of IRAK1 with Cullin1 and ?-TrCP. Knockdown of ?-TrCP1 and ?-TrCP2 attenuated the K48-linked ubiquitination and degradation of IRAK1. Importantly, ?-TrCP deficiency abolished the translocation TAK1-TRAF6 complex from the membrane to the cytosol, resulting in a diminishment of the IL-1-induced TAK1-dependent pathway. Taken together, these results implicate a positive role of ?-TrCP-mediated IRAK1 degradation in IL-1-induced TAK1 activation.
Related JoVE Video
iRhom2 is required for the secretion of mouse TNF?.
Blood
Show Abstract
Hide Abstract
TNF? is a powerful inflammatory stimulus, central both to the control of infection, and as an agent of inflammatory disease. The most potent inducers of TNF? secretion signal through the Toll-like receptors, and we describe here a chemically-induced mutation that impairs this response in macrophages. A missense mutation was revealed in the gene encoding the inactive rhomboid protease iRhom2, which was not complemented by a null allele of the same gene. Neither the missense nor the null allele affected TLR-induced secretion of IL-6. Moreover, unlike a mutation in TNF?, the iRhom2 missense mutation did not cause enhanced susceptibility to colitis induced by dextran sodium sulfate. These results establish a specific role for iRhom2 in the secretion of TNF?, and present a new target for the modulation of inflammation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.