JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Examining the efficacy of a genotyping-by-sequencing technique for population genetic analysis of the mushroom Laccaria bicolor and evaluating whether a reference genome is necessary to assess homology.
Mycologia
PUBLISHED: 11-02-2014
Show Abstract
Hide Abstract
Given the diversity and ecological importance of Fungi, there is a lack of population genetic research on these organisms. The reason for this can be explained in part by their cryptic nature and difficulty in identifying genets. In addition the difficulty (relative to plants and animals) in developing molecular markers for fungal population genetics contributes to the lack of research in this area. This study examines the ability of restriction-site associated DNA (RAD) sequencing to generate SNPs in Laccaria bicolor. Eighteen samples of morphologically identified L. bicolor from the United States and Europe were selected for this project. The RAD sequencing method produced anywhere from 290 000 to more than 3 000 000 reads. Mapping these reads to the genome of L. bicolor resulted in 84 000-940 000 unique reads from individual samples. Results indicate that incorporation of non-L. bicolor taxa into the analysis resulted in a precipitous drop in shared loci among samples, suggests the potential of these methods to identify cryptic species. F-statistics were easily calculated, although an observable "noise" was detected when using the "All Loci" treatment versus filtering loci to those present in at least 50% of the individuals. The data were analyzed with tests of Hardy-Weinburg equilibrium, population genetic statistics (FIS and FST), and population structure analysis using the program Structure. The results provide encouraging feedback regarding the potential utility of these methods and their data for population genetic analysis. We were unable to draw conclusions of life history of L. bicolor populations from this dataset, given the small sample size. The results of this study indicate the potential of these methods to address population genetics and general life history questions in the Agaricales. Further research is necessary to explore the specific application of these methods in the Agaricales or other fungal groups.
Related JoVE Video
Phylotranscriptomic analysis of the origin and early diversification of land plants.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-29-2014
Show Abstract
Hide Abstract
Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.
Related JoVE Video
Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family.
Plant Cell
PUBLISHED: 10-18-2013
Show Abstract
Hide Abstract
Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae). By reconstructing the history of gene losses and genome reconfigurations, we find that the establishment of obligate parasitism triggers the relaxation of selective constraints. Partly because of independent losses of one inverted repeat region, Orobanchaceae plastomes vary 3.5-fold in size, with 45 kb in American squawroot (Conopholis americana) representing the smallest plastome reported from land plants. Of the 42 to 74 retained unique genes, only 16 protein genes, 15 tRNAs, and four rRNAs are commonly found. Several holoparasites retain ATP synthase genes with intact open reading frames, suggesting a prolonged function in these plants. The loss of photosynthesis alters the chromosomal architecture in that recombinogenic factors accumulate, fostering large-scale chromosomal rearrangements as functional reduction proceeds. The retention of DNA fragments is strongly influenced by both their proximity to genes under selection and the co-occurrence with those in operons, indicating complex constraints beyond gene function that determine the evolutionary survival time of plastid regions in nonphotosynthetic plants.
Related JoVE Video
Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species.
BMC Evol. Biol.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
Parasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants and extract nutrients and water. As a result of their direct plant-plant connections with their host plant, parasitic plants have special opportunities for horizontal gene transfer, the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as recipients and donors of horizontal gene transfer (HGT), but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown.
Related JoVE Video
Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies.
BMC Plant Biol.
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza).
Related JoVE Video
Functional genomics of a generalist parasitic plant: laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression.
BMC Plant Biol.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts.
Related JoVE Video
The TvPirin gene is necessary for haustorium development in the parasitic plant Triphysaria versicolor.
Plant Physiol.
PUBLISHED: 11-29-2011
Show Abstract
Hide Abstract
The rhizosphere is teemed with organisms that coordinate their symbioses using chemical signals traversing between the host root and symbionts. Chemical signals also mediate interactions between roots of different plants, perhaps the most obvious being those between parasitic Orobanchaceae and their plant hosts. Parasitic plants use specific molecules provided by host roots to initiate the development of haustoria, invasive structures critical for plant parasitism. We took a transcriptomics approach to identify parasitic plant genes associated with host factor recognition and haustorium signaling and previously identified a gene, TvPirin, which is transcriptionally up-regulated in roots of the parasitic plant Triphysaria versicolor after being exposed to the haustorium-inducing molecule 2,6-dimethoxybenzoquinone (DMBQ). Because TvPirin shares homology with proteins associated with environmental signaling in some plants, we hypothesized that TvPirin may function in host factor recognition in parasitic plants. We tested the function of TvPirin in T. versicolor roots using hairpin-mediated RNA interference. Reducing TvPirin transcripts in T. versicolor roots resulted in significantly less haustoria development in response to DMBQ exposure. We determined the transcript levels of other root expressed transcripts and found that several had reduced basal levels of gene expression but were similarly regulated by quinone exposure. Phylogenic investigations showed that TvPirin homologs are present in most flowering plants, and we found no evidence of parasite-specific gene duplication or expansion. We propose that TvPirin is a generalized transcription factor associated with the expression of a number of genes, some of which are involved in haustorium development.
