JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Name changes in medically important fungi and their implications for clinical practice.
J. Clin. Microbiol.
PUBLISHED: 10-10-2014
Show Abstract
Hide Abstract
Recent changes in the Fungal Code of Nomenclature and developments in molecular phylogeny are about to lead to dramatic changes in the naming of medically important moulds and yeasts. In this article, we present a widely supported and simple proposal to prevent unnecessary nomenclatural instability.
Related JoVE Video
Aspergillus: sex and recombination.
Mycopathologia
PUBLISHED: 08-14-2014
Show Abstract
Hide Abstract
The genus Aspergillus is one of the most widespread groups of fungi on Earth, comprised of about 300-350 species with very diverse lifestyles. Most species produce asexual propagula (conidia) on conidial heads. Despite their ubiquity, a sexual cycle has not yet been identified for most of the aspergilli. Where sexual reproduction is present, species exhibit either homothallic (self fertile) or heterothallic (obligate outcrossing) breeding systems. A parasexual cycle has also been described in some Aspergillus species. As in other fungi, sexual reproduction is governed by mating-type (MAT) genes, which determine sexual identity and are involved in regulating later stages of sexual development. Previous population genetic studies have indicated that some supposedly asexual aspergilli exhibit evidence of a recombining population structure, suggesting the presence of a cryptic sexual cycle. In addition, genome analyses have revealed networks of genes necessary for sexual reproduction in several Aspergillus species, again consistent with latent sexuality in these fungi. Knowledge of MAT gene presence has then successfully been applied to induce sexual reproduction between MAT1-1 and MAT1-2 isolates of certain supposedly asexual aspergilli. Recent progress in understanding the extent and significance of sexual reproduction is described here, with special emphasis on findings that are relevant to clinically important aspergilli.
Related JoVE Video
Sexual reproduction of human fungal pathogens.
Cold Spring Harb Perspect Med
PUBLISHED: 08-03-2014
Show Abstract
Hide Abstract
We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms.
Related JoVE Video
Construction and physiochemical characterisation of a multi-composite, potential oral vaccine delivery system (VDS).
Int J Pharm
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
An increasing human population requires a secure food supply and a cost effective, oral vaccine delivery system for livestock would help facilitate this end. Recombinant antigen adsorbed onto silica beads and coated with myristic acid, was released (?15% (w/v)) over 24 h at pH 8.8. At pH 2, the myristic acid acted as an enteric coating, protecting the antigen from a variety of proteases. The antigen adsorbed onto silica particles, coated in myristic acid had a conserved secondary structure (measured by circular dichroism (CD) spectroscopy) following its pH-triggered release. Small angle neutron scattering (SANS) was used to measure the thickness of the adsorbed antigen, finding that its adsorbed conformation was slightly greater than its solution radius of gyration, i.e. 120-160 Å. The addition of myristic acid led to a further increase in particle size, with scattering data consistent with an acid thickness slightly greater than a monolayer of fully extended alkyl chains and a degree of hydration of around 50%. Whilst adsorbed onto the silica and coated in myristic acid, the protein was stable over 14 days at 42 °C, indicating a reduced need for cold chain storage. These data indicate that further investigation is warranted into the development of this technology.
Related JoVE Video
Phenotypic heterogeneity is a selected trait in natural yeast populations subject to environmental stress.
Environ. Microbiol.
PUBLISHED: 05-09-2013
Show Abstract
Hide Abstract
Populations of genetically uniform microorganisms exhibit phenotypic heterogeneity, where individual cells have varying phenotypes. Such phenotypes include fitness-determining traits. Phenotypic heterogeneity has been linked to increased population-level fitness in laboratory studies, but its adaptive significance for wild microorganisms in the natural environment is unknown. Here, we addressed this by testing heterogeneity in yeast isolates from diverse environmental sites, each polluted with a different principal contaminant, as well as from corresponding control locations. We found that cell-to-cell heterogeneity (in resistance to the appropriate principal pollutant) was prevalent in the wild yeast isolates. Moreover, isolates with the highest heterogeneity were consistently observed in the polluted environments, indicating that heterogeneity is positively related to survival in adverse conditions in the wild. This relationship with survival was stronger than for the property of mean resistance (IC50 ) of an isolate. Therefore, heterogeneity could be the major determinant of microbial survival in adverse conditions. Indeed, growth assays indicated that isolates with high heterogeneities had a significant competitive advantage during stress. Analysis of yeasts after cultivation for ??500 generations additionally showed that high heterogeneity evolved as a heritable trait during stress. The results showed that environmental stress selects for wild microorganisms with high levels of phenotypic heterogeneity.
