JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Thrombospondin-1 is part of a Slug-independent motility and metastatic program in cutaneous melanoma, in association with VEGFR-1 and FGF-2.
Pigment Cell Melanoma Res
PUBLISHED: 09-18-2014
Show Abstract
Hide Abstract
Differently from most transformed cells, cutaneous melanoma expresses the pleiotropic factor thrombospondin-1 (TSP-1). Herein, we show that TSP-1 (RNA and protein), undetectable in four cultures of melanocytes and a RGP melanoma, was variously present in 13 cell lines from advanced melanomas or metastases. Moreover, microarray analysis of 55 human lesions showed higher TSP-1 expression in primary melanomas and metastases than in common and dysplastic nevi. In a functional enrichment analysis, the expression of TSP-1 correlated with motility-related genes. Accordingly, TSP-1 production was associated with melanoma cell motility in vitro and lung colonization potential in vivo. VEGF/VEGFR-1 and FGF-2, involved in melanoma progression, regulated TSP-1 production. These factors were coexpressed with TSP-1 and correlated negatively with Slug (SNAI2), a cell migration master gene implicated in melanoma metastasis. We conclude that TSP-1 cooperates with FGF-2 and VEGF/VEGFR-1 in determining melanoma invasion and metastasis, as part of a Slug-independent motility program.
Related JoVE Video
Cilengitide down-modulates invasiveness and vasculogenic mimicry of neuropilin-1 expressing melanoma cells through the inhibition of ?v?5 integrin.
Int. J. Cancer
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
During melanoma progression, tumour cells show increased adhesiveness to the vascular wall, invade the extracellular matrix (ECM) and frequently form functional channels similar to vascular vessels (vasculogenic mimicry). These properties are mainly mediated by the interaction of integrins with ECM components. Since we had previously identified neuropilin-1 (NRP-1), a co-receptor of vascular endothelial growth factor A (VEGF-A), as an important determinant of melanoma aggressiveness, aims of this study were to identify the specific integrins involved in the highly invasive phenotype of NRP-1 expressing cells and to investigate their role as targets to counteract melanoma progression. Melanoma aggressiveness was evaluated in vitro as cell ability to migrate through an ECM layer and to form tubule-like structures using transfected cells. Integrins relevant to these processes were identified using specific blocking antibodies. The ?v?5 integrin was found to be responsible for about 80% of the capability of NRP-1 expressing cells to adhere on vitronectin. In these cells ?v?5 expression level was twice higher than in low-invasive control cells and contributed to the ability of melanoma cells to form tubule-like structures on matrigel. Cilengitide, a potent inhibitor of ?? integrins activation, reduced ECM invasion, vasculogenic mimicry and VEGF-A and metalloproteinase-9 (MMP-9) secretion by melanoma cells. In conclusion, we demonstrated that ???5 integrin is involved in the highly aggressive phenotype of melanoma cells expressing NRP-1. Moreover, we identified a novel mechanism that contributes to the anti-melanoma activity of the ?v integrin inhibitor cilengitide based on the inhibition of vasculogenic mimicry. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
Glucocorticoid-induced tumor necrosis factor receptor family-related ligand triggering upregulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and promotes leukocyte adhesion.
J. Pharmacol. Exp. Ther.
PUBLISHED: 07-26-2013
Show Abstract
Hide Abstract
The interaction of glucocorticoid-induced tumor necrosis factor receptor-family related (GITR) protein with its ligand (GITRL) modulates different functions, including immune/inflammatory response. These effects are consequent to intracellular signals activated by both GITR and GITRL. Previous results have suggested that lack of GITR expression in GITR(-/-) mice decreases the number of leukocytes within inflamed tissues. We performed experiments to analyze whether the GITRL/GITR system modulates leukocyte adhesion and extravasation. For that purpose, we first evaluated the capability of murine splenocytes to adhere to endothelial cells (EC). Our results indicated that adhesion of GITR(-/-) splenocytes to EC was reduced as compared with wild-type cells, suggesting that GITR plays a role in adhesion and that this effect may be due to GITRL-GITR interaction. Moreover, adhesion was increased when EC were pretreated with an agonist GITR-Fc fusion protein, thus indicating that triggering of GITRL plays a role in adhesion by EC regulation. In a human in vitro model, the adhesion to human EC of HL-60 cells differentiated toward the monocytic lineage was increased by EC pretreatment with agonist GITR-Fc. Conversely, antagonistic anti-GITR and anti-GITRL Ab decreased adhesion, thus further indicating that GITRL triggering increases the EC capability to support leukocyte adhesion. EC treatment with GITR-Fc favored extravasation, as demonstrated by a transmigration assay. Notably, GITRL triggering increased intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression and anti-ICAM-1 and anti-VCAM-1 Abs reversed GITR-Fc effects. Our study demonstrates that GITRL triggering in EC increases leukocyte adhesion and transmigration, suggesting new anti-inflammatory therapeutic approaches based on inhibition of GITRL-GITR interaction.