Related JoVE Video
Frequent pseudogenization and loss of the plastid-encoded sulfate-transport gene cysA throughout the evolution of liverworts.
Am. J. Bot.
PUBLISHED: 08-09-2011
Show Abstract
Hide Abstract
The presence or absence of a functional copy of a plastid gene may reflect relaxed selection, and may be phylogenetically significant, reflecting shared ancestry. In some liverworts, the plastid gene cysA is a pseudogene (inferred to be nonfunctional). We surveyed 63 liverworts from all major clades to determine whether the loss of cysA is phylogenetically significant, whether intact copies of cysA are under selective constraints, and whether rates of nucleotide substitution differ in other plastid genes from taxa with and without a functional copy of cysA.
Related JoVE Video
FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-08-2011
Show Abstract
Hide Abstract
Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.
Related JoVE Video
Transcriptomes of the parasitic plant family Orobanchaceae reveal surprising conservation of chlorophyll synthesis.
Curr. Biol.
PUBLISHED: 02-12-2011
Show Abstract
Hide Abstract
Parasitism in flowering plants has evolved at least 11 times [1]. Only one family, Orobanchaceae, comprises all major nutritional types of parasites: facultative, hemiparasitic (partially photosynthetic), and holoparasitic (nonphotosynthetic) [2]. Additionally, the family includes Lindenbergia, a nonparasitic genus sister to all parasitic Orobanchaceae [3-6]. Parasitic Orobanchaceae include species with severe economic impacts: Striga (witchweed), for example, affects over 50 million hectares of crops in sub-Saharan Africa, causing more than $3 billion in damage annually [7]. Although gene losses and increased substitution rates have been characterized for parasitic plant plastid genomes [5, 8-11], the nuclear genome and transcriptome remain largely unexplored. The Parasitic Plant Genome Project (PPGP; http://ppgp.huck.psu.edu/) [2] is leveraging the natural variation in Orobanchaceae to explore the evolution and genomic consequences of parasitism in plants through a massive transcriptome and gene discovery project involving Triphysaria versicolor (facultative hemiparasite), Striga hermonthica (obligate hemiparasite), and Phelipanche aegyptiaca (Orobanche [12]; holoparasite). Here we present the first set of large-scale genomic resources for parasitic plant comparative biology. Transcriptomes of above-ground tissues reveal that, in addition to the predictable loss of photosynthesis-related gene expression in P. aegyptiaca, the nonphotosynthetic parasite retains an intact, expressed, and selectively constrained chlorophyll synthesis pathway.
Related JoVE Video
Ancestral polyploidy in seed plants and angiosperms.
Nature
PUBLISHED: 02-10-2011
Show Abstract
Hide Abstract
Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications-one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms.
Related JoVE Video
De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum.
BMC Genomics
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
Because of their phylogenetic position and unique characteristics of their biology and life cycle, ferns represent an important lineage for studying the evolution of land plants. Large and complex genomes in ferns combined with the absence of economically important species have been a barrier to the development of genomic resources. However, high throughput sequencing technologies are now being widely applied to non-model species. We leveraged the Roche 454 GS-FLX Titanium pyrosequencing platform in sequencing the gametophyte transcriptome of bracken fern (Pteridium aquilinum) to develop genomic resources for evolutionary studies.
Related JoVE Video
Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae).
Am. J. Bot.
Show Abstract
Hide Abstract
The stability of the bimodal karyotype found in Agave and closely related species has long interested botanists. The origin of the bimodal karyotype has been attributed to allopolyploidy, but this hypothesis has not been tested. Next-generation transcriptome sequence data were used to test whether a paleopolyploid event occurred on the same branch of the Agavoideae phylogenetic tree as the origin of the Yucca-Agave bimodal karyotype.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.