JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation.
PLoS Genet.
PUBLISHED: 07-01-2014
Show Abstract
Hide Abstract
Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction.
Related JoVE Video
Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-27-2014
Show Abstract
Hide Abstract
Understanding the origins of gut microbial community structure is critical for the identification and interpretation of potential fitness-related traits for the host. The presence of community clusters characterized by differences in the abundance of signature taxa, referred to as enterotypes, is a debated concept first reported in humans and later extended to other mammalian hosts. In this study, we provide a thorough assessment of their existence in wild house mice using a panel of evaluation criteria. We identify support for two clusters that are compositionally similar to clusters identified in humans, chimpanzees, and laboratory mice, characterized by differences in Bacteroides, Robinsoniella, and unclassified genera belonging to the family Lachnospiraceae. To further evaluate these clusters, we (i) monitored community changes associated with moving mice from the natural to a laboratory environment, (ii) performed functional metagenomic sequencing, and (iii) subjected wild-caught samples to stable isotope analysis to reconstruct dietary patterns. This process reveals differences in the proportions of genes involved in carbohydrate versus protein metabolism in the functional metagenome, as well as differences in plant- versus meat-derived food sources between clusters. In conjunction with wild-caught mice quickly changing their enterotype classification upon transfer to a standard laboratory chow diet, these results provide strong evidence that dietary history contributes to the presence of enterotype-like clustering in wild mice.
Related JoVE Video
Genomics of rapid adaptation to antibiotics: convergent evolution and scalable sequence amplification.
Genome Biol Evol
PUBLISHED: 05-23-2014
Show Abstract
Hide Abstract
Evolutionary adaptation can be extremely fast, especially in response to high selection intensities. A prime example is the surge of antibiotic resistance in bacteria. The genomic underpinnings of such rapid changes may provide information on the genetic processes that enhance fast responses and the particular trait functions under selection. Here, we use experimentally evolved Escherichia coli for a detailed dissection of the genomics of rapid antibiotic resistance evolution. Our new analyses demonstrate that amplification of a sequence region containing several known antibiotic resistance genes represents a fast genomic response mechanism under high antibiotic stress, here exerted by drug combination. In particular, higher dosage of such antibiotic combinations coincided with higher copy number of the sequence region. The amplification appears to be evolutionarily costly, because amplification levels rapidly dropped after removal of the drugs. Our results suggest that amplification is a scalable process, as copy number rapidly changes in response to the selective pressure encountered. Moreover, repeated patterns of convergent evolution were found across the experimentally evolved bacterial populations, including those with lower antibiotic selection intensities. Intriguingly, convergent evolution was identified on different organizational levels, ranging from the above sequence amplification, high variant frequencies in specific genes, prevalence of individual nonsynonymous mutations to the unusual repeated occurrence of a particular synonymous mutation in Glycine codons. We conclude that constrained evolutionary trajectories underlie rapid adaptation to antibiotics. Of the identified genomic changes, sequence amplification seems to represent the most potent, albeit costly genomic response mechanism to high antibiotic stress.
Related JoVE Video
Whole genome and exome sequencing of monozygotic twins discordant for Crohn's disease.
BMC Genomics
PUBLISHED: 04-25-2014
Show Abstract
Hide Abstract
Crohn's disease (CD) is an inflammatory bowel disease caused by genetic and environmental factors. More than 160 susceptibility loci have been identified for IBD, yet a large part of the genetic variance remains unexplained. Recent studies have demonstrated genetic differences between monozygotic twins, who were long thought to be genetically completely identical.
Related JoVE Video
XIAP variants in male Crohn's disease.
Gut
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
The genetic basis of inflammatory bowel disease (IBD) is incompletely understood. The aim of this study was to identify rare genetic variants involved in the pathogenesis of IBD.
Related JoVE Video
Regulation of polyp-to-jellyfish transition in Aurelia aurita.
Curr. Biol.
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
The life cycle of scyphozoan cnidarians alternates between sessile asexual polyps and pelagic medusa. Transition from one life form to another is triggered by environmental signals, but the molecular cascades involved in the drastic morphological and physiological changes remain unknown.
Related JoVE Video
Infection routes matter in population-specific responses of the red flour beetle to the entomopathogen Bacillus thuringiensis.
BMC Genomics
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
Pathogens can infect their hosts through different routes. For studying the consequences for host resistance, we here used the entomopathogen Bacillus thuringiensis and the red flour beetle Tribolium castaneum for oral and systemic (i. e. pricking the cuticle) experimental infection. In order to characterize the molecular mechanisms underpinning the two different infection routes, the transcriptomes of beetles of two different T. castaneum populations--one recently collected population (Cro1) and a commonly used laboratory strain (SB)--were analyzed using a next generation RNA sequencing approach.
Related JoVE Video
Species-specific viromes in the ancestral holobiont hydra.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Recent evidence showing host specificity of colonizing bacteria supports the view that multicellular organisms are holobionts comprised of the macroscopic host in synergistic interdependence with a heterogeneous and host-specific microbial community. Whereas host-bacteria interactions have been extensively investigated, comparatively little is known about host-virus interactions and viral contribution to the holobiont. We sought to determine the viral communities associating with different Hydra species, whether these viral communities were altered with environmental stress, and whether these viruses affect the Hydra-associated holobiont. Here we show that each species of Hydra harbors a diverse host-associated virome. Primary viral families associated with Hydra are Myoviridae, Siphoviridae, Inoviridae, and Herpesviridae. Most Hydra-associated viruses are bacteriophages, a reflection of their involvement in the holobiont. Changes in environmental conditions alter the associated virome, increase viral diversity, and affect the metabolism of the holobiont. The specificity and dynamics of the virome point to potential viral involvement in regulating microbial associations in the Hydra holobiont. While viruses are generally regarded as pathogenic agents, our study suggests an evolutionary conserved ability of viruses to function as holobiont regulators and, therefore, constitutes an emerging paradigm shift in host-microbe interactions.
Related JoVE Video
Effects of ?-lactam antibiotics and fluoroquinolones on human gut microbiota in relation to Clostridium difficile associated diarrhea.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Clostridium difficile infections are an emerging health problem in the modern hospital environment. Severe alterations of the gut microbiome with loss of resistance to colonization against C. difficile are thought to be the major trigger, but there is no clear concept of how C. difficile infection evolves and which microbiological factors are involved. We sequenced 16S rRNA amplicons generated from DNA and RNA/cDNA of fecal samples from three groups of individuals by FLX technology: (i) healthy controls (no antibiotic therapy); (ii) individuals receiving antibiotic therapy (Ampicillin/Sulbactam, cephalosporins, and fluoroquinolones with subsequent development of C. difficile infection or (iii) individuals receiving antibiotic therapy without C. difficile infection. We compared the effects of the three different antibiotic classes on the intestinal microbiome and the effects of alterations of the gut microbiome on C. difficile infection at the DNA (total microbiota) and rRNA (potentially active) levels. A comparison of antibiotic classes showed significant differences at DNA level, but not at RNA level. Among individuals that developed or did not develop a C. difficile infection under antibiotics we found no significant differences. We identified single species that were up- or down regulated in individuals receiving antibiotics who developed the infection compared to non-infected individuals. We found no significant differences in the global composition of the transcriptionally active gut microbiome associated with C. difficile infections. We suggest that up- and down regulation of specific bacterial species may be involved in colonization resistance against C. difficile providing a potential therapeutic approach through specific manipulation of the intestinal microbiome.