Related JoVE Video
Discovery of a sexual cycle in Aspergillus lentulus, a close relative of A. fumigatus.
Eukaryotic Cell
PUBLISHED: 05-06-2013
Show Abstract
Hide Abstract
Aspergillus lentulus was described in 2005 as a new species within the A. fumigatus sensu lato complex. It is an opportunistic human pathogen causing invasive aspergillosis with high mortality rates, and it has been isolated from clinical and environmental sources. The species is morphologically nearly identical to A. fumigatus sensu stricto, and this similarity has resulted in their frequent misidentification. Comparative studies show that A. lentulus has some distinguishing growth features and decreased in vitro susceptibility to several antifungal agents, including amphotericin B and caspofungin. Similar to the once-presumed-asexual A. fumigatus, it has only been known to reproduce mitotically. However, we now show that A. lentulus has a heterothallic sexual breeding system. A PCR-based mating-type diagnostic detected isolates of either the MAT1-1 or MAT1-2 genotype, and examination of 26 worldwide clinical and environmental isolates revealed similar ratios of the two mating types (38% versus 62%, respectively). MAT1-1 and MAT1-2 idiomorph regions were analyzed, revealing the presence of characteristic alpha and high-mobility-group (HMG) domain genes, together with other more unusual features such as a MAT1-2-4 gene. We then demonstrated that A. lentulus possesses a functional sexual cycle with mature cleistothecia, containing heat-resistant ascospores, being produced after 3 weeks of incubation. Recombination was confirmed using molecular markers. However, isolates of A. lentulus failed to cross with highly fertile strains of A. fumigatus, demonstrating reproductive isolation between these sibling species. The discovery of the A. lentulus sexual stage has significant implications for the management of drug resistance and control of invasive aspergillosis associated with this emerging fungal pathogen.
Related JoVE Video
Imaging select mammalian organelles using fluorescent microscopy: application to drug delivery.
Methods Mol. Biol.
PUBLISHED: 04-03-2013
Show Abstract
Hide Abstract
The microscopic imaging of specific organelles has become a staple of the single-cell assay and has helped define the molecular regulation of many physiological processes. This definition has been made possible by utilizing different criteria to identify specific subpopulations of organelles. These criteria can be biochemical, immunological, or physiological, and in many cases, markers regulate fusion to the organelle they define (e.g., Rab-GTPase proteins). Single-cell imaging technology allows, within the context of drug delivery, an evaluation of the intracellular trafficking of both biological and synthetic macromolecules. However, it should be remembered that there are many limitations associated with this type of study and quantitation is not easy. The temporal dissection of novel and default trafficking of both macromolecular "drugs" and macromolecular drug delivery systems is possible. These methodologies are detailed herein.
Related JoVE Video
Self-assembled PAA-based nanoparticles as potential gene and protein delivery systems.
Macromol Biosci
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
A series of nanoparticles is prepared via layer-by-layer assembly of oppositely charged, synthetic biocompatible polyamidoamine polymers as potential carriers. Particle size, surface charge and internal chain mobility are quantified as a function of the polymer type and number of layers. The effect of addition of surfactant is examined to simulate the effects of nanoparticle dissolution. The cyctotoxicity of these particles (in epithelia and murine cell lines) are orders of magnitude lower than polyethyleneimine controls. Stable nanoparticles may be prepared from mixtures of strongly, oppositely charged polymers, but less successfully from weakly charged polymers, and, given their acceptable toxicity characteristics, such modularly designed constructs show promise for drug and gene delivery.