Related JoVE Video
Challenging resistance mechanisms to therapies for metastatic melanoma.
Trends Pharmacol. Sci.
PUBLISHED: 07-22-2013
Show Abstract
Hide Abstract
Melanoma is the most aggressive form of skin cancer and, if spread outside the epidermis, has a dismal prognosis. Before the approval of the anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) monoclonal antibody ipilimumab and the BRAF inhibitors vemurafenib and dabrafenib, no other agents had demonstrated better results in terms of overall survival than the DNA-methylating compound dacarbazine (or its oral analog temozolomide). However, most patients with metastatic melanoma do not obtain long-lasting clinical benefit from ipilimumab and responses to BRAF inhibitors are short lived. Thus, combination therapies with inhibitors of DNA repair (e.g., poly(ADP-ribose) polymerase [PARP] inhibitors), novel immunomodulators (monoclonal antibodies against programmed death-1 [PD-1] or its ligand PD-L1), targeted therapies (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase [ERK] kinase [MEK] or phosphatidylinositol 3-kinase [PI3K]/AKT/mammalian target of rapamycin [mTOR] inhibitors) or antiangiogenic agents are currently being investigated to improve the efficacy of antimelanoma therapies. This review discusses the implications of simultaneously targeting key regulators of melanoma cell proliferation/survival and immune responses to counteract resistance.
Related JoVE Video
Platelet-derived growth factor C and calpain-3 are modulators of human melanoma cell invasiveness.
Oncol. Rep.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
The molecular mechanisms responsible for the elevated metastatic potential of malignant melanoma are still not fully understood. In order to shed light on the molecules involved in the acquisition by melanoma of a highly aggressive phenotype, we compared the gene expression profiles of two cell clones derived from the human cutaneous metastatic melanoma cell line M14: a highly invasive clone (M14C2/MK18) and a clone (M14C2/C4) with low ability to invade the extracellular matrix (ECM). The highly invasive phenotype of M14C2/MK18 cells was correlated with overexpression of neuropilin-1, activation of a vascular endothelial growth factor (VEGF)-A/VEGFR-2 autocrine loop and secretion of matrix metalloprotease-2. Moreover, in an in vivo murine model, M14C2/MK18 cells displayed a higher growth rate as compared with M14C2/C4 cells, even though in vitro both clones possessed comparable proliferative potential. Microarray analysis in M14C2/MK18 cells showed a strong upregulation of platelet-derived growth factor (PDGF)-C, a cytokine that contributes to angiogenesis, and downregulation of calpain-3, a calcium-dependent thiol-protease that regulates specific signalling cascade components. Inhibition of PDGF-C with a specific antibody resulted in a significant decrease in ECM invasion by M14C2/MK18 cells, confirming the involvement of PDGF-C in melanoma cell invasiveness. Moreover, the PDGF-C transcript was found to be upregulated in a high percentage of human melanoma cell lines (17/20), whereas only low PDGF-C levels were detected in a few melanocytic cultures (2/6). By contrast, inhibition of calpain-3 activity in M14C2/C4 control cells, using a specific chemical inhibitor, markedly increased ECM invasion, strongly suggesting that downregulation of calpain-3 plays a role in the acquisition of a highly invasive phenotype. The results indicate that PDGF-C upregulation and calpain-3 downregulation are involved in the aggressiveness of malignant melanoma and suggest that modulators of these proteins or their downstream effectors may synergise with VEGF?A therapies in combating tumour-associated angiogenesis and melanoma spread.
Related JoVE Video
MSH3 expression does not influence the sensitivity of colon cancer HCT116 cell line to oxaliplatin and poly(ADP-ribose) polymerase (PARP) inhibitor as monotherapy or in combination.