Related JoVE Video
Characteristic changes in microbial community composition and expression of innate immune genes in acute appendicitis.
Innate Immun
PUBLISHED: 12-17-2013
Show Abstract
Hide Abstract
Appendicitis represents a common and severe gastrointestinal illness in younger individuals worldwide. The disease is characterized by an excessive inflammatory response and it is believed that bacterial overgrowth due to blockage of the appendix lumen might be involved. Despite the high incidence, only limited data on the pathophysiological changes exist; in particular, the innate immune responses involved are largely unknown. Real-time PCR analysis of tissue samples from inflamed and normal appendices demonstrated differentially regulated expression patterns of epithelial-derived antimicrobial peptides (AMP). The ?-defensins human neutrophil peptides 1-3, HD5 and HD6, as well as the two ?-defensins, human ?-defensins (hBD)-2 and hBD-3, were up-regulated, whereas hBD-1 was down-regulated in acute appendicitis. Expression of upstream regulators of AMP expression, NOD-2 and TLRs 1, 2, 4, 5, 7, 8 and 10 was significantly increased as detected by real-time PCR. Finally, we confirmed the involvement of the pro-inflammatory cytokines IL-1? and IL-8, and detected characteristic changes in microbial community composition in appendicitis tissue specimens by 16S rDNA based detection techniques. In this study, we demonstrate a differential regulation of the innate immune system along with an altered bacterial diversity in acute appendicitis.
Related JoVE Video
Modulation of Nuclear factor E2 related factor-2 (Nrf2) activation by the stress response gene Immediate Early Response-3 (IER3) in colonic epithelial cells - a novel mechanism of cellular adaption to inflammatory stress.
J. Biol. Chem.
PUBLISHED: 12-05-2013
Show Abstract
Hide Abstract
Although Nuclear factor E2-related factor-2 (Nrf2) protects from carcinogen-induced tumorigenesis, underlying the rationale for using Nrf2-inducers in chemoprevention, this antioxidative transcription factor may also act as a protooncogene. Thus, an enhanced Nrf2 activity promotes formation and chemoresistance of colon cancer. One mechanism causing persistent Nrf2 activation is the adaptation of epithelial cells to oxidative stress during chronic inflammation, e.g. colonocytes in Inflammatory Bowel Diseases (IBD), and the multifunctional stress response gene Immediate Early Response-3 (IER3) has a crucial role under these conditions. We now demonstrate that colonic tissue from Ier3-/- mice subject of DSS colitis exhibit greater Nrf2 activity than Ier3+/+ mice manifesting as increased nuclear Nrf2 protein level and Nrf2 target gene expression. Likewise, human NCM460 colonocytes subject of shRNA mediated IER3 knock-down exhibit greater Nrf2 activity compared with control cells, whereas IER3 overexpression attenuated Nrf2 activation. IER3 deficient NCM460 cells exhibited reduced ROS level, indicating increased antioxidative protection, as well as lower sensitivity to TRAIL or anti-cancer drug induced apoptosis and greater clonogenicity. Knock-down of Nrf2 expression reversed these IER3 dependent effects. Further, the enhancing effect of IER3 deficiency on Nrf2 activity relates to the control of the inhibitory tyrosine kinase Fyn by the PI3K/Akt pathway. Thus, the PI3K inhibitor LY294002 or knock-down of Akt or Fyn expression abrogated the impact of IER3 deficiency on Nrf2 activity. In conclusion, the interference of IER3 with the PI3K/Akt-Fyn pathway represents a novel mechanism of Nrf2 regulation that may get lost in tumors and by which IER3 exerts its stress-adaptive and tumor suppressive activity.
Related JoVE Video
ER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intestinal stem cells.
J. Exp. Med.
PUBLISHED: 09-16-2013
Show Abstract
Hide Abstract
Unresolved endoplasmic reticulum (ER) stress in the epithelium can provoke intestinal inflammation. Hypomorphic variants of ER stress response mediators, such as X-box-binding protein 1 (XBP1), confer genetic risk for inflammatory bowel disease. We report here that hypomorphic Xbp1 function instructs a multilayered regenerative response in the intestinal epithelium. This is characterized by intestinal stem cell (ISC) expansion as shown by an inositol-requiring enzyme 1? (Ire1?)-mediated increase in Lgr5(+) and Olfm4(+) ISCs and a Stat3-dependent increase in the proliferative output of transit-amplifying cells. These consequences of hypomorphic Xbp1 function are associated with an increased propensity to develop colitis-associated and spontaneous adenomatous polyposis coli (APC)-related tumors of the intestinal epithelium, which in the latter case is shown to be dependent on Ire1?. This study reveals an unexpected role for Xbp1 in suppressing tumor formation through restraint of a pathway that involves an Ire1?- and Stat3-mediated regenerative response of the epithelium as a consequence of ER stress. As such, Xbp1 in the intestinal epithelium not only regulates local inflammation but at the same time also determines the propensity of the epithelium to develop tumors.
Related JoVE Video
Stem cells and aging from a quasi-immortal point of view.
Bioessays
PUBLISHED: 08-27-2013
Show Abstract
Hide Abstract
Understanding aging and how it affects an organisms lifespan is a fundamental problem in biology. A hallmark of aging is stem cell senescence, the decline of functionality, and number of somatic stem cells, resulting in an impaired regenerative capacity and reduced tissue function. In addition, aging is characterized by profound remodeling of the immune system and a quantitative decline of adequate immune responses, a phenomenon referred to as immune-senescence. Yet, what is causing stem cell and immune-senescence? This review discusses experimental studies of potentially immortal Hydra which have made contributions to answering this question. Hydra transcription factor FoxO has been shown to modulate both stem cell proliferation and innate immunity, lending strong support to a role of FoxO as critical rate-of-aging regulator from Hydra to human. Constructing a model of how FoxO responds to diverse environmental factors provides a framework for how stem cell factors might contribute to aging.
Related JoVE Video
Higher fetuin-A level is associated with coexistence of elevated alanine aminotransferase and the metabolic syndrome in the general population.
Metab Syndr Relat Disord
PUBLISHED: 08-24-2013
Show Abstract
Hide Abstract
Higher fetuin-A levels have been linked to fatty liver disease (FLD), the most common cause of elevated alanine aminotransferase (ALT) levels, but associations between ALT and fetuin-A level have been inconsistent. The presence of the metabolic syndrome in individuals with elevated ALT levels has been shown to characterize more severe FLD. Thus, aim of the study was to investigate the association between fetuin-A level and the coexistence of elevated ALT levels and metabolic syndrome (ALT-MetS).
Related JoVE Video
Autophagy receptor CALCOCO2/NDP52 takes center stage in Crohn disease.
Autophagy
PUBLISHED: 06-28-2013
Show Abstract
Hide Abstract
To advance understanding of the complex genetics of Crohn disease (CD) we sequenced 42 whole exomes of patients with CD and five healthy control individuals, resulting in identification of a missense mutation in the autophagy receptor calcium binding and coiled-coil domain 2 (CALCOCO2/NDP52) gene. Protein domain modeling and functional studies highlight the potential role of this mutation in controlling NFKB signaling downstream of toll-like receptor (TLR) pathways. We summarize our recent findings and discuss the role of autophagy as a major modulator of proinflammatory signaling in the context of chronic inflammation.
