JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Tumor necrosis factor (TNF)-? induction of CXCL10 in endothelial cells requires protein arginine methyltransferase 5 (PRMT5)-mediated nuclear factor (NF)-?B p65 methylation.
J. Biol. Chem.
PUBLISHED: 04-21-2014
Show Abstract
Hide Abstract
The chemokine CXCL10/IP-10 facilitates recruitment of Th1-type leukocytes to inflammatory sites. In this study, we show that the arginine methyltransferase PRMT5 is critical for CXCL10 transcription in TNF-?-activated human endothelial cells (EC). We found that depletion of PRMT5 results in significantly reduced levels of CXCL10 mRNA, demonstrating a positive role for PRMT5 in CXCL10 induction. Chromatin immunoprecipitation experiments revealed the presence of the symmetrical dimethylarginine modification catalyzed by PRMT5 associated with the CXCL10 promoter in response to TNF-?. However, symmetrical dimethylarginine-modified proteins were not detected at the promoter in the absence of PRMT5, indicating that PRMT5 is essential for methylation to occur. Furthermore, NF-?B p65, a critical driver of TNF-?-mediated CXCL10 induction, was determined to be methylated at arginine residues. Crucially, RNAi-mediated PRMT5 depletion abrogated p65 methylation and CXCL10 promoter binding. Mass spectrometric analysis in EC identified five dimethylated arginine residues in p65, four of which are uncharacterized in the literature. Expression of Arg-to-Lys point mutants of p65 demonstrated that both Arg-30 and Arg-35 must be dimethylated to achieve full CXCL10 expression. In conclusion, we have identified previously uncharacterized p65 post-translational modifications critical for CXCL10 induction.
Related JoVE Video
MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.
J. Exp. Med.
PUBLISHED: 04-21-2014
Show Abstract
Hide Abstract
Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.
Related JoVE Video
Signal integration and gene induction by a functionally distinct STAT3 phosphoform.
Mol. Cell. Biol.
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
Aberrant activation of the ubiquitous transcription factor STAT3 is a major driver of solid tumor progression and pathological angiogenesis. STAT3 activity is regulated by numerous posttranslational modifications (PTMs), including Tyr(705) phosphorylation, which is widely used as an indicator of canonical STAT3 function. Here, we report a noncanonical mechanism of STAT3 activation that occurs independently of Tyr(705) phosphorylation. Using quantitative liquid chromatography-tandem mass spectrometry, we have discovered and characterized a novel STAT3 phosphoform that is simultaneously phosphorylated at Thr(714) and Ser(727) by glycogen synthase kinase 3? and -? (GSK-3?/?). Both Thr(714) and Ser(727) are required for STAT3-dependent gene induction in response to simultaneous activation of epidermal growth factor receptor (EGFR) and protease-activated receptor 1 (PAR-1) in endothelial cells. In this combinatorial signaling context, preventing formation of doubly phosphorylated STAT3 by depleting GSK-3?/? is sufficient to disrupt signal integration and inhibit STAT3-dependent gene expression. Levels of doubly phosphorylated STAT3 but not of Tyr(705)-phosphorylated STAT3 are remarkably elevated in clear-cell renal-cell carcinoma relative to adjacent normal tissue, suggesting that the GSK-3?/?-STAT3 pathway is active in the disease. Collectively, our results describe a functionally distinct, noncanonical STAT3 phosphoform that positively regulates target gene expression in a combinatorial signaling context and identify GSK-3?/?-STAT3 signaling as a potential therapeutic target in renal-cell carcinoma.
Related JoVE Video
Mitogen-activated protein kinase phosphatase-1 promotes neovascularization and angiogenic gene expression.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 02-27-2014
Show Abstract
Hide Abstract
Angiogenesis is the formation of new blood vessels through endothelial cell sprouting. This process requires the mitogen-activated protein kinases, signaling molecules that are negatively regulated by the mitogen-activated protein kinase phosphatase-1 (MKP-1). The purpose of this study was to evaluate the role of MKP-1 in neovascularization in vivo and identify associated mechanisms in endothelial cells.
Related JoVE Video
Programmed translational readthrough generates antiangiogenic VEGF-Ax.