Related JoVE Video
Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-10-2013
Show Abstract
Hide Abstract
Penicillium chrysogenum is a filamentous fungus of major medical and historical importance, being the original and present-day industrial source of the antibiotic penicillin. The species has been considered asexual for more than 100 y, and despite concerted efforts, it has not been possible to induce sexual reproduction, which has prevented sexual crosses being used for strain improvement. However, using knowledge of mating-type (MAT) gene organization, we now describe conditions under which a sexual cycle can be induced leading to production of meiotic ascospores. Evidence of recombination was obtained using both molecular and phenotypic markers. The identified heterothallic sexual cycle was used for strain development purposes, generating offspring with novel combinations of traits relevant to penicillin production. Furthermore, the MAT1-1-1 mating-type gene, known primarily for a role in governing sexual identity, was also found to control transcription of a wide range of genes with biotechnological relevance including those regulating penicillin production, hyphal morphology, and conidial formation. These discoveries of a sexual cycle and MAT gene function are likely to be of broad relevance for manipulation of other asexual fungi of economic importance.
Related JoVE Video
Evolutionary Relationships between Rhynchosporium lolii sp. nov. and Other Rhynchosporium Species on Grasses.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.
Related JoVE Video
A fungal sexual revolution: Aspergillus and Penicillium show the way.
Curr. Opin. Microbiol.
PUBLISHED: 09-20-2011
Show Abstract
Hide Abstract
Fungi have some of the most diverse sex lives in nature, ranging from self-fertility to obligate outcrossing systems with several thousand different sexes, although at least 20% of fungal species have no known sexual stage. However, recent evidence suggests that many supposed asexual species do indeed have the potential to undergo sexual reproduction. Using experimental and genomic findings from Aspergillus and Penicillium species as examples, it is argued that evidence such as the presence and expression of apparently functional sex-related genes, the distribution of mating-type genes, detection of recombination from population genetic analyses, and the discovery of extant sexual cycles reveal an on-going revolution in the understanding of fungal asexuality.
Related JoVE Video
The amsterdam declaration on fungal nomenclature.
IMA Fungus
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19-20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current system of naming pleomorphic fungi should be maintained or changed now that molecular data are routinely available. The issue is urgent as mycologists currently follow different practices, and no consensus was achieved by a Special Committee appointed in 2005 by the International Botanical Congress to advise on the problem. The Declaration recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except where that is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated to promote the implementation of the Declaration. In addition, but not forming part of the Declaration, are reports of discussions held during the symposium on the governance of the nomenclature of fungi, and the naming of fungi known only from an environmental nucleic acid sequence in particular. Possible amendments to the Draft BioCode (2011) to allow for the needs of mycologists are suggested for further consideration, and a possible example of how a fungus only known from the environment might be described is presented.
Related JoVE Video
Sexual development and cryptic sexuality in fungi: insights from Aspergillus species.
FEMS Microbiol. Rev.
PUBLISHED: 05-12-2011
Show Abstract
Hide Abstract
Major insights into sexual development and cryptic sexuality within filamentous fungi have been gained from investigations using Aspergillus species. Here, an overview is first given into sexual morphogenesis in the aspergilli, describing the different types of sexual structures formed and how their production is influenced by a variety of environmental and nutritional factors. It is argued that the formation of cleistothecia and accessory tissues, such as Hülle cells and sclerotia, should be viewed as two independent but co-ordinated developmental pathways. Next, a comprehensive survey of over 75 genes associated with sexual reproduction in the aspergilli is presented, including genes relating to mating and the development of cleistothecia, sclerotia and ascospores. Most of these genes have been identified from studies involving the homothallic Aspergillus nidulans, but an increasing number of studies have now in addition characterized sex-related genes from the heterothallic species Aspergillus fumigatus and Aspergillus flavus. A schematic developmental genetic network is proposed showing the inter-relatedness between these genes. Finally, the discovery of sexual reproduction in certain Aspergillus species that were formerly considered to be strictly asexual is reviewed, and the importance of these findings for cryptic sexuality in the aspergilli as a whole is discussed.
Related JoVE Video
Candida argentea sp. nov., a copper and silver resistant yeast species.
