JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Polycomb group gene Ezh2 regulates mammary gland morphogenesis and maintains the luminal progenitor pool.
Stem Cells
PUBLISHED: 02-01-2013
Show Abstract
Hide Abstract
Specification of the cellular hierarchy in the mammary gland involves complex signaling that remains poorly defined. Polycomb group proteins are known to contribute to the maintenance of stem cell identity through epigenetic modifications, leading to stable alterations in gene expression. The polycomb protein family member EZH2 is known to be important for stem cell maintenance in multiple tissues, but its role in mammary gland development and differentiation remains unknown. Our analyses show that EZH2 is predominantly expressed in luminal cells of the mouse mammary epithelium. As mammary gland development occurs mostly after birth, the analysis of EZH2 gene function in postnatal development is precluded by embryonic lethality of conventional EZH2 knockout mice. To investigate the role of EZH2 in normal mammary gland epithelium, we have generated novel transgenic mice that express doxycycline-regulatable short hairpin (sh) RNAs directed against Ezh2. Knockdown of EZH2 results in delayed outgrowth of the mammary epithelium during puberty, due to impaired terminal end bud formation and ductal elongation. Furthermore, our results demonstrate that EZH2 is required to maintain the luminal cell pool and may limit differentiation of luminal progenitors into CD61(+) differentiated luminal cells, suggesting a role for EZH2 in mammary luminal cell fate determination. Consistent with this, EZH2 knockdown reduced lobuloalveolar expansion during pregnancy, suggesting EZH2 is required for the differentiation of luminal progenitors to alveolar cells.
Related JoVE Video
BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A.
Breast Cancer Res.
PUBLISHED: 05-31-2009
Show Abstract
Hide Abstract
Treatment of breast cancer is becoming more individualized with the recognition of tumor subgroups that respond differently to available therapies. Breast cancer 1 gene (BRCA1)-deficient tumors are usually of the basal subtype and associated with poor survival rates, highlighting the need for more effective therapy.
Related JoVE Video
GFAP-Cre-mediated transgenic activation of Bmi1 results in pituitary tumors.
PLoS ONE
Show Abstract
Hide Abstract
Bmi1 is a member of the polycomb repressive complex 1 and plays different roles during embryonic development, depending on the developmental context. Bmi1 over expression is observed in many types of cancer, including tumors of astroglial and neural origin. Although genetic depletion of Bmi1 has been described to result in tumor inhibitory effects partly through INK4A/Arf mediated senescence and apoptosis and also through INK4A/Arf independent effects, it has not been proven that Bmi1 can be causally involved in the formation of these tumors. To see whether this is the case, we developed two conditional Bmi1 transgenic models that were crossed with GFAP-Cre mice to activate transgenic expression in neural and glial lineages. We show here that these mice generate intermediate and anterior lobe pituitary tumors that are positive for ACTH and beta-endorphin. Combined transgenic expression of Bmi1 together with conditional loss of Rb resulted in pituitary tumors but was insufficient to induce medulloblastoma therefore indicating that the oncogenic function of Bmi1 depends on regulation of p16(INK4A)/Rb rather than on regulation of p19(ARF)/p53. Human pituitary adenomas show Bmi1 overexpression in over 50% of the cases, which indicates that Bmi1 could be causally involved in formation of these tumors similarly as in our mouse model.
Related JoVE Video
Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer.
J. Clin. Invest.
Show Abstract
Hide Abstract
Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.