Cell
PUBLISHED: 02-21-2014
Show Abstract
Hide Abstract
Translational readthrough, observed primarily in less complex organisms from viruses to Drosophila, expands the proteome by translating select transcripts beyond the canonical stop codon. Here, we show that vascular endothelial growth factor A (VEGFA) mRNA in mammalian endothelial cells undergoes programmed translational readthrough (PTR) generating VEGF-Ax, an isoform containing a unique 22-amino-acid C terminus extension. A cis-acting element in the VEGFA 3' UTR serves a dual function, not only encoding the appended peptide but also directing the PTR by decoding the UGA stop codon as serine. Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 binds this element and promotes readthrough. Remarkably, VEGF-Ax exhibits antiangiogenic activity in contrast to the proangiogenic activity of VEGF-A. Pathophysiological significance of VEGF-Ax is indicated by robust expression in multiple human tissues but depletion in colon adenocarcinoma. Furthermore, genome-wide analysis revealed AGO1 and MTCH2 as authentic readthrough targets. Overall, our studies reveal a novel protein-regulated PTR event in a vertebrate system.
Related JoVE Video
Release of nonmuscle myosin II from the cytosolic domain of tumor necrosis factor receptor 2 is required for target gene expression.
Sci Signal
PUBLISHED: 07-18-2013
Show Abstract
Hide Abstract
Tumor necrosis factor-? (TNF-?) elicits its biological activities through activation of TNF receptor 1 (TNFR1, also known as p55) and TNFR2 (also known as p75). The activities of both receptors are required for the TNF-?-induced proinflammatory response. The adaptor protein TNFR-associated factor 2 (TRAF2) is critical for either p55- or p75-mediated activation of nuclear factor ?B (NF-?B) and mitogen-activated protein kinase (MAPK) signaling, as well as for target gene expression. We identified nonmuscle myosin II (myosin) as a binding partner of p75. TNF-?-dependent signaling by p75 and induction of target gene expression persisted substantially longer in cells deficient in myosin regulatory light chain (MRLC; a component of myosin) than in cells replete in myosin. In resting endothelial cells, myosin was bound constitutively to the intracellular region of p75, a region that overlaps with the TRAF2-binding domain, and TNF-? caused the rapid dissociation of myosin from p75. At early time points after exposure to TNF-?, p75 activated Rho-associated kinase 1 (ROCK1). Inhibition of ROCK1 activity blocked TNF-?-dependent phosphorylation of MRLC and the dissociation of myosin from p75. ROCK1-dependent release of myosin was necessary for the TNF-?-dependent recruitment of TRAF2 to p75 and for p75-specific activation of NF-?B and MAPK signaling. Thus, our findings have revealed a previously uncharacterized, noncanonical regulatory function of myosin in cytokine signaling.
Related JoVE Video
Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells.
Nat. Neurosci.
PUBLISHED: 07-10-2013
Show Abstract
Hide Abstract
Interleukin 17 (IL-17) is a signature cytokine of Th17 cells. We previously reported that deletion of NF-?B activator 1 (Act1), the key transducer of IL-17 receptor signaling, from the neuroectodermal lineage in mice (neurons, oligodendrocytes and astrocytes) results in attenuated severity of experimental autoimmune encephalomyelitis (EAE). Here we examined the cellular basis of this observation. EAE disease course was unaffected by deletion of Act1 in neurons or mature oligodendrocytes, and Act1 deletion in astrocytes only modestly affected disease course. Deletion of Act1 in NG2(+) glia resulted in markedly reduced EAE severity. Furthermore, IL-17 induced characteristic inflammatory mediator expression in NG2(+) glial cells. IL-17 also exhibited strong inhibitory effects on the maturation of oligodendrocyte lineage cells in vitro and reduced their survival. These data identify NG2(+) glia as the major CNS cellular target of IL-17 in EAE. The sensitivity of oligodendrocyte lineage cells to IL-17-mediated toxicity further suggests a direct link between inflammation and neurodegeneration in multiple sclerosis.
Related JoVE Video
G??-independent recruitment of G-protein coupled receptor kinase 2 drives tumor necrosis factor ?-induced cardiac ?-adrenergic receptor dysfunction.
Circulation
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
Proinflammatory cytokine tumor necrosis factor-? (TNF?) induces ?-adrenergic receptor (?AR) desensitization, but mechanisms proximal to the receptor in contributing to cardiac dysfunction are not known.
Related JoVE Video
STAT3-mediated coincidence detection regulates noncanonical immediate early gene induction.
