JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain.
J Biomed Opt
PUBLISHED: 09-03-2014
Show Abstract
Hide Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging multiphoton technique for the label-free histopathology of the central nervous system, by imaging the lipid content within the tissue. In order to apply the technique on standard histology sections, it is important to know the effects of tissue fixation on the CARS image. Here, we report the effects of two common fixation methods, namely with formalin and methanol-acetone, on mouse brain and human glioblastoma tissue. The variations induced by fixation on the CARS contrast and intensity were compared and interpreted using Raman microspectroscopy. The results show that, whenever unfixed cryosections cannot be used, fixation with formalin constitutes an alternative which does not deteriorate substantially the contrast generated by the different brain structures in the CARS image. Fixation with methanol-acetone strongly modifies the tissue lipid content and is therefore incompatible with the CARS imaging.
Related JoVE Video
Differential growth inhibition of cerebral metastases by anti-angiogenic compounds.
Anticancer Res.
PUBLISHED: 07-02-2014
Show Abstract
Hide Abstract
The formation of brain metastases is intrinsically linked to concomitant angiogenesis. The purpose of the present study was to investigate the combined effects of interleukin-12 (IL-12) and EMD121974 on the growth and distribution of melanoma brain metastases since both substances may interact with important steps in the cascade of brain metastases formation.
Related JoVE Video
Label-free identification of the glioma stem-like cell fraction using Fourier-transform infrared spectroscopy.
Int. J. Radiat. Biol.
PUBLISHED: 03-25-2014
Show Abstract
Hide Abstract
Vibrational spectroscopy enables the label-free characterization of cells and tissue by probing the biochemical composition. Here, we evaluated these techniques to identify glioblastoma stem cells.
Related JoVE Video
Intrinsic Indicator of Photodamage during Label-Free Multiphoton Microscopy of Cells and Tissues.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Multiphoton imaging has evolved as an indispensable tool in cell biology and holds prospects for clinical applications. When addressing endogenous signals such as coherent anti-Stokes Raman scattering (CARS) or second harmonic generation, it requires intense laser irradiation that may cause photodamage. We report that increasing endogenous fluorescence signal upon multiphoton imaging constitutes a marker of photodamage. The effect was studied on mouse brain in vivo and ex vivo, on ex vivo human brain tissue samples, as well as on glioblastoma cells in vitro, demonstrating that this phenomenon is common to a variety of different systems, both ex vivo and in vivo. CARS microscopy and vibrational spectroscopy were used to analyze the photodamage. The development of a standard easy-to-use model that employs rehydrated cryosections allowed the characterization of the irradiation-induced fluorescence and related it to nonlinear photodamage. In conclusion, the monitoring of endogenous two-photon excited fluorescence during label-free multiphoton microscopy enables to estimate damage thresholds ex vivo as well as detect photodamage during in vivo experiments.
Related JoVE Video
Label-free delineation of brain tumors by coherent anti-Stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy provides fine resolution imaging and displays morphochemical properties of unstained tissue. Here, we evaluated this technique to delineate and identify brain tumors.
Related JoVE Video
Infrared spectroscopic studies of cells and tissues: triple helix proteins as a potential biomarker for tumors.
PLoS ONE
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
In this work, the infrared (IR) spectra of living neural cells in suspension, native brain tissue, and native brain tumor tissue were investigated. Methods were developed to overcome the strong IR signal of liquid water so that the signal from the cellular biochemicals could be seen. Measurements could be performed during surgeries, within minutes after resection. Comparison between normal tissue, different cell lineages in suspension, and tumors allowed preliminary assignments of IR bands to be made. The most dramatic difference between tissues and cells was found to be in weaker IR absorbances usually assigned to the triple helix of collagens. Triple helix domains are common in larger structural proteins, and are typically found in the extracellular matrix (ECM) of tissues. An algorithm to correct offsets and calculate the band heights and positions of these bands was developed, so the variance between identical measurements could be assessed. The initial results indicate the triple helix signal is surprisingly consistent between different individuals, and is altered in tumor tissues. Taken together, these preliminary investigations indicate this triple helix signal may be a reliable biomarker for a tumor-like microenvironment. Thus, this signal has potential to aid in the intra-operational delineation of brain tumor borders.
Related JoVE Video
Silencing of selected glutamate receptor subunits modulates cancer growth.
Anticancer Res.