Related JoVE Video
The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10.
Hum. Mol. Genet.
PUBLISHED: 06-27-2013
Show Abstract
Hide Abstract
The long non-coding RNA ANRIL is the best replicated genetic risk locus of coronary artery disease (CAD) and periodontitis (PD), and is independently associated with a variety of other immune-mediated and metabolic disorders and several forms of cancer. Recent studies showed a correlation of decreased concentrations of proximal ANRIL transcripts with homozygous carriership of the CAD and PD main risk alleles. To elucidate the relation of these transcripts to disease manifestation, we constructed a short hairpin RNA in a stable inducible knock-down system of T-Rex 293 HEK cell lines, specifically targeting the proximal transcripts EU741058 and DQ485454. By genome-wide expression profiling using Affymetrix HG1.0 ST Arrays, we identified the transcription of ADIPOR1, VAMP3 and C11ORF10 to be correlated with decreased ANRIL expression in a time-dependent manner. We validated these findings on a transcriptional and translational level in different cell types. Exploration of the identified genes for the presence of disease associated variants, using Affymetrix 500K genotyping and Illumina custom genotyping arrays, highlighted a region upstream of VAMP3 within CAMTA1 to be associated with increased risk of CAD [rs10864294 P = 0.015, odds ratio (OR) = 1.30, 95% confidence interval (CI) = 1.1-1.6, 1471 cases, 2737 controls] and aggressive PD (AgP; P = 0.008, OR = 1.31, 95% CI = 1.1-1.6, 864 cases, 3664 controls). In silico replication in a meta-analysis of 14 genome-wide association studies of CAD of the CARDIoGRAM Consortium identified rs2301462, located on the same haplotype block, as associated with P = 0.001 upon adjustment for sex and age. Our results give evidence that specific isoforms of ANRIL regulate key genes of glucose and fatty acid metabolism.
Related JoVE Video
Paneth cells as a site of origin for intestinal inflammation.
Nature
PUBLISHED: 06-25-2013
Show Abstract
Hide Abstract
The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohns disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohns disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(?IEC)) or autophagy function (Atg16l1(?IEC) or Atg7(?IEC)) in intestinal epithelial cells results in each others compensatory engagement, and severe spontaneous Crohns-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(?IEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2? (eIF2?) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1? (IRE1?)-regulated NF-?B activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1? activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-?B overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohns disease as a specific disorder of Paneth cells.
Related JoVE Video
DSS-induced acute colitis in C57BL/6 mice is mitigated by sulforaphane pre-treatment.
J. Nutr. Biochem.
PUBLISHED: 05-23-2013
Show Abstract
Hide Abstract
The Brassica-derived isothiocyanate sulforaphane (SFN) is known to induce factor erythroid 2-related factor 2 (Nrf2), a transcription factor centrally involved in chemoprevention. Furthermore, SFN exhibits anti-inflammatory properties in vitro and in vivo. However, little is known regarding the anti-inflammatory properties of SFN in severe inflammatory phenotypes. In the present study, we tested if pre-treatment with SFN protects mice from dextran sodium sulphate (DSS)-induced colitis. C57BL/6 mice received either phosphate-buffered saline (control) or 25 mg/kg body weight (BW) SFN per os for 7 days. Subsequently, acute colitis was induced by administering 4% DSS via drinking water for 5 days and BWs, stool consistency and faecal blood loss were recorded. Following endoscopic colonoscopy, mice were sacrificed, the organs excised and spleen weights and colon lengths measured. For histopathological analysis, distal colon samples were fixed in 4% para-formaldehyde, sectioned and stained with hematoxylin/eosin. Inflammatory biomarkers were also measured in distal colon. Treatment with SFN prior to colitis induction significantly minimised both BW loss and the disease activity index compared to control mice. Furthermore, colon lengths in SFN pre-treated mice were significantly longer than in control mice. Both macroscopic and microscopic analysis of the colon revealed attenuated inflammation in SFN pre-treated animals. mRNA analysis of distal colon samples confirmed reduced expression of inflammatory markers and increased expression of Nrf2-dependent genes in SFN pre-treated mice. Our results indicate that pre-treating mice with SFN confers protection from DSS-induced colitis. These protective effects were corroborated macroscopically, microscopically and at the molecular level.
Related JoVE Video
Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization.
Cell Host Microbe
PUBLISHED: 05-07-2013
Show Abstract
Hide Abstract
Upon transit to colonization sites, bacteria often experience critical priming that prepares them for subsequent, specific interactions with the host; however, the underlying mechanisms are poorly described. During initiation of the symbiosis between the bacterium Vibrio fischeri and its squid host, which can be observed directly and in real time, approximately five V. fischeri cells aggregate along the mucociliary membranes of a superficial epithelium prior to entering host tissues. Here, we show that these few early host-associated symbionts specifically induce robust changes in host gene expression that are critical to subsequent colonization steps. This exquisitely sensitive response to the hosts specific symbiotic partner includes the upregulation of a host endochitinase, whose activity hydrolyzes polymeric chitin in the mucus into chitobiose, thereby priming the symbiont and also producing a chemoattractant gradient that promotes V. fischeri migration into host tissues. Thus, the host responds transcriptionally upon initial symbiont contact, which facilitates subsequent colonization.
Related JoVE Video
Janus--a comprehensive tool investigating the two faces of transcription.
Bioinformatics
PUBLISHED: 04-24-2013
Show Abstract
Hide Abstract
Protocols to generate strand-specific transcriptomes with next-generation sequencing platforms have been used by the scientific community roughly since 2008. Strand-specific reads allow for detection of antisense events and a higher resolution of expression profiles enabling extension of current transcript annotations. However, applications making use of this strandedness information are still scarce.
Related JoVE Video
When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition.
PLoS Biol.
PUBLISHED: 04-01-2013
Show Abstract
Hide Abstract
Conventional wisdom holds that the best way to treat infection with antibiotics is to hit early and hit hard. A favoured strategy is to deploy two antibiotics that produce a stronger effect in combination than if either drug were used alone. But are such synergistic combinations necessarily optimal? We combine mathematical modelling, evolution experiments, whole genome sequencing and genetic manipulation of a resistance mechanism to demonstrate that deploying synergistic antibiotics can, in practice, be the worst strategy if bacterial clearance is not achieved after the first treatment phase. As treatment proceeds, it is only to be expected that the strength of antibiotic synergy will diminish as the frequency of drug-resistant bacteria increases. Indeed, antibiotic efficacy decays exponentially in our five-day evolution experiments. However, as the theory of competitive release predicts, drug-resistant bacteria replicate fastest when their drug-susceptible competitors are eliminated by overly-aggressive treatment. Here, synergy exerts such strong selection for resistance that an antagonism consistently emerges by day 1 and the initially most aggressive treatment produces the greatest bacterial load, a fortiori greater than if just one drug were given. Whole genome sequencing reveals that such rapid evolution is the result of the amplification of a genomic region containing four drug-resistance mechanisms, including the acrAB efflux operon. When this operon is deleted in genetically manipulated mutants and the evolution experiment repeated, antagonism fails to emerge in five days and antibiotic synergy is maintained for longer. We therefore conclude that unless super-inhibitory doses are achieved and maintained until the pathogen is successfully cleared, synergistic antibiotics can have the opposite effect to that intended by helping to increase pathogen load where, and when, the drugs are found at sub-inhibitory concentrations.
