JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Identification and characterization of novel renal sensory receptors.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Recent studies have highlighted the important roles that "sensory" receptors (olfactory receptors, taste receptors, and orphan "GPR" receptors) play in a variety of tissues, including the kidney. Although several studies have identified important roles that individual sensory receptors play in the kidney, there has not been a systematic analysis of the renal repertoire of sensory receptors. In this study, we identify novel renal sensory receptors belonging to the GPR (n?=?76), olfactory receptor (n?=?6), and taste receptor (n?=?11) gene families. A variety of reverse transcriptase (RT)- PCR screening strategies were used to identify novel renal sensory receptors, which were subsequently confirmed using gene-specific primers. The tissue-specific distribution of these receptors was determined, and the novel renal ORs were cloned from whole mouse kidney. Renal ORs that trafficked properly in vitro were screened for potential ligands using a dual-luciferase ligand screen, and novel ligands were identified for Olfr691. These studies demonstrate that multiple sensory receptors are expressed in the kidney beyond those previously identified. These results greatly expand the known repertoire of renal sensory receptors. Importantly, the mRNA of many of the receptors identified in this study are expressed highly in the kidney (comparable to well-known and extensively studied renal GPCRs), and in future studies it will be important to elucidate the roles that these novel renal receptors play in renal physiology.
Related JoVE Video
A cleavable N-terminal signal peptide promotes widespread olfactory receptor surface expression in HEK293T cells.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Olfactory receptors (ORs) are G protein-coupled receptors that detect odorants in the olfactory epithelium, and comprise the largest gene family in the genome. Identification of OR ligands typically requires OR surface expression in heterologous cells; however, ORs rarely traffic to the cell surface when exogenously expressed. Therefore, most ORs are orphan receptors with no known ligands. To date, studies have utilized non-cleavable rhodopsin (Rho) tags and/or chaperones (i.e. Receptor Transporting Protein, RTP1S, Ric8b and G(?olf)) to improve surface expression. However, even with these tools, many ORs still fail to reach the cell surface. We used a test set of fifteen ORs to examine the effect of a cleavable leucine-rich signal peptide sequence (Lucy tag) on OR surface expression in HEK293T cells. We report here that the addition of the Lucy tag to the N-terminus increases the number of ORs reaching the cell surface to 7 of the 15 ORs (as compared to 3/15 without Rho or Lucy tags). Moreover, when ORs tagged with both Lucy and Rho were co-expressed with previously reported chaperones (RTP1S, Ric8b and G(?olf)), we observed surface expression for all 15 receptors examined. In fact, two-thirds of Lucy-tagged ORs are able to reach the cell surface synergistically with chaperones even when the Rho tag is removed (10/15 ORs), allowing for the potential assessment of OR function with only an 8-amino acid Flag tag on the mature protein. As expected for a signal peptide, the Lucy tag was cleaved from the mature protein and did not alter OR-ligand binding and signaling. Our studies demonstrate that widespread surface expression of ORs can be achieved in HEK293T cells, providing promise for future large-scale deorphanization studies.
Related JoVE Video
Addition of angiotensin II type 1 receptor blocker to CCR2 antagonist markedly attenuates crescentic glomerulonephritis.