J. Biol. Chem.
PUBLISHED: 03-15-2013
Show Abstract
Hide Abstract
Signaling pathways interact with one another to form dynamic networks in which the cellular response to one stimulus may depend on the presence, intensity, timing, or localization of other signals. In rare cases, two stimuli may be simultaneously required for cells to elicit a significant biological output. This phenomenon, generally termed "coincidence detection," requires a downstream signaling node that functions as a Boolean AND gate to restrict biological output from a network unless multiple stimuli are received within a specific window of time. Simultaneous activation of the EGF receptor (EGFR) and a thrombin receptor (protease-activated receptor-1, PAR-1) increases the expression of multiple immediate early genes (IEGs) associated with growth and angiogenesis. Using a bioinformatic comparison of IEG promoter regions, we identified STAT3 as a critical transcription factor for the detection of coincident EGFR/PAR-1 activation. EGFR activation induces classical STAT3 Tyr(705) phosphorylation but also initiates an inhibitory signal through the PI3K-AKT signaling axis that prevents STAT3 Ser(727) phosphorylation. Coincident PAR-1 signaling resolves these conflicting EGF-activated pathways by blocking AKT activation and permitting GSK-3?/?-dependent STAT3 Ser(727) phosphorylation and STAT3-dependent gene expression. Functionally, combinatorial EGFR/PAR-1 signaling suppresses EGF-induced proliferation and thrombin-induced leukocyte adhesion and triggers a STAT3-dependent increase in endothelial cell migration. This study reveals a novel signaling role for STAT3 in which the simultaneous presence of extracellular EGF and thrombin is detected at the level of STAT3 post-translational modifications. Collectively, our results describe a novel regulatory mechanism in which combinatorial EGFR/PAR-1 signaling regulates STAT3-dependent IEG induction and endothelial cell migration.
Related JoVE Video
IRAK-M mediates Toll-like receptor/IL-1R-induced NF?B activation and cytokine production.
EMBO J.
PUBLISHED: 02-01-2013
Show Abstract
Hide Abstract
Toll-like receptors transduce their signals through the adaptor molecule MyD88 and members of the IL-1R-associated kinase family (IRAK-1, 2, M and 4). IRAK-1 and IRAK-2, known to form Myddosomes with MyD88-IRAK-4, mediate TLR7-induced TAK1-dependent NF?B activation. IRAK-M was previously known to function as a negative regulator that prevents the dissociation of IRAKs from MyD88, thereby inhibiting downstream signalling. However, we now found that IRAK-M was also able to interact with MyD88-IRAK-4 to form IRAK-M Myddosome to mediate TLR7-induced MEKK3-dependent second wave NF?B activation, which is uncoupled from post-transcriptional regulation. As a result, the IRAK-M-dependent pathway only induced expression of genes that are not regulated at the post-transcriptional levels (including inhibitory molecules SOCS1, SHIP1, A20 and I?B?), exerting an overall inhibitory effect on inflammatory response. On the other hand, through interaction with IRAK-2, IRAK-M inhibited TLR7-mediated production of cytokines and chemokines at translational levels. Taken together, IRAK-M mediates TLR7-induced MEKK3-dependent second wave NF?B activation to produce inhibitory molecules as a negative feedback for the pathway, while exerting inhibitory effect on translational control of cytokines and chemokines.
Related JoVE Video
The critical role of IL-1 receptor-associated kinase 4-mediated NF-?B activation in modified low-density lipoprotein-induced inflammatory gene expression and atherosclerosis.
J. Immunol.
PUBLISHED: 01-28-2011
Show Abstract
Hide Abstract
Exciting discoveries related to IL-1R/TLR signaling in the development of atherosclerosis plaque have triggered intense interest in the molecular mechanisms by which innate immune signaling modulates the onset and development of atherosclerosis. Previous studies have clearly shown the definitive role of proinflammatory cytokine IL-1 in the development of atherosclerosis. Recent studies have provided direct evidence supporting a link between innate immunity and atherogenesis. Although it is still controversial about whether infectious pathogens contribute to cardiovascular diseases, direct genetic evidence indicates the importance of IL-1R/TLR signaling in atherogenesis. In this study, we examined the role of IL-1R-associated kinase 4 (IRAK4) kinase activity in modified low-density lipoprotein (LDL)-mediated signaling using bone marrow-derived macrophage as well as an in vivo model of atherosclerosis. First, we found that the IRAK4 kinase activity was required for modified LDL-induced NF-?B activation and expression of a subset of proinflammatory genes but not for the activation of MAPKs in bone marrow-derived macrophage. IRAK4 kinase-inactive knockin (IRAK4KI) mice were bred onto ApoE(-/-) mice to generate IRAK4KI/ApoE(-/-) mice. Importantly, the aortic sinus lesion formation was impaired in IRAK4KI/ApoE(-/-) mice compared with that in ApoE(-/-) mice. Furthermore, proinflammatory cytokine production was reduced in the aortic sinus region of IRAK4KI/ApoE(-/-) mice compared with that in ApoE(-/-) mice. Taken together, our results indicate that the IRAK4 kinase plays an important role in modified LDL-mediated signaling and the development of atherosclerosis, suggesting that pharmacological inhibition of IRAK4 kinase activity might be a feasible approach in the development of antiatherosclerosis drugs.
Related JoVE Video
Phosphorylation of glutamyl-prolyl tRNA synthetase by cyclin-dependent kinase 5 dictates transcript-selective translational control.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Cyclin-dependent kinase 5 (Cdk5) is an atypical but essential member of the Cdk kinase family, and its dysregulation or deletion has been implicated in inflammation-related disorders by an undefined mechanism. Here we show that Cdk5 is an indispensable activator of the GAIT (IFN-?-activated inhibitor of translation) pathway, which suppresses expression of a posttranscriptional regulon of proinflammatory genes in myeloid cells. Through induction of its regulatory protein, Cdk5R1 (p35), IFN-? activates Cdk5 to phosphorylate Ser(886) in the linker domain of glutamyl-prolyl tRNA synthetase (EPRS), the initial event in assembly of the GAIT complex. Cdk5/p35 also induces, albeit indirectly via a distinct kinase, phosphorylation of Ser(999), the second essential event in GAIT pathway activation. Diphosphorylated EPRS is released from its residence in the tRNA multisynthetase complex for immediate binding to NS1-associated protein and subsequent binding to ribosomal protein L13a and GAPDH. The mature heterotetrameric GAIT complex binds the 3 UTR GAIT element of VEGF-A and other target mRNAs and suppresses their translation in myeloid cells. Inhibition of Cdk5/p35 inhibits both EPRS phosphorylation events, prevents EPRS release from the tRNA multisynthetase complex, and blocks translational suppression of GAIT element-bearing mRNAs, resulting in increased expression of inflammatory proteins. Our study reveals a unique role of Cdk5/p35 in activation of the major noncanonical function of EPRS, namely translational control of macrophage inflammatory gene expression.
Related JoVE Video
Synergistic induction of mitogen-activated protein kinase phosphatase-1 by thrombin and epidermal growth factor requires vascular endothelial growth factor receptor-2.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 07-29-2010
Show Abstract
Hide Abstract
To determine the molecular mechanism underlying the synergistic response of mitogen-activated protein kinase phosphatase-1 (MKP-1), which is induced by thrombin and epidermal growth factor (EGF).
Related JoVE Video
Lack of mitogen-activated protein kinase phosphatase-1 protects ApoE-null mice against atherosclerosis.
Circ. Res.
PUBLISHED: 01-21-2010
Show Abstract
Hide Abstract
Multiple protein kinases have been implicated in cardiovascular disease; however, little is known about the role of their counterparts: the protein phosphatases.
Related JoVE Video
Thrombin induces endothelial arginase through AP-1 activation.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 12-23-2009
Show Abstract
Hide Abstract
Arterial thrombosis is a common disease leading to severe ischemia beyond the obstructing thrombus. Additionally, endothelial dysfunction at the site of thrombosis can be rescued by l-arginine supplementation or arginase blockade in several animal models. Exposure of rat aortic endothelial cells (RAECs) to thrombin upregulates arginase I mRNA and protein levels. In this study, we further investigated the molecular mechanism of thrombin-induced arginase changes in endothelial cells. Thrombin strikingly increased arginase I promoter and enzyme activity in primary cultured RAECs. Using different deletion and point mutations of the promoter, we demonstrated that the activating protein-1 (AP-1) consensus site located at -3,157 bp in the arginase I promoter was a thrombin-responsive element. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay further confirmed that upon thrombin stimulation, c-Jun and activating transcription factor-2 (ATF-2) bound to the AP-1 site, which initiated the transactivation. Moreover, loss-of-function studies using small interfering RNA confirmed that recruitment of these two transcription factors to the AP-1 site was required for thrombin-induced arginase upregulation. In the course of defining the signaling pathway leading to the activation of AP-1 by thrombin, we found thrombin-induced phosphorylation of stress-activated protein kinase/c-Jun-NH(2)-terminal kinase (SAPK/JNK or JNK1/2/3) and p38 mitogen-activated protein kinase, which were followed by the phosphorylation of both c-Jun and ATF-2. These findings reveal the basis for thrombin induction of endothelial arginase I and indicate that arginase inhibition may be an attractive therapeutic alternative in the setting of arterial thrombosis and its associated endothelial dysfunction.
Related JoVE Video
Histone H3 as a novel substrate for MAP kinase phosphatase-1.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 08-18-2009
Show Abstract
Hide Abstract
Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) is a nuclear, dual-specificity phosphatase that has been shown to dephosphorylate MAP kinases. We used a "substrate-trap" technique involving a mutation in MKP-1 of the catalytically critical cysteine to a serine residue ("CS" mutant) to capture novel MKP-1 substrates. We transfected the MKP-1 (CS) mutant and control (wild-type, WT) constructs into phorbol 12-myristate 13-acetate (PMA)-activated COS-1 cells. MKP-1-substrate complexes were immunoprecipitated, which yielded four bands of 17, 15, 14, and 10 kDa with the CS MKP-1 mutant but not the WT MKP-1. The bands were identified by mass spectrometry as histones H3, H2B, H2A, and H4, respectively. Histone H3 was phosphorylated, and purified MKP-1 dephosphorylated histone H3 (phospho-Ser-10) in vitro; whereas, histone H3 (phospho-Thr-3) was unaffected. We have previously shown that thrombin and vascular endothelial growth factor (VEGF) upregulated MKP-1 in human endothelial cells (EC). We now show that both thrombin and VEGF caused dephosphorylation of histone H3 (phospho-Ser-10) and histone H3 (phospho-Thr-3) in EC with kinetics consistent with MKP-1 induction. Furthermore, MKP-1-specific small interfering RNA (siRNA) prevented VEGF- and thrombin-induced H3 (phospho-Ser-10) dephosphorylation but had no effect on H3 (phospho-Thr-3 or Thr-11) dephosphorylation. In summary, histone H3 is a novel substrate of MKP-1, and VEGF- and thrombin-induced H3 (phospho-Ser-10) dephosphorylation requires MKP-1. We propose that MKP-1-mediated H3 (phospho-Ser-10) dephosphorylation is a key regulatory step in EC activation by VEGF and thrombin.
Related JoVE Video
Fibulin-4 regulates expression of the tropoelastin gene and consequent elastic-fibre formation by human fibroblasts.
Biochem. J.
PUBLISHED: 07-25-2009
Show Abstract
Hide Abstract
Elastic fibres are essential for normal physiology in numerous tissues, including arteries, lungs and skin. Fibulin-4 is an elastic-fibre-associated glycoprotein that is indispensable for elastic-fibre formation in mice. However, the mechanism by which fibulin-4 executes this function remains to be determined. Here, we established an in vitro functional assay system in which fibulin-4 was knocked down in human foreskin fibroblasts using siRNA (small interfering RNA) technology. With two different siRNAs, substantial knockdown of fibulin-4 was achieved, and this suppression was associated with impaired elastic-fibre formation by the fibroblasts. Real-time reverse transcription-PCR analysis showed that knockdown of fibulin-4 expression was accompanied by reduced expression of tropoelastin mRNA. Further analysis showed that this decrease was caused by transcriptional down-regulation of tropoelastin. This effect was selective, since the mRNA level of other elastic-fibre-associated proteins, including fibrillin-1, lysyl oxidase and lysyl oxidase-like-1, was not affected. Moreover, addition of conditioned medium from cultures of CHO (Chinese-hamster ovary) cells overexpressing fibulin-4 stimulated tropoelastin expression and elastic-fibre formation in cultures of Williams-Beuren-syndrome fibroblasts. Knocking down or knocking out fibulin-4 in mice led to a decrease in tropoelastin expression in the aorta. These results indicate that fibulin-4, considered as a structural protein, may also participate in regulating elastic-fibre formation in human cells through an unanticipated mechanism, namely the regulation of tropoelastin expression.
Related JoVE Video
Inactivation of the enzyme GSK3? by the kinase IKKi promotes AKT-mTOR signaling pathway that mediates interleukin-1-induced Th17 cell maintenance.
Immunity
Show Abstract
Hide Abstract
Interleukin-1 (IL-1)-induced activation of the mTOR kinase pathway has major influences on Th17 cell survival, proliferation, and effector function. Via biochemical and genetic approaches, the kinases IKKi and GSK3? were identified as the critical intermediate signaling components for IL-1-induced AKT activation, which in turn activated mTOR. Although insulin-induced AKT activation is known to phosphorylate and inactivate GSK3? and GSK3?, we found that GSK3? but not GSK3? formed a constitutive complex to phosphorylate and suppress AKT activation, showing that a reverse action from GSK to AKT can take place. Upon IL-1 stimulation, IKKi was activated to mediate GSK3? phosphorylation at S21, thereby inactivating GSK3? to promote IL-1-induced AKT-mTOR activation. Thus, IKKi has a critical role in Th17 cell maintenance and/or proliferation through the GSK-AKT-mTOR pathway, implicating the potential of IKKi as a therapeutic target.
Related JoVE Video
Pellino 2 is critical for Toll-like receptor/interleukin-1 receptor (TLR/IL-1R)-mediated post-transcriptional control.
J. Biol. Chem.
Show Abstract
Hide Abstract
Interleukin 1 receptor-associated kinase 1(IRAK1), a key molecule in TLR/IL-1R-mediated signaling, is phosphorylated, ubiquitinated, and degraded upon ligand stimulation. We and others have recently identified Pellino proteins as novel RING E3 ubiquitin ligases involved in IRAK1 polyubiquitination and degradation. However, it remains unclear how each Pellino member distinctly regulates TLR/IL-1R signaling by modulating IRAK1 ubiquitination. In this study we examined the role of Pellino 2 in IL-1- and LPS-mediated signaling and gene expression by knocking down Pellino 2 in human 293-IL-1R cells and primary bone marrow macrophages. Pellino 2 (but not Pellino 1) knockdown abolished IL-1- and LPS-induced Lys-63-linked IRAK1 ubiquitination with reduced Lys-48-linked IRAK1 ubiquitination. Furthermore, Pellino 2 is required for TAK1-dependent NF?B activation. However, because of the retained TAK1-independent NF?B activation, the levels of IL-1- and LPS-induced NF?B activation were not substantially affected in Pellino 2 knockdown 293-IL-1R cells and primary macrophages, respectively. On the other hand, Pellino 2 knockdown reduced the IL-1- and LPS-induced inflammatory gene expression at late time points, which was accompanied by increased decay rates of the mRNAs of the inflammatory genes. Importantly, IL-1- and LPS-mediated JNK and ERK activation were substantially attenuated in Pellino 2 knock-down cells, implicating MAPK activation in TLR/IL-1R-induced mRNA stabilization. Taken together, this study demonstrated that Pellino 2 plays a critical role for TLR/IL-1R-mediated post-transcriptional control.
Related JoVE Video
HOXA9 methylation by PRMT5 is essential for endothelial cell expression of leukocyte adhesion molecules.
Mol. Cell. Biol.
Show Abstract
Hide Abstract
The induction of proinflammatory proteins in stimulated endothelial cells (EC) requires activation of multiple transcription programs. The homeobox transcription factor HOXA9 has an important regulatory role in cytokine induction of the EC-leukocyte adhesion molecules (ELAM) E-selectin and vascular cell adhesion molecule 1 (VCAM-1). However, the mechanism underlying stimulus-dependent activation of HOXA9 is completely unknown. Here, we elucidate the molecular mechanism of HOXA9 activation by tumor necrosis factor alpha (TNF-?) and show an unexpected requirement for arginine methylation by protein arginine methyltransferase 5 (PRMT5). PRMT5 was identified as a TNF-?-dependent binding partner of HOXA9 by mass spectrometry. Small interfering RNA (siRNA)-mediated depletion of PRMT5 abrogated stimulus-dependent HOXA9 methylation with concomitant loss in E-selectin or VCAM-1 induction. Chromatin immunoprecipitation analysis revealed that PRMT5 is recruited to the E-selectin promoter following transient HOXA9 binding to its cognate recognition sequence. PRMT5 induces symmetric dimethylation of Arg140 on HOXA9, an event essential for E-selectin induction. In summary, PRMT5 is a critical coactivator component in a newly defined, HOXA9-containing transcription complex. Moreover, stimulus-dependent methylation of HOXA9 is essential for ELAM expression during the EC inflammatory response.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.