Related JoVE Video
Association between variants of PRDM1 and NDP52 and Crohns disease, based on exome sequencing and functional studies.
Gastroenterology
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Genome-wide association studies (GWAS) have identified 140 Crohns disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through detailed sequencing, genetic association, expression, and functional studies.
Related JoVE Video
Signatures of mutational processes in human cancer.
Nature
PUBLISHED: 03-24-2013
Show Abstract
Hide Abstract
All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
Related JoVE Video
Transcriptome and genome sequencing uncovers functional variation in humans.
Nature
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of messenger RNA and microRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project--the first uniformly processed high-throughput RNA-sequencing data from multiple human populations with high-quality genome sequences. We discover extremely widespread genetic variation affecting the regulation of most genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on the cellular mechanisms of regulatory and loss-of-function variation, and allows us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome.
Related JoVE Video
Complete Genome Sequence of Bacillus thuringiensis Strain 407 Cry-.
Genome Announc
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
Bacillus thuringiensis is an insect pathogen that has been used widely as a biopesticide. Here, we report the genome sequence of strain 407 Cry-, which is used to study the genetic determinants of pathogenicity. The genome consists of a 5.5-Mb chromosome and nine plasmids, including a novel 502-kb megaplasmid.
Related JoVE Video
Oral glutamine supplementation improves intestinal permeability dysfunction in a murine acute graft-vs.-host disease model.
Am. J. Physiol. Gastrointest. Liver Physiol.
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
Although a profound barrier dysfunction has been reported, little is known about the pathophysiological mechanism evoking gastrointestinal graft-vs.-host disease (GI-GvHD) and apparent therapeutic options. The aim of this study was to evaluate the influence of oral glutamine on the course of GI-GvHD in an acute semiallogenic graft-vs.-host disease (GvHD) in irradiated B6D2F1 mice. An acute semiallogenic GvHD was induced by intraperitoneal injection of lymphocytes from C57BL/6 mice to irradiated B6D2F1 mice. Half of the GvHD animals received oral glutamine supplementation for 6 days started at the time of lymphocyte transfer. Six days after induction of the semiallogenic GvHD, jejunum specimens were prepared. The expression of the proinflammatory cytokine TNF-? and the tight junction protein occludin was investigated by PCR. Histological changes along with the apoptotic response were evaluated and intestinal permeability was assessed. Animals with GvHD showed a strong increase in paracellular permeability as a sign of the disturbed barrier function. TNF-? expression was significantly increased and the expression of the tight junction protein occludin decreased. GvHD led to mucosal atrophy, crypt hyperplasia, crypt apoptosis, and a disintegration of the tight junctions. Glutamine-treated mice showed reduced expression of TNF-?, increased occludin expression, fewer histological changes in the jejunum, smaller number of apoptotic cells in the crypt, and reduced gastrointestinal permeability. In conclusion, oral glutamine seems to have beneficial effects on the severity of inflammatory changes in the course of GvHD and might be a therapeutic option.
Related JoVE Video
Stories of love and hate: innate immunity and host-microbe crosstalk in the intestine.
Curr. Opin. Gastroenterol.
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
Recent advances in molecular techniques have enabled a deep view into the structure and function of the hosts immune system and the stably associated commensal intestinal flora. This review outlines selected aspects of the interplay of innate immune recognition and effectors that shape the ecological niches for the intestinal microbiota.
Related JoVE Video
NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer.
J. Clin. Invest.
PUBLISHED: 01-02-2013
Show Abstract
Hide Abstract
Instability in the composition of gut bacterial communities (dysbiosis) has been linked to common human intestinal disorders, such as Crohns disease and colorectal cancer. Here, we show that dysbiosis caused by Nod2 deficiency gives rise to a reversible, communicable risk of colitis and colitis-associated carcinogenesis in mice. Loss of either Nod2 or RIP2 resulted in a proinflammatory microenvironment that enhanced epithelial dysplasia following chemically induced injury. The condition could be improved by treatment with antibiotics or an anti-interleukin-6 receptor-neutralizing antibody. Genotype-dependent disease risk was communicable via maternally transmitted microbiota in both Nod2-deficient and WT hosts. Furthermore, reciprocal microbiota transplantation reduced disease risk in Nod2-deficient mice and led to long-term changes in intestinal microbial communities. Conversely, disease risk was enhanced in WT hosts that were recolonized with dysbiotic fecal microbiota from Nod2-deficient mice. Thus, we demonstrated that licensing of dysbiotic microbiota is a critical component of disease risk. Our results demonstrate that NOD2 has an unexpected role in shaping a protective assembly of gut bacterial communities and suggest that manipulation of dysbiosis is a potential therapeutic approach in the treatment of human intestinal disorders.
Related JoVE Video
Specific immune priming in the invasive ctenophore Mnemiopsis leidyi.
Biol. Lett.
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Specific immune priming enables an induced immune response upon repeated pathogen encounter. As a functional analogue to vertebrate immune memory, such adaptive plasticity has been described, for instance, in insects and crustaceans. However, towards the base of the metazoan tree our knowledge about the existence of specific immune priming becomes scattered. Here, we exposed the invasive ctenophore Mnemiopsis leidyi repeatedly to two different bacterial epitopes (Gram-positive or -negative) and measured gene expression. Ctenophores experienced either the same bacterial epitope twice (homologous treatments) or different bacterial epitopes (heterologous treatments). Our results demonstrate that immune gene expression depends on earlier bacterial exposure. We detected significantly different expression upon heterologous compared with homologous bacterial treatment at three immune activator and effector genes. This is the first experimental evidence for specific immune priming in Ctenophora and generally in non-bilaterian animals, hereby adding to our growing notion of plasticity in innate immune systems across all animal phyla.
Related JoVE Video
Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ?2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ?440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct ?-, ?- and ?-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ?30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
Related JoVE Video
Absence of major histocompatibility complex class II mediated immunity in pipefish, Syngnathus typhle: evidence from deep transcriptome sequencing.
Biol. Lett.
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The major histocompatibility complex (MHC)-mediated adaptive immune system is the hallmark of gnathostome immune defence. Recent work suggests that cod-like fishes (Gadidae) lack important components of the MHC class II mediated immunity. Here, we report a putative independent loss of functionality of this pathway in another species, the pipefish Syngnathus typhle, that belongs to a distantly related fish family (Syngnathidae). In a deep transcriptome sequencing approach comprising several independent normalized and non-normalized expressed sequence tag (EST) libraries with approximately 7.5 × 10(8) reads, sequenced with two next generation platforms (454 and Illumina), we were unable to identify MHC class II?/? genes as well as genes encoding associated receptors. Along with the recent findings in cod, our results suggest that immune systems of the Euteleosts may be more variable than previously assumed.