Fungal Biol
PUBLISHED: 05-09-2011
Show Abstract
Hide Abstract
A new yeast species was isolated from the sediment under metal-contaminated effluent from a disused metal mine in mid-Wales, UK. BLAST searching with DNA sequence amplified from the ribosomal 26S D1/D2 and ITS regions did not reveal a close match with any previously described species (?6 % and 3 % divergence, respectively). Phylogenetic analysis indicated that the species was a member of the Saccharomycetales, but did not group closely with other established species, the nearest relative being Wickerhamia fluorescens although bootstrap support was not strong. In addition to its unusual phylogeny, the species also exhibited notable physiological and morphological traits. Isolates exhibited unusually high resistance to both copper and silver in laboratory assays. These phenotypes appeared to be inherent to the species rather than a transient adaptation to the metal-enriched site in Wales, as the same phenotypes were observed in an identical (according to 26S rDNA sequence) isolate from Sao Domingos, Portugal in the Iberian Pyrite Belt. The species exhibited a multipolar budding-type cell division but, unusually, accumulated as rod-shaped cells following division on solid medium, contrasting with the larger ellipsoidal cells observed in broth. This dimorphism could be discerned readily with flow cytometry. The yeast was tolerant of hyper osmotic stress and grew in acidic media (pH 3). This new species is designated Candida argentea and five independent strains are deposited at the National Collection of Yeast Cultures, UK (NCYC 3753(T), 3754, 3755, 3756, 3757). Because of its unusual morphological variation and metal resistance properties, C. argentea may provide opportunities to gain new insights into the physiological and genetic bases of these phenotypes. Results illustrate novel fungal biodiversity that can occur at polluted sites.
Related JoVE Video
Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.
PLoS Genet.
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.
Related JoVE Video
Delivery of biologics to select organelles--the role of biologically active polymers.
Expert Opin Drug Deliv
PUBLISHED: 02-12-2011
Show Abstract
Hide Abstract
Biologics (i.e., nucleic acid and protein-based drugs) suffer from poor bioavailability, as membrane partitioning and intracellular targeting are a significant problem. Various strategies have been developed in an attempt to modulate biologics bioavailability by means of manipulating whole body pharmacokinetics and subcellular trafficking. Limited direct success has been observed. This review focuses on the components of nanomedicine systems rather than the whole, facilitating an overview of materials that may be of clinical relevance in the future. Some of the advantages and disadvantages associated with the use of soluble drug delivery systems are considered. Although the focus is on linear poly(amidoamine) polymers, emerging technologies capable of the delivery of large molecules to other specific intracellular compartments are also examined. The focus is maintained on cytosolic access for two reasons, initially because this intracellular compartment may be viewed as a gateway to other intracellular organelles and also because this is where the greatest therapeutic benefit is likely to be found. It is likely that in the coming years and in combination with other existing, well-characterized drug delivery platform technologies, such as liposomal formulation or polymer conjugation, that the targeting of specific organelles will become more accessible.
Related JoVE Video
Identification and characterization of an Aspergillus fumigatus "supermater" pair.
MBio
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
The mating efficiency of 50 Aspergillus fumigatus isolates from both clinical and environmental sources was analyzed. Forty isolates completed the sexual cycle in 4 weeks with variable levels of fertility designated high, medium, or low. Two opposite-mating-type strains exhibiting the highest fertility, AFB62 (MAT1-1), isolated from a case of invasive aspergillosis, and AFIR928 (MAT1-2), isolated from the environment, were chosen as the supermater pair. Single cleistothecia obtained from a cross of the two strains harbored a minimum of 1 × 10(4) ascospores. The viability of ascospores increased with the age of the fruiting body, 17% at 4 weeks and reaching 95% at 20 weeks. AFB62 and AFIR928 were equally virulent in two different murine models, despite differences in their sources. High recombination frequencies were observed when the closely linked genes alb1 (AFUA_2G17600) and abr2 (AFUA_2G17530) were used as genetic markers. Comparative genome hybridization analyses revealed that only 86 genes (ca. 0.86% of the genome) are significantly diverged between AFB62 and AFIR928. The high fertility in a relatively short period, combined with a high degree of virulence and a high recombination frequency, demonstrates that the mating pair AFB62 and AFIR928 provides an excellent tool for genetic studies of A. fumigatus.