PUBLISHED: 10-04-2011
Show Abstract
Hide Abstract
Emerging evidence supports a role for glutamate in the biology of cancer. We studied the impact of glutamate receptor subunit silencing on cancer phenotype.
Related JoVE Video
Glutamate receptors in laryngeal cancer cells.
Anticancer Res.
PUBLISHED: 03-08-2011
Show Abstract
Hide Abstract
Despite recent improvements in treatment strategies, the results of chemotherapy in patients with advanced squamous cell carcinoma of the larynx are not satisfactory. Thus, the development of new approaches which influence specific metabolic pathways are needed. In the last decade, evidence has emerged implicating a role for glutamate as a signal mediator in tumors.
Related JoVE Video
Matrix metalloproteinases 2 and 9 fail to influence drug-induced neuroapoptosis in developing rat brain.
Neurotox Res
PUBLISHED: 04-13-2010
Show Abstract
Hide Abstract
Matrix metalloproteinases (MMPs) play an essential role in tissue repair, cell death, and morphogenesis. The aim of the present study was to investigate potential involvement of selected MMPs in the pathogenesis of neuronal apoptosis induced by the NMDA antagonist MK-801 (dizocilpine) or the GABA(A) agonist phenobarbital in infant rats, transgenic rats overexpressing MMP-9 and MMP-9 knockout mice. Seven-day-old rats or knockout mice received intraperitoneal injections of MK-801, 1 mg/kg, or phenobarbital, 50 mg/kg. At different survival intervals following administration of the compounds (1-72 h), pups were sacrificed, tissue from different brain regions was isolated, and the expression and activity of MMP-2 and MMP-9 were analyzed by real-time PCR, western blot, and zymography. In addition, brains were fixed and processed for TUNEL staining. In all the brain regions analyzed, we found an increased number of TUNEL-positive cells 24 h after administration of MK-801. After treatment, we detected no significant increase in MMP-2 or MMP-9 mRNA expression in cortical areas. No changes in the MMP-9 protein expression or gelatinolytic activity of MMP-2 were observed in conjunction with MK-801 or phenobarbital-induced neuroapoptosis in any brain region analyzed. The extent of neurodegeneration induced by MK-801 or phenobarbital was not altered in MMP-9 transgenic rats and was increased in MMP-9 knockout mice compared to wild-type rats and mice. Treatment with the panmetalloproteinase inhibitor GM6001 did not confer protection against MK-801-induced apoptotic cell death in the developing rat brain. Our results suggest that activation of MMP-9 and MMP-2 does not contribute to pathogenesis of neuronal apoptosis caused by NMDA antagonists or GABA(A) agonists in the developing rat and mouse brain.
Related JoVE Video
Expression of glutamate receptor subunits in human cancers.
Histochem. Cell Biol.
PUBLISHED: 05-26-2009
Show Abstract
Hide Abstract
Emerging evidence suggests a role for glutamate and its receptors in the biology of cancer. This study was designed to systematically analyze the expression of ionotropic and metabotropic glutamate receptor subunits in various human cancer cell lines, compare expression levels to those in human brain tissue and, using electrophysiological techniques, explore whether cancer cells respond to glutamate receptor agonists and antagonists. Expression analysis of glutamate receptor subunits NR1-NR3B, GluR1-GluR7, KA1, KA2 and mGluR1-mGluR8 was performed by means of RT-PCR in human rhabdomyosarcoma/medulloblastoma (TE671), neuroblastoma (SK-NA-S), thyroid carcinoma (FTC 238), lung carcinoma (SK-LU-1), astrocytoma (MOGGCCM), multiple myeloma (RPMI 8226), glioma (U87-MG and U343), lung carcinoma (A549), colon adenocarcinoma (HT 29), T cell leukemia cells (Jurkat E6.1), breast carcinoma (T47D) and colon adenocarcinoma (LS180). Analysis revealed that all glutamate receptor subunits were differentially expressed in the tumor cell lines. For the majority of tumors, expression levels of NR2B, GluR4, GluR6 and KA2 were lower compared to human brain tissue. Confocal imaging revealed that selected glutamate receptor subunit proteins were expressed in tumor cells. By means of patch-clamp analysis, it was shown that A549 and TE671 cells depolarized in response to application of glutamate agonists and that this effect was reversed by glutamate receptor antagonists. This study reveals that glutamate receptor subunits are differentially expressed in human tumor cell lines at the mRNA and the protein level, and that their expression is associated with the formation of functional channels. The potential role of glutamate receptor antagonists in cancer therapy is a feasible goal to be explored in clinical trials.