Related JoVE Video
Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-14-2011
Show Abstract
Hide Abstract
Large-scale transcription profiling via direct cDNA sequencing provides important insights as to how foundation species cope with increasing climatic extremes predicted under global warming. Species distributed along a thermal cline, such as the ecologically important seagrass Zostera marina, provide an opportunity to assess temperature effects on gene expression as a function of their long-term adaptation to heat stress. We exposed a southern and northern European population of Zostera marina from contrasting thermal environments to a realistic heat wave in a common-stress garden. In a fully crossed experiment, eight cDNA libraries, each comprising ~125 000 reads, were obtained during and after a simulated heat wave, along with nonstressed control treatments. Although gene-expression patterns during stress were similar in both populations and were dominated by classical heat-shock proteins, transcription profiles diverged after the heat wave. Gene-expression patterns in southern genotypes returned to control values immediately, but genotypes from the northern site failed to recover and revealed the induction of genes involved in protein degradation, indicating failed metabolic compensation to high sea-surface temperature. We conclude that the return of gene-expression patterns during recovery provides critical information on thermal adaptation in aquatic habitats under climatic stress. As a unifying concept for ecological genomics, we propose transcriptomic resilience, analogous to ecological resilience, as an important measure to predict the tolerance of individuals and hence the fate of local populations in the face of global warming.
Related JoVE Video
Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-08-2011
Show Abstract
Hide Abstract
The FUT2 (Secretor) gene is responsible for the presence of ABO histo-blood group antigens on the gastrointestinal mucosa and in bodily secretions. Individuals lacking a functional copy of FUT2 are known as "nonsecretors" and display an array of differences in susceptibility to infection and disease, including Crohn disease. To determine whether variation in resident microbial communities with respect to FUT2 genotype is a potential factor contributing to susceptibility, we performed 454-based community profiling of the intestinal microbiota in a panel of healthy subjects and Crohn disease patients and determined their genotype for the primary nonsecretor allele in Caucasian populations, W143X (G428A). Consistent with previous studies, we observe significant deviations in the microbial communities of individuals with Crohn disease. Furthermore, the FUT2 genotype explains substantial differences in community composition, diversity, and structure, and we identified several bacterial species displaying disease-by-genotype associations. These findings indicate that alterations in resident microbial communities may in part explain the variety of host susceptibilities surrounding nonsecretor status and that FUT2 is an important genetic factor influencing host-microbial diversity.
Related JoVE Video
A tissue-specific landscape of sense/antisense transcription in the mouse intestine.
BMC Genomics
PUBLISHED: 06-10-2011
Show Abstract
Hide Abstract
The intestinal mucosa is characterized by complex metabolic and immunological processes driven highly dynamic gene expression programs. With the advent of next generation sequencing and its utilization for the analysis of the RNA sequence space, the level of detail on the global architecture of the transcriptome reached a new order of magnitude compared to microarrays.
Related JoVE Video
Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model.
BMC Gastroenterol
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
Hematopoietic stem cell transplantation is increasingly performed for hematologic diseases. As a major side effect, acute graft versus host disease (GvHD) with serious gastrointestinal symptoms including diarrhea, gastrointestinal bleeding and high mortality can be observed. Because surveillance and biopsies of human gastrointestinal GvHD are difficult to perform, rare information of the alterations of the gastrointestinal barrier exists resulting in a need for systematic animal models.
Related JoVE Video
Toward the blood-borne miRNome of human diseases.
Nat. Methods
PUBLISHED: 05-09-2011
Show Abstract
Hide Abstract
In a multicenter study, we determined the expression profiles of 863 microRNAs by array analysis of 454 blood samples from human individuals with different cancers or noncancer diseases, and validated this miRNome by quantitative real-time PCR. We detected consistently deregulated profiles for all tested diseases; pathway analysis confirmed disease association of the respective microRNAs. We observed significant correlations (P = 0.004) between the genomic location of disease-associated genetic variants and deregulated microRNAs.
Related JoVE Video
Polymorphisms in the 3-untranslated region of the CDH1 gene are a risk factor for primary gastric diffuse large B-cell lymphoma.
Haematologica
PUBLISHED: 04-01-2011
Show Abstract
Hide Abstract
Primary gastric B-cell lymphomas arise from mucosa-associated lymphatic tissue (MALT) in patients with chronic Helicobacter pylori infection. We investigated whether germline variants in the CDH1 gene, coding for E-cadherin, genetically predispose patients to primary gastric B-cell lymphoma.
Related JoVE Video
Nod2 is essential for temporal development of intestinal microbial communities.
Gut
PUBLISHED: 03-18-2011
Show Abstract
Hide Abstract
The mammalian commensal gut microbiota is highly diverse and displays an individual-specific composition determined by host genotype and environmental factors. The temporal development of host-microbial homeostasis in the digestive tract is recognised as a major function of the immune system. However, the underlying cellular and molecular mechanisms are just beginning to come to light. Nucleotide-binding, oligomerisation domain 2 (NOD2) recognises bacterial muramyl dipeptide and is regarded as a pivotal sensor molecule of the intestinal barrier. The aim of this study was to investigate its influence on the development and composition of the intestinal microbiota using a Nod2-deficient mouse model.
Related JoVE Video
Characterization of changes in serum anti-glycan antibodies in Crohns disease--a longitudinal analysis.
PLoS ONE
PUBLISHED: 02-27-2011
Show Abstract
Hide Abstract
Anti-glycan antibodies are a promising tool for differential diagnosis and disease stratification of patients with Crohns disease (CD). We longitudinally assessed level and status changes of anti-glycan antibodies over time in individual CD patients as well as determinants of this phenomenon.
Related JoVE Video
Selective blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis model.
Crit. Care Med.
PUBLISHED: 02-22-2011
Show Abstract
Hide Abstract
The pleiotropic cytokine interleukin (IL)-6 seems to play a pivotal role in sepsis, but contradictory findings in animal models impede a rationale for therapies directed against IL-6. IL-6 signals by two mechanisms via the ubiquitous transmembrane glycoprotein 130 (gp130): "classic" signaling using membrane-bound IL-6 receptor (IL-6R) and trans-signaling using soluble IL-6R (sIL-6R). Trans-signaling is selectively inhibited by soluble gp130 (sgp130). The aim of this study was to systematically compare complete blockade of IL-6 signaling (using a neutralizing anti-IL-6 antibody) and selective blockade of IL-6 trans-signaling (using a fusion protein of sgp130 and the crystallizable fragment of immunoglobulin G1, sgp130Fc) in a standardized cecal ligation and puncture (CLP) sepsis model.
Related JoVE Video
Genome-wide expression profiling identifies an impairment of negative feedback signals in the Crohns disease-associated NOD2 variant L1007fsinsC.