Hypertension
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
The monocyte chemoattractant protein-1 (MCP-1)/CC-chemokine receptor 2 (CCR2) pathway plays a critical role in the development of antiglomerular basement membrane (anti-GBM) nephritis. We recently showed angiotensin II (Ang II) infusion in rats activated MCP-1 and transforming growth factor-?1 (TGF-?1), which in turn induced macrophage infiltration of renal tissues. This study was performed to demonstrate that combination therapy with a CCR2 antagonist (CA) and an Ang II type 1 receptor blocker (ARB) ameliorated renal injury in the anti-GBM nephritis model. An anti-GBM nephritis rat model developed progressive proteinuria and glomerular crescent formation, accompanied by increased macrophage infiltration and glomerular expression of MCP-1, angiotensinogen, Ang II, and TGF-?1. Treatment with CA alone or ARB alone moderately ameliorated kidney injury; however, the combination treatment with CA and ARB dramatically prevented proteinuria and markedly reduced glomerular crescent formation. The combination treatment also suppressed the induction of macrophage infiltration, MCP-1, angiotensinogen, Ang II, and TGF-?1 and reversed the fibrotic change in the glomeruli. Next, primary cultured glomerular mesangial cells (MCs) stimulated by Ang II showed significant increases in MCP-1 and TGF-?1 expression. Furthermore, cocultured model consisting of MCs, parietal epithelial cells, and macrophages showed an increase in Ang II-induced cell proliferation and collagen secretion. ARB treatment attenuated these augmentations. These data suggest that Ang II enhances glomerular crescent formation of anti-GBM nephritis. Moreover, our results demonstrate that inhibition of the MCP-1/CCR2 pathway with a combination of ARB effectively reduces renal injury in anti-GBM nephritis.
Related JoVE Video
Contribution of a nuclear factor-kappaB binding site to human angiotensinogen promoter activity in renal proximal tubular cells.
Hypertension
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Intrarenal angiotensinogen (AGT) is expressed highly in renal proximal tubular cells (RPTCs) and contributes to the regulation of intrarenal angiotensin II levels. Inhibition of nuclear factor (NF)-?B suppressed human (h)AGT expression in human RPTCs. However, the presence and localization of an NF-?B binding site in the hAGT promoter region have not been determined. Therefore, this study was performed to demonstrate that an NF-?B binding site in the hAGT promoter region contributes to hAGT promoter activity in human RPTCs. The hAGT promoter region was cloned from -4358 to +122 and deletion analysis was performed. A possible NF-?B binding site was removed from the hAGT promoter region (M1) and mutated (M2). Human RPTCs were transfected, and hAGT promoter activity was determined by luciferase assay. The identity of DNA binding proteins from binding assays were determined by Western blot. Progressive 5-end deletions demonstrated removal of a distal promoter element in hAGT_-2414/+122 reduced promoter activity (0.61 ± 0.12, ratio to hAGT_-4358/+122). Inhibition of NF-?B suppressed promoter activity in hAGT_-4358/+122 (0.51 ± 0.14, ratio to control) and hAGT_-3681/+122 (0.48 ± 0.06, ratio to control) but not in the construct without the NF-?B binding site. Promoter activity was reduced in the domain mutants M1 (0.57 ± 0.08, ratio to hAGT_-4358/+122) and M2 (0.61 ± 0.16, ratio to hAGT_-4358/+122). DNA binding levels of NF-?B protein were reduced in M1. These data demonstrate the functional importance of an NF-?B binding site in the hAGT promoter region, which contributes to hAGT promoter activity in human RPTCs.
Related JoVE Video
IL-6 augments angiotensinogen in primary cultured renal proximal tubular cells.
Mol. Cell. Endocrinol.
PUBLISHED: 06-23-2009
Show Abstract
Hide Abstract
In human kidneys, the mechanisms underlying angiotensinogen (AGT) augmentation by interleukin 6 (IL-6) are poorly understood and the only information available is in HK-2, immortalized human renal proximal tubular epithelial cells. Therefore, the present study was performed to elucidate the effects of IL-6 on AGT expression in primary cultured human renal proximal tubular epithelial cells (RPTEC) after characterization of HK-2 and RPTEC. RPTEC showed low basal AGT mRNA (11+/-1%) and protein (7.0+/-0.9%) expression, high IL-6 receptor (IL-6R) expression (282+/-17%), and low basal NF-kappaB (43+/-7%) and STAT3 (43+/-7%) activities compared to those in HK-2. In RPTEC, AGT mRNA and protein expressions were enhanced by IL-6 (172+/-31% and 378+/-39%, respectively). This AGT augmentation was attenuated by an IL-6R antibody. STAT3 phosphorylation (366+/-55% at 30min) and translocation were enhanced by IL-6. The AGT augmentation was attenuated by a STAT3 inhibitor. These data indicate that IL-6 increases AGT expression via STAT3 pathway in RPTEC.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.