Related JoVE Video
Vibrational spectroscopic imaging and multiphoton microscopy of spinal cord injury.
Anal. Chem.
Show Abstract
Hide Abstract
Spinal cord injury triggers a series of complex biochemical alterations of nervous tissue. Up to now, such cellular events could not be studied without conventional tissue staining. The development of optical, label-free imaging techniques could provide powerful monitoring tools with the potential to be applied in vivo. In this work, we assess the ability of vibrational spectroscopy to generate contrast at molecular level between normal and altered regions in a rat model of spinal cord injury. Using tissue sections, we demonstrate that Fourier transform infrared (FT-IR) spectroscopy and spontaneous Raman spectroscopy are able to identify the lesion, the surrounding scar, and unharmed normal tissue, delivering insight into the biochemical events induced by the injury and allowing mapping of tissue degeneration. The FT-IR and Raman spectroscopic imaging provides the basis for fast multimodal nonlinear optical microscopy (coherent anti-Stokes Raman scattering, endogenous two-photon fluorescence, and second harmonic generation). The latter proves to be a fast tool for imaging of the lesion on unstained tissue samples, based on the alteration in lipid content, extracellular matrix composition, and microglia/macrophages distribution pattern. The results establish these technologies in the field of regeneration in central nervous system, with the long-term goal to extend them to intravital use, where fast and nonharmful imaging is required.
Related JoVE Video
Matrix metalloproteinase 9 regulates cell death following pilocarpine-induced seizures in the developing brain.
Neurobiol. Dis.
Show Abstract
Hide Abstract
Matrix metalloproteinases (MMPs) are involved in tissue repair, cell death and morphogenesis. We investigated the role of the gelatinases MMP-2 and MMP-9 in the pathogenesis of neuronal death induced by prolonged seizures in the developing brain. Seven-day-old rats, MMP-9 knockout mice and transgenic rats overexpressing MMP-9 received intraperitoneal injections of pilocarpine, 250 mg/kg, to induce seizures. After 6-72 h pups were sacrificed, tissue from different brain regions was isolated and expression of MMP-9 mRNA and protein was analyzed by real-time PCR or Western blot. Additionally, brains were fixed and processed for TUNEL-staining, immunohistochemistry and in situ zymography. We found increased numbers of TUNEL-positive cells 24 h after pilocarpine-induced seizures, most pronounced in cortical areas and the dentate gyrus, and less pronounced in thalamus. At 6-24 h, MMP-9 mRNA levels showed significant elevation compared to sham-treated controls; this effect resolved by 48 h, whereas MMP-2 mRNA levels remained stable. Cortical gelatinolytic activity, monitored by in situ zymography, was enhanced following pilocarpine-induced seizures. The MMP inhibitor GM 6001 ameliorated cell death following pilocarpine-induced seizures in infant rats. MMP-9 knockout mice were less susceptible to seizure-induced brain injury. Transgenic rats overexpressing MMP-9 were equally susceptible to seizure-induced brain injury as wild type rats. Our results suggest a significant contribution of MMP-9 to cell death after pilocarpine-induced seizures in the developing brain. As indicated by Western blot analysis, MMP-9 activation may be linked to activation of the Erk/CREB-pathway. The findings implicate involvement of MMP-9 in the pathophysiology of brain injury following seizures in the developing brain.
Related JoVE Video
Label-free differentiation of human pituitary adenomas by FT-IR spectroscopic imaging.
Anal Bioanal Chem
Show Abstract
Hide Abstract
Fourier transform infrared (FT-IR) spectroscopic imaging has been used to characterize different types of pituitary gland tumors and normal pituitary tissue. Freshly resected tumor tissue from surgery was prepared as thin cryosections and examined by FT-IR spectroscopic imaging. Tissue types were discriminated via k-means cluster analysis and a supervised classification algorithm based on linear discriminant analysis. Spectral classification allowed us to discriminate between tumor and non-tumor cells, as well as between tumor cells that produce human growth hormone (hGH+) and tumor cells that do not produce that hormone (hGH-). The spectral classification was compared and contrasted with a histological PAS and orange G stained image. It was further shown that hGH+ pituitary tumor cells show stronger amide bands than tumor cells that do not produce hGH. This study demonstrates that FT-IR spectroscopic imaging can not only potentially serve as a fast and objective approach for discriminating pituitary gland tumors from normal tissue, but that it can also detect hGH-producing tumor cells.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.