Cancer Chemother. Pharmacol.
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Defective expression of the mismatch repair protein MSH3 is frequently detected in colon cancer, and down-regulation of its expression was found to decrease sensitivity to platinum compounds or poly(ADP-ribose) polymerase inhibitors (PARPi) monotherapy. We have investigated whether MSH3 transfection in MSH3-deficient colon cancer cells confers resistance to oxaliplatin or PARPi and whether their combination restores chemosensitivity.
Related JoVE Video
Neuropilin-1 expression promotes invasiveness of melanoma cells through vascular endothelial growth factor receptor-2-dependent and -independent mechanisms.
Int. J. Oncol.
PUBLISHED: 01-28-2013
Show Abstract
Hide Abstract
The majority of human melanoma cell lines secretes vascular endothelial growth factor-A (VEGF-A) and expresses its receptors VEGFR-1, VEGFR-2 and neuropilin-1 (NRP?1), a co-receptor for VEGF-A that amplifies the signalling through VEGFR-2. Since it is known that the VEGF-A/VEGFR-2 autocrine loop promotes melanoma cell invasiveness, the aim of the present study was to investigate the involvement of NPR-1 in melanoma progression. Syngeneic human melanoma cell lines expressing either VEGFR-2 or NRP-1, both or none of them, were analyzed for their in vitro ability to migrate, invade the extracellular matrix (ECM) and secrete active metalloproteinase-2 (MMP-2). The results indicate that NRP-1 cooperates with VEGFR-2 in melanoma cell migration induced by VEGF-A. Moreover, NRP-1 expression is sufficient to promote MMP-2 secretion and melanoma cell invasiveness, as demonstrated by the ability of cells expressing solely NRP-1 to spontaneously invade the ECM. This ability is specifically downregulated by anti-NRP-1 antibodies or by interfering with NRP-1 expression using an shRNA construct. Investigation of the signal transduction pathways triggered by NRP-1 in melanoma cells, indicated that NRP-1-dependent promotion of cell invasiveness involves Akt activation through its phosphorylation on T308. Overall, the results demonstrate that NRP-1 is involved in melanoma progression through VEGFR-2-dependent and -independent mechanisms and suggest NRP-1 as a target for the treatment of the metastatic disease.
Related JoVE Video
Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan.
Int. J. Oncol.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination with PARPi. To this end, the colon cancer cell lines HCT116, carrying MLH1 mutations on chromosome 3 and HCT116 in which the wild-type MLH1 gene was replaced via chromosomal transfer (HCT116+3) or by transfection of the corresponding MLH1 cDNA (HCT116 1-2) were used. HCT116 cells or HCT116+3 cells stably silenced for PARP-1 expression were also analysed. The results of in vitro and in vivo experiments indicated that MLH1, together with low levels of Top1, contributed to colon cancer resistance to irinotecan. In the MLH1-proficient cells SN-38, the active metabolite of irinotecan, induced lower levels of DNA damage than in MLH1-deficient cells, as shown by the weaker induction of ?-H2AX and p53 phosphorylation. The presence of MLH1 contributed to induce of prompt Chk1 phosphorylation, restoring G2/M cell cycle checkpoint and repair of DNA damage. On the contrary, in the absence of MLH1, HCT116 cells showed minor Chk1 phosphorylation and underwent apoptosis. Remarkably, inhibition of PARP function by PARPi or by PARP-1 gene silencing always increased the antitumor activity of irinotecan, even in the presence of low PARP-1 expression.
Related JoVE Video
Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1.
Elife
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life. DOI:http://dx.doi.org/10.7554/eLife.00324.001.