J. Immunol.
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
NOD2 is an intracellular receptor for the bacterial cell wall component muramyl dipeptide (MDP), and variants of NOD2 are associated with chronic inflammatory diseases of barrier organs (e.g., Crohns disease, asthma, and atopic eczema). It is known that activation of NOD2 induces a variety of inflammatory and antibacterial factors. The exact transcriptomal signatures that define the cellular programs downstream of NOD2 activation and the influence of the Crohn-associated variant L1007fsinsC are yet to be defined. To describe the MDP-induced activation program, we analyzed the transcriptomal reactions of isogenic HEK293 cells expressing NOD2(wt) or NOD2(L1007fsinsC) to stimulation with MDP. Importantly, a clear loss of function could be observed in the cells carrying the Crohn-associated variant L1007fsinsC, whereas the NOD2(wt) cells showed differential regulation of growth factors, chemokines, and several antagonists of NF-?B (e.g., TNFAIP3 [A20] and IER3). This genotype-dependent regulation pattern was confirmed in primary human myelomonocytic cells. The influence of TNFAIP3 and IER3 in the context of NOD2 signaling was characterized, and we could validate the predicted role as inhibitors of NOD2-induced NF-?B activation. We show that IER3 impairs the protective effect of NOD2(wt) against bacterial cytoinvasion. These results further our understanding of NOD2 as a first-line defense molecule and emphasize the importance of simultaneous upregulation of counterregulatory anti-inflammatory factors as an integral part of the NOD2-induced cellular program. Lack of these regulatory events due to the L1007fsinsC variant may pivotally contribute to the induction and perpetuation of chronic inflammation.
Related JoVE Video
Alterations of pre-mRNA splicing in human inflammatory bowel disease.
Eur. J. Cell Biol.
PUBLISHED: 02-15-2011
Show Abstract
Hide Abstract
Alternative pre-mRNA splicing is regarded as a pivotal mechanism for generating proteome diversity and complexity from a limited inventory of mammalian genes. Aberrant splicing has been described as a predisposing factor for a number of diseases, but very little is known about its role in chronic inflammation. In this study, we systematically screened 149 splicing factors and 145 potential intron retention events for occurrence and differential expression in inflammatory bowel diseases (IBD). As a result, we identified 47 splicing factors and 33 intron retention events that were differentially regulated in mucosal tissue of IBD patients at transcript level. Despite the fact that Crohns disease and ulcerative colitis, two subtypes of IBD, share the expression patterns of splicing factors and intron retention events in the majority of cases, we observed significant differences. To investigate these subtype-specific changes in detail we determined the expression levels of seven splicing factors (DUSP11, HNRPAB, HNRPH3, SLU7, SFR2IP, SFPQ, SF3B14) and three intron retention events (PARC, IER3, FGD2) in a cohort of 165 patients with inflammatory diseases of the colon (120 with IBD) and 30 healthy controls by real time PCR (TaqMan). This study demonstrates the potential impact of regulated splicing factors on subsequent regulated intron retention in the pathogenesis of chronic inflammation, exemplified by IBD.
Related JoVE Video
Allele-specific, age-dependent and BMI-associated DNA methylation of human MCHR1.
PLoS ONE
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Melanin-concentrating hormone receptor 1 (MCHR1) plays a significant role in regulation of energy balance, food intake, physical activity and body weight in humans and rodents. Several association studies for human obesity showed contrary results concerning the SNPs rs133072 (G/A) and rs133073 (T/C), which localize to the first exon of MCHR1. The variations constitute two main haplotypes (GT, AC). Both SNPs affect CpG dinucleotides, whereby each haplotype contains a potential methylation site at one of the two SNP positions. In addition, 15 CpGs in close vicinity of these SNPs constitute a weak CpG island. Here, we studied whether DNA methylation in this sequence context may contribute to population- and age-specific effects of MCHR1 alleles in obesity.
Related JoVE Video
Comprehensive assessment of sequence variation within the copy number variable defensin cluster on 8p23 by target enriched in-depth 454 sequencing.
BMC Genomics
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
In highly copy number variable (CNV) regions such as the human defensin gene locus, comprehensive assessment of sequence variations is challenging. PCR approaches are practically restricted to tiny fractions, and next-generation sequencing (NGS) approaches of whole individual genomes e.g. by the 1000 Genomes Project is confined by an affordable sequence depth. Combining target enrichment with NGS may represent a feasible approach.
Related JoVE Video
IL-1? and ADAM17 are central regulators of ?-defensin expression in Candida esophagitis.
Am. J. Physiol. Gastrointest. Liver Physiol.
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
Candida albicans resides on epithelial surfaces as part of the physiological microflora. However, under certain conditions, it may cause life-threatening infections, including Candida sepsis. We have recently shown that human ?-defensins (hBDs) hBD-2 and hBD-3 are upregulated in Candida esophagitis and that this antifungal host response is distinctly regulated by NF-?B and MAPK/activator protein-1 (AP-1) pathways. Here, we show that C. albicans induces hBD-2 through an autocrine IL-1? loop and that activation of the epidermal growth factor receptor (EGFR) by endogenous transforming growth factor-? (TGF-?) is a crucial event in the induction of hBD-3. To further dissect upstream signaling events, we investigated expression of the central sheddases for EGFR ligands ADAM10 and ADAM17 in the healthy and infected esophagus. Next, we used pharmaceutical inhibitors and small-interfering RNA-mediated knock down of ADAM10 and ADAM17 to reveal that ADAM17-induced shedding of TGF-? is a crucial step in the induction of hBD-3 expression in response to Candida infection. In conclusion, we describe for the first time an autocrine IL-1? loop responsible for the induction of hBD-2 expression and an ADAM17-TGF-?-EGFR-MAPK/AP-1 pathway leading to hBD-3 upregulation in the course of a Candida infection of the esophagus.
Related JoVE Video
Constant splice-isoform ratios in human lymphoblastoid cells support the concept of a splico-stat.
Genetics
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Splicing generates mature transcripts from genes in pieces in eukaryotic cells. Overwhelming evidence has accumulated that alternative routes in splicing are possible for most human and mammalian genes, thereby allowing formation of different transcripts from one gene. No function has been assigned to the majority of identified alternative splice forms, and it has been assumed that they compose inert or tolerated waste from aberrant or noisy splicing. Here we demonstrate that five human transcription units (WT1, NOD2, GNAS, RABL2A, RABL2B) have constant splice-isoform ratios in genetically diverse lymphoblastoid cell lines independent of the type of alternative splicing (exon skipping, alternative donor/acceptor, tandem splice sites) and gene expression level. Even splice events that create premature stop codons and potentially trigger nonsense-mediated mRNA decay are found at constant fractions. The analyzed alternative splicing events were qualitatively but not quantitatively conserved in corresponding chimpanzee cell lines. Additionally, subtle splicing at tandem acceptor splice sites (GNAS, RABL2A/B) was highly constrained and strongly depends on the upstream donor sequence content. These results also demonstrate that unusual and unproductive splice variants are produced in a regulated manner.
Related JoVE Video
Defining the origins of the NOD-like receptor system at the base of animal evolution.
Mol. Biol. Evol.
PUBLISHED: 12-23-2010
Show Abstract
Hide Abstract
Distinguishing self from nonself and the onset of defense effector mechanisms upon recognition of pathogens are essential for the survival of all life forms in the animal kingdom. The family of nucleotide -binding and oligomeriszation domain-like receptors (NLRs) was first identified in vertebrates and comprises a group of pivotal sensor protein of the innate immune system for microbial cell wall components or danger signals. Here, we provide first evidence that early diverging metazoans have large and complex NLR repertoires. The cnidarian NACHT/NB-ARC genes include novel combinations of domains, and the number of one specific type (NB-ARC and tetratricopeptide repeat containing) in Hydra is particularly large. We characterize the transcript structure and expression patterns of a selected HyNLR, HyNLR type 1 and describe putative interaction partners. In a heterologous expression system, we show induced proximity recruitment of an effector caspase (HyDD-Caspase) to the HyNLR type 1 protein upon oligomerization indicating a potential role of caspase activation downstream of NLR activation in Hydra. These results add substantially to our understanding of the ancestral innate immune repertoire as well as providing the first insights into putative cytoplasmic defense mechanisms at the base of animal evolution.
Related JoVE Video
Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1.
J. Biol. Chem.
PUBLISHED: 10-19-2010
Show Abstract
Hide Abstract
Chlamydia trachomatis infections cause severe and irreversible damage that can lead to infertility and blindness in both males and females. Following infection of epithelial cells, Chlamydia induces production of reactive oxygen species (ROS). Unconventionally, Chlamydiae use ROS to their advantage by activating caspase-1, which contributes to chlamydial growth. NLRX1, a member of the Nod-like receptor family that translocates to the mitochondria, can augment ROS production from the mitochondria following Shigella flexneri infections. However, in general, ROS can also be produced by membrane-bound NADPH oxidases. Given the importance of ROS-induced caspase-1 activation in growth of the chlamydial vacuole, we investigated the sources of ROS production in epithelial cells following infection with C. trachomatis. In this study, we provide evidence that basal levels of ROS are generated during chlamydial infection by NADPH oxidase, but ROS levels, regardless of their source, are enhanced by an NLRX1-dependent mechanism. Significantly, the presence of NLRX1 is required for optimal chlamydial growth.
Related JoVE Video
The complex interplay of NOD-like receptors and the autophagy machinery in the pathophysiology of Crohn disease.
Eur. J. Cell Biol.
PUBLISHED: 08-31-2010
Show Abstract
Hide Abstract
Several coding variants of NOD2 and ATG16L1 are associated with increased risk of Crohn disease (CD). NOD2, a cytosolic receptor of the innate immune system activates pro-inflammatory signalling cascades upon recognition of bacterial muramyl dipeptide, but seems also to be involved in antiviral and anti-parasitic defence programs. The CD associated variant L1007fsinsC leads to impaired pro-inflammatory signalling and diminished bacterial clearance. ATG16L1 is a protein essential for autophagosome formation at the phagophore assembly site. The CD associated T300A variant is located in the c-terminal WD40 domain, whose function is still unknown. Basal autophagy is not affected by the T300A variant, but antibacterial autophagy (xenophagy) is impaired, a finding that relates ATG16L1 as well as NOD2 to pathogen defence. Notably, combination of disease-associated alleles of ATG16L1 and NOD2/CARD15 leads to synergistically increased susceptibility for CD, indicating a possible crosstalk between NOD2- and ATG16L1-mediated processes in the pathogenesis of CD. This review surveys current research results and discusses the functional models of potential interplay between NLR-pathways and xenophagy. Interaction between pathways is discussed in the context of reactive oxygen species (ROS), membrane co-localisation, antigen processing and implications of disturbed Paneth cell vesicle export. These effects on pathogen response might imbalance the intestinal barrier epithelia towards chronic inflammation and promote development of Crohn disease. Further elucidation of NOD2/ATG16L1 interplay in xenophagy is relevant for understanding the aetiology of chronic intestinal inflammation and host-microbe interaction in general and could lead to principal new insights to xenophagy induction.
Related JoVE Video
Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice.
J. Exp. Med.
PUBLISHED: 07-05-2010
Show Abstract
Hide Abstract
The protease a disintegrin and metalloprotease (ADAM) 17 cleaves tumor necrosis factor (TNF), L-selectin, and epidermal growth factor receptor (EGF-R) ligands from the plasma membrane. ADAM17 is expressed in most tissues and is up-regulated during inflammation and cancer. ADAM17-deficient mice are not viable. Conditional ADAM17 knockout models demonstrated proinflammatory activities of ADAM17 in septic shock via shedding of TNF. We used a novel gene targeting strategy to generate mice with dramatically reduced ADAM17 levels in all tissues. The resulting mice called ADAM17(ex/ex) were viable, showed compromised shedding of ADAM17 substrates from the cell surface, and developed eye, heart, and skin defects as a consequence of impaired EGF-R signaling caused by failure of shedding of EGF-R ligands. Unexpectedly, although the intestine of unchallenged homozygous ADAM17(ex/ex) mice was normal, ADAM17(ex/ex) mice showed substantially increased susceptibility to inflammation in dextran sulfate sodium colitis. This was a result of impaired shedding of EGF-R ligands resulting in failure to phosphorylate STAT3 via the EGF-R and, consequently, in defective regeneration of epithelial cells and breakdown of the intestinal barrier. Besides regulating the systemic availability of the proinflammatory cytokine TNF, our results demonstrate that ADAM17 is needed for vital regenerative activities during the immune response. Thus, our mouse model will help investigate ADAM17 as a potential drug target.
Related JoVE Video
I787 provides signals for c-Kit receptor internalization and functionality that control mast cell survival and development.
Blood
PUBLISHED: 07-01-2010
Show Abstract
Hide Abstract
Mast cell (MC) differentiation, survival, and activation are controlled by the membrane tyrosine kinase c-Kit upon interaction with stem cell factor (SCF). Here we describe a single point mutation induced by N-ethyl-N-nitrosurea (ENU) mutagenesis in C57BL/6J mice-an A to T transversion at position 2388 (exon 17) of the c-Kit gene, resulting in the isoleucine 787 substitution by phenylalanine (787F), and analyze the consequences of this mutation for ligand binding, signaling, and MC development. The Kit(787F/787F) mice carrying the single amino acid exchange of c-Kit lacks both mucosal and connective tissue-type MCs. In bone marrow-derived mast cells (BMMCs), the 787F mutation does not affect SCF binding and c-Kit receptor shedding, but strongly impairs SCF-induced cytokine production, degranulation enhancement, and apoptosis rescue. Interestingly, c-Kit downstream signaling in 787F BMMCs is normally initiated (Erk1/2 and p38 activation as well as c-Kit autophosphorylation) but fails to be sustained thereafter. In addition, 787F c-Kit does not efficiently mediate Cbl activation, leading to the absence of subsequent receptor ubiquitination and impaired c-Kit internalization. Thus, I787 provides nonredundant signals for c-Kit internalization and functionality.
Related JoVE Video
Recent transfer of an iron-regulated gene from the plastid to the nuclear genome in an oceanic diatom adapted to chronic iron limitation.
BMC Genomics
PUBLISHED: 06-01-2010
Show Abstract
Hide Abstract
Although the importance and widespread occurrence of iron limitation in the contemporary ocean is well documented, we still know relatively little about genetic adaptation of phytoplankton to these environments. Compared to its coastal relative Thalassiosira pseudonana, the oceanic diatom Thalassiosira oceanica is highly tolerant to iron limitation. The adaptation to low-iron conditions in T. oceanica has been attributed to a decrease in the photosynthetic components that are rich in iron. Genomic information on T. oceanica may shed light on the genetic basis of the physiological differences between the two species.
Related JoVE Video
SNP discovery performance of two second-generation sequencing platforms in the NOD2 gene region.
Hum. Mutat.
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
A potentially important application of second generation sequencing technologies is to identify disease-associated variation. For comparison of the performance in SNP detection, the Crohns disease (CD)-associated NOD2 gene was subjected to targeted resequencing using two different second-generation sequencing technologies. Eleven CD patients were selected based on their haplotype background at the NOD2 locus. The 40-kb large NOD2 gene region was amplified using long-range PCR (LR-PCR), and sequenced with the Roche 454/FLX system, an Applied Biosystems SOLiD mate-pair library (2 x 25 bp), and a SOLiD fragment (50 bp) library. The entire NOD2 region was also sequenced using conventional Sanger technology. Four-hundred forty-two single nucleotide polymorphisms (SNPs) were discovered with the SOLiD mate-pair library, 454 with the fragment library, and 441 with the 454/FLX. For the homozygous SNPs, 98% were confirmed by Sanger for the mate-pair library, 100% for the fragment library and 99% for the 454/FLX. Ninety-six percent of the heterozygous SNPs detected with the SOLiD mate-pair library, 91% with the fragment library and 96% with the 454/FLX were confirmed by Sanger. In a simulation, the SNP detection performance fell rapidly when the achieved coverage was below 40 x. Due to uneven representation of the target region when using LR-PCR, oversequencing of other regions is necessary.
Related JoVE Video
TassDB2 - A comprehensive database of subtle alternative splicing events.
BMC Bioinformatics
PUBLISHED: 04-29-2010
Show Abstract
Hide Abstract
Subtle alternative splicing events involving tandem splice sites separated by a short (2-12 nucleotides) distance are frequent and evolutionarily widespread in eukaryotes, and a major contributor to the complexity of transcriptomes and proteomes. However, these events have been either omitted altogether in databases on alternative splicing, or only the cases of experimentally confirmed alternative splicing have been reported. Thus, a database which covers all confirmed cases of subtle alternative splicing as well as the numerous putative tandem splice sites (which might be confirmed once more transcript data becomes available), and allows to search for tandem splice sites with specific features and download the results, is a valuable resource for targeted experimental studies and large-scale bioinformatics analyses of tandem splice sites. Towards this goal we recently set up TassDB (Tandem Splice Site DataBase, version 1), which stores data about alternative splicing events at tandem splice sites separated by 3 nt in eight species.
Related JoVE Video
Caspase recruitment domain-containing protein 8 (CARD8) negatively regulates NOD2-mediated signaling.
J. Biol. Chem.
PUBLISHED: 04-12-2010
Show Abstract
Hide Abstract
Caspase activating and recruitment domain 8 (CARD8) has been implicated as a co-regulator of several pro-inflammatory and apoptotic signaling pathways. In the present study, we demonstrate a specific modulation of NOD2-induced signaling by CARD8 in intestinal epithelial cells. We show that CARD8 physically interacts with NOD2 and inhibits nodosome assembly and subsequent signaling upon muramyl-dipeptide stimulation. Furthermore, CARD8 inhibits the direct bactericidal effect of NOD2 against intracellular infection by Listeria monocytogenes. Thus, CARD8 represents a novel molecular switch involved in the endogenous regulation of NOD2-dependent inflammatory processes in epithelial cells.
Related JoVE Video
NOD2-C2 - a novel NOD2 isoform activating NF-kappaB in a muramyl dipeptide-independent manner.
BMC Res Notes
PUBLISHED: 03-29-2010
Show Abstract
Hide Abstract
The innate immune system employs several receptor families that form the basis of sensing pathogen-associated molecular patterns. NOD (nucleotide-binding and oligomerization domain) like receptors (NLRs) comprise a group of cytosolic proteins that trigger protective responses upon recognition of intracellular danger signals. NOD2 displays a tandem caspase recruitment domain (CARD) architecture, which is unique within the NLR family.
Related JoVE Video
Nucleotide divergence vs. gene expression differentiation: comparative transcriptome sequencing in natural isolates from the carrion crow and its hybrid zone with the hooded crow.
Mol. Ecol.
PUBLISHED: 03-25-2010
Show Abstract
Hide Abstract
Recent advances in sequencing technology promise to provide new strategies for studying population differentiation and speciation phenomena in their earliest phases. We focus here on the black carrion crow (Corvus [corone] corone), which forms a zone of hybridization and overlap with the grey coated hooded crow (Corvus [corone] cornix). However, although these semispecies are taxonomically distinct, previous analyses based on several types of genetic markers did not reveal significant molecular differentiation between them. We here corroborate this result with sequence data obtained from a set of 25 nuclear intronic loci. Thus, the system represents a case of a very early phase of species divergence that requires new molecular approaches for its description. We have therefore generated RNAseq expression profiles using barcoded massively parallel pyrosequencing of brain mRNA from six individuals of the carrion crow and five individuals from a hybrid zone with the hooded crow. We obtained 856 675 reads from two runs, with average read length of 270 nt and coverage of 8.44. Reads were assembled de novo into 19 552 contigs, 70% of which could be assigned to annotated genes in chicken and zebra finch. This resulted in a total of 7637 orthologous genes and a core set of 1301 genes that could be compared across all individuals. We find a clear clustering of expression profiles for the pure carrion crow animals and disperse profiles for the animals from the hybrid zone. These results suggest that gene expression differences may indeed be a sensitive indicator of initial species divergence.
Related JoVE Video
Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL).
Nat. Genet.
PUBLISHED: 02-19-2010
Show Abstract
Hide Abstract
We performed a genome-wide association analysis of 1,897,764 SNPs in 1,043 German ulcerative colitis (UC) cases and 1,703 controls. We discovered new associations at chromosome 7q22 (rs7809799) and at chromosome 22q13 in IL17REL (rs5771069) and confirmed these associations in six replication panels (2,539 UC cases and 5,428 controls) from different regions of Europe (overall study sample P(rs7809799) = 8.81 x 10(-11) and P(rs5771069) = 4.21 x 10(-8), respectively).
Related JoVE Video
Analysis of relative gene dosage and expression differences of the paralogs RABL2A and RABL2B by Pyrosequencing.
Gene
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
The paralogous genes RABL2A (chr2) and RABL2B (chr22) emerged by duplication of a single gene in the human-chimpanzee ancestor and share a high degree of sequence similarity. In Phelan-McDermid-Syndrome microdeletions of 22q13 often also affecting RABL2B are of clinical importance but their incidence is still unknown. We analyzed a German population (190 individuals) for such aneuploidies and the paralogs expression in cell lines by RABL2 paralogous sequence quantification. For determination of the genomic and transcriptional ratios of RABL2A and RABL2B a Pyrosequencing protocol was introduced as a high-throughput method. During PCR the 3 end of the biotinylated strand is engineered by a backfolding oligonucleotide to hybridize in the Pyrosequencing reaction to an internal site near the sequence to be analyzed. In human samples no deviations of the euploid genomic state could be detected indicating that 22q13 microdeletions involving RABL2B are rare. However, despite equal gene dosage a preferential expression of RABL2B in human tissues and lymphoblastoid cell lines was detected which is most pronounced in brain and placenta. This renders a complete functional complementation of one paralog by the respective other unlikely and hints to a functional and clinical importance, in particular with respect to the 22q13 chromosomal deletion syndrome. Remarkably and in contrast to human, expression levels of the two paralogs in a chimpanzee cell line are equal