JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Chronic inflammation induces telomere dysfunction and accelerates ageing in mice.
Nat Commun
PUBLISHED: 05-20-2014
Show Abstract
Hide Abstract
Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-?B induces premature ageing in mice. We also show that these mice have reduced regeneration in liver and gut. nfkb1(-/-) fibroblasts exhibit aggravated cell senescence because of an enhanced autocrine and paracrine feedback through NF-?B, COX-2 and ROS, which stabilizes DNA damage. Preferential accumulation of telomere-dysfunctional senescent cells in nfkb1(-/-) tissues is blocked by anti-inflammatory or antioxidant treatment of mice, and this rescues tissue regenerative potential. Frequencies of senescent cells in liver and intestinal crypts quantitatively predict mean and maximum lifespan in both short- and long-lived mice cohorts. These data indicate that systemic chronic inflammation can accelerate ageing via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any other genetic or environmental factor.
Related JoVE Video
Tumor progression locus 2/Cot is required for activation of extracellular regulated kinase in liver injury and toll-like receptor-induced TIMP-1 gene transcription in hepatic stellate cells in mice.
Hepatology
PUBLISHED: 04-24-2013
Show Abstract
Hide Abstract
Toll-like receptors (TLRs) function as key regulators of liver fibrosis and are able to modulate the fibrogenic actions of nonparenchymal liver cells. The fibrogenic signaling events downstream of TLRs on Kupffer cells (KCs) and hepatic stellate cells (HSCs) are poorly defined. Here, we describe the MAP3K tumor progression locus 2 (Tpl2) as being important for the activation of extracellular regulated kinase (ERK) signaling in KCs and HSCs responding to stimulation of TLR4 and TLR9. KCs lacking Tpl2 display defects with TLR induction of cytokines interleukin (IL)-1?, IL-10, and IL-23. tpl2(-/-) HSCs were unable to increase expression of fibrogenic genes IL-1? and tissue inhibitor of metalloproteinase 1 (TIMP-1), with the latter being the result of defective stimulation of TIMP-1 promoter activity by TLRs. To determine the in vivo relevance of Tpl2 signaling in liver fibrosis, we compared the fibrogenic responses of wild-type (WT) and tpl2(-/-) mice in three distinct models of chronic liver injury. In the carbon tetrachloride and methionine-choline-deficient diet models, we observed a significant reduction in fibrosis in mice lacking Tpl2, compared to WT controls. However, in the bile duct ligation model, there was no effect of tpl2 deletion, which may reflect a lesser role for HSCs in wounding response to biliary injury. Conclusion: We conclude that Tpl2 is an important signal transducer for TLR activation of gene expression in KCs and HSCs by the ERK pathway and that suppression of its catalytic activity may be a route toward suppressing fibrosis caused by hepatocellular injuries. (HEPATOLOGY 2013).
Related JoVE Video
The c-Rel subunit of NF-?B regulates epidermal homeostasis and promotes skin fibrosis in mice.
Am. J. Pathol.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
The five subunits of transcription factor NF-?B have distinct biological functions. NF-?B signaling is important for skin homeostasis and aging, but the contribution of individual subunits to normal skin biology and disease is unclear. Immunohistochemical analysis of the p50 and c-Rel subunits within lesional psoriatic and systemic sclerosis skin revealed abnormal epidermal expression patterns, compared with healthy skin, but RelA distribution was unaltered. The skin of Nfkb1(-/-) and c-Rel(-/-) mice is structurally normal, but epidermal thickness and proliferation are significantly reduced, compared with wild-type mice. We show that the primary defect in both Nfkb1(-/-) and c-Rel(-/-) mice is within keratinocytes that display reduced proliferation both in vitro and in vivo. However, both genotypes can respond to proliferative stress, with 12-O-tetradecanoylphorbol-13-acetate-induced epidermal hyperproliferation and closure rates of full-thickness skin wounds being equivalent to those of wild-type controls. In a model of bleomycin-induced skin fibrosis, Nfkb1(-/-) and c-Rel(-/-) mice displayed opposite phenotypes, with c-Rel(-/-) mice being protected and Nfkb1(-/-) developing more fibrosis than wild-type mice. Taken together, our data reveal a role for p50 and c-Rel in regulating epidermal proliferation and homeostasis and a profibrogenic role for c-Rel in the skin, and identify a link between epidermal c-Rel expression and systemic sclerosis. Modulating the actions of these subunits could be beneficial for treating hyperproliferative or fibrogenic diseases of the skin.
Related JoVE Video
The NF-?B subunit c-Rel stimulates cardiac hypertrophy and fibrosis.
Am. J. Pathol.
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
Cardiac remodeling and hypertrophy are the pathological consequences of cardiovascular disease and are correlated with its associated mortality. Activity of the transcription factor NF-?B is increased in the diseased heart; however, our present understanding of how the individual subunits contribute to cardiovascular disease is limited. We assign a new role for the c-Rel subunit as a stimulator of cardiac hypertrophy and fibrosis. We discovered that c-Rel-deficient mice have smaller hearts at birth, as well as during adulthood, and are protected from developing cardiac hypertrophy and fibrosis after chronic angiotensin infusion. Results of both gene expression and cross-linked chromatin immunoprecipitation assay analyses identified transcriptional activators of hypertrophy, myocyte enhancer family, Gata4, and Tbx proteins as Rel gene targets. We suggest that the p50 subunit could limit the prohypertrophic actions of c-Rel in the normal heart, because p50 overexpression in H9c2 cells repressed c-Rel levels and the absence of cardiac p50 was associated with increases in both c-Rel levels and cardiac hypertrophy. We report for the first time that c-Rel is highly expressed and confined to the nuclei of diseased adult human hearts but is restricted to the cytoplasm of normal cardiac tissues. We conclude that c-Rel-dependent signaling is critical for both cardiac remodeling and hypertrophy. Targeting its activities could offer a novel therapeutic strategy to limit the effects of cardiac disease.
Related JoVE Video
Roles of c-Rel signalling in inflammation and disease.
Int. J. Biochem. Cell Biol.
Show Abstract
Hide Abstract
Nuclear factor kappa B (NF?B) is a dimeric transcription factor comprised of five family members RelA (p65), RelB, c-Rel, p50 and p52. NF?B signalling is complex and controls a myriad of normal cellular functions. However, constitutive or aberrant activation of this pathway is associated with disease progression and cancer in multiple organs. The diverse array of biological responses is modulated by many factors, including the activating stimulus, recruitment of co-regulatory molecules, consensus DNA binding sequence, dimer composition and post-translational modifications. Each subunit has very different biological functions and in the context of disease the individual subunits forming the NF?B dimer can have a profound effect, causing a shift in the balance from normal to pathogenic signalling. Here we discuss the role of c-Rel dependant signalling in normal physiology and its contribution to disease both inside and outside of the immune system.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.