Related JoVE Video
Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 12-14-2011
Show Abstract
Hide Abstract
Normal vision requires the precise control of vascular growth to maintain corneal transparency. Here we provide evidence for a unique mechanism by which the Forkhead box transcription factor FoxC1 regulates corneal vascular development. Murine Foxc1 is essential for development of the ocular anterior segment, and in humans, mutations have been identified in Axenfeld-Rieger syndrome, a disorder characterized by anterior segment dysgenesis. We show that FOXC1 mutations also lead to corneal angiogenesis, and that mice homozygous for either a global (Foxc1(-/-)) or neural crest (NC)-specific (NC-Foxc1(-/-)) null mutation display excessive growth of corneal blood and lymphatic vessels. This is associated with disorganization of the extracellular matrix and increased expression of multiple matrix metalloproteinases. Heterozygous mutants (Foxc1(+/-) and NC-Foxc1(+/-)) exhibit milder phenotypes, such as disrupted limbal vasculature. Moreover, environmental exposure to corneal injury significantly increases growth of both blood and lymphatic vessels in both Foxc1(+/-) and NC-Foxc1(+/-) mice compared with controls. Notably, this amplification of the angiogenic response is abolished by inhibition of VEGF receptor 2. Collectively, these findings identify a role for FoxC1 in inhibiting corneal angiogenesis, thereby maintaining corneal transparency by regulating VEGF signaling.
Related JoVE Video
Placenta growth factor induces melanoma resistance to temozolomide through a mechanism that involves the activation of the transcription factor NF-?B.
Int. J. Oncol.
PUBLISHED: 05-25-2011
Show Abstract
Hide Abstract
Placenta growth factor (PlGF) and its receptor vascular endothelial growth factor receptor-1 (VEGFR-1) are co-expressed in a large number of human melanoma cell lines. Moreover, a correlation between in vivo PlGF production and melanoma progression has been suggested. To investigate whether PlGF might have a role in protecting melanoma cells from the cytotoxic effects of the anticancer agent temozolomide (TMZ), which is used for the treatment of this malignancy, we stably transfected a doxycycline-inducible PlGF antisense mRNA into a human melanoma cell clone that secretes VEGF-A and PlGF and expresses receptors for both growth factors. Induction of PlGF antisense mRNA in the transfected cells (13443/ASP3 subclone) halved TMZ IC(50), and exogenous addition of PlGF to the culture medium 24 h before TMZ treatment, partially restored IC(50) values to that of control cells. The increased sensitivity of 13443/ASP3 cells upon PlGF antisense mRNA expression was not due to down-regulation of O6-methylguanine-DNA methyltransferase, a DNA repair protein that represents the main mechanism of resistance to TMZ. Since the activity of the transcription factor nuclear factor-?B (NF-?B) has been correlated to melanoma chemoresistance, we investigated whether NF-?B was involved in PlGF-induced melanoma cell resistance to TMZ. Induction of PlGF antisense mRNA in 13443/ASP3 cells halved the levels of active NF-?B and the specific inhibition of this transcription factor increased sensitivity of 13443/ASP3 cells to TMZ. In conclusion, our data strongly suggest that PlGF plays a role in melanoma cell resistance to TMZ through a pathway that involves NF-?B activation.
Related JoVE Video
Pharmacological inhibition of poly(ADP-ribose) polymerase activity down-regulates the expression of syndecan-4 and Id-1 in endothelial cells.
Int. J. Oncol.
PUBLISHED: 02-13-2009
Show Abstract
Hide Abstract
Poly(ADP-ribose) polymerase (PARP) is a family of nuclear proteins which regulate a number of cell functions, such as DNA repair, transcription, remodelling of chromatin structure, cell division and cell death. We and others have recently demonstrated that down-regulation of cellular PARP activity, using pharmacological inhibitors, impairs a number of endothelial functions and angiogenesis. In the present study, we investigated the potential mechanisms underlying the anti-angiogenic effect exerted by the potent PARP inhibitor GPI 15427, analyzing gene expression in human endothelial cells shortly after treatment with this compound. Analysis of gene and protein expression indicated that a 2-h exposure of human endothelial cells to GPI 15427 induced a rapid decrease of syndecan-4 (SDC-4), a transmembrane protein involved in modulation of cell signalling during angiogenesis that plays a role in endothelial cell migration and adhesion. Moreover, treatment with the PARP inhibitor induced a reduction of a helix-loop-helix transcription factor, the inhibitor of DNA binding-1 (Id-1), also implicated in the control of endothelial functions. We suggest that the inhibitory effect exerted by GPI 15427 on the angiogenic process is likely due to the reduced activity of specific transcription factors, such as Oct-1 and CREB that contribute to the regulation of SDC-4 and Id-1 expression, respectively. In conclusion, these results strongly suggest that PARP activity is capable of modulating molecules required for endothelial cell migration, adhesion, proliferation or differentiation during the angiogenic process.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.