Related JoVE Video
The decarboxylation of the weak-acid preservative, sorbic acid, is encoded by linked genes in Aspergillus spp.
Fungal Genet. Biol.
PUBLISHED: 04-28-2010
Show Abstract
Hide Abstract
The ability to resist anti-microbial compounds is of key evolutionary benefit to microorganisms. Aspergillus niger has previously been shown to require the activity of a phenylacrylic acid decarboxylase (encoded by padA1) for the decarboxylation of the weak-acid preservative sorbic acid (2,4-hexadienoic acid) to 1,3-pentadiene. It is now shown that this decarboxylation process also requires the activity of a putative 4-hydroxybenzoic acid (3-octaprenyl-4-hydroxybenzoic acid) decarboxylase, encoded by a gene termed ohbA1, and a putative transcription factor, sorbic acid decarboxylase regulator, encoded by sdrA. The padA1,ohbA1 and sdrA genes are in close proximity to each other on chromosome 6 in the A. niger genome and further bioinformatic analysis revealed conserved synteny at this locus in several Aspergillus species and other ascomycete fungi indicating clustering of metabolic function. This cluster is absent from the genomes of A. fumigatus and A. clavatus and, as a consequence, neither species is capable of decarboxylating sorbic acid.
Related JoVE Video
The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits.
Syst. Biol.
PUBLISHED: 06-04-2009
Show Abstract
Hide Abstract
We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.
Related JoVE Video
Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus.
Nature
PUBLISHED: 01-22-2009
Show Abstract
Hide Abstract
Aspergillus fumigatus is a saprotrophic fungus whose spores are ubiquitous in the atmosphere. It is also an opportunistic human pathogen in immunocompromised individuals, causing potentially lethal invasive infections, and is associated with severe asthma and sinusitis. The species is only known to reproduce by asexual means, but there has been accumulating evidence for recombination and gene flow from population genetic studies, genome analysis, the presence of mating-type genes and expression of sex-related genes in the fungus. Here we show that A. fumigatus possesses a fully functional sexual reproductive cycle that leads to the production of cleistothecia and ascospores, and the teleomorph Neosartorya fumigata is described. The species has a heterothallic breeding system; isolates of complementary mating types are required for sex to occur. We demonstrate increased genotypic variation resulting from recombination between mating type and DNA fingerprint markers in ascospore progeny from an Irish environmental subpopulation. The ability of A. fumigatus to engage in sexual reproduction is highly significant in understanding the biology and evolution of the species. The presence of a sexual cycle provides an invaluable tool for classical genetic analyses and will facilitate research into the genetic basis of pathogenicity and fungicide resistance in A. fumigatus, with the aim of improving methods for the control of aspergillosis. These results also yield insights into the potential for sexual reproduction in other supposedly asexual fungi.
Related JoVE Video
Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR34/L98H azole resistance mechanism.
J. Clin. Microbiol.
Show Abstract
Hide Abstract
A rapid emergence of azole resistance has been observed in Aspergillus fumigatus in The Netherlands over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves the TR(34)/L98H mutations in cyp51A. This resistance mechanism is now also increasingly being found in other countries. Therefore, genetic markers were used to gain more insights into the origin and spread of this genotype. Studies of 142 European isolates revealed that those with the TR(34)/L98H resistance mechanism showed less genetic variation than azole-susceptible isolates or those with a different genetic basis of resistance and were assigned to only four CSP (putative cell surface protein) types. Sexual crossing experiments demonstrated that TR(34)/L98H isolates could outcross with azole-susceptible isolates of different genetic backgrounds, suggesting that TR(34)/L98H isolates can undergo the sexual cycle in nature. Overall, our findings suggest a common ancestor of the TR(34)/L98H mechanism and subsequent migration of isolates harboring TR(34)/L98H across Europe.
Related JoVE Video
Presence and functionality of mating type genes in the supposedly asexual filamentous fungus Aspergillus oryzae.
Appl. Environ. Microbiol.
Show Abstract
Hide Abstract
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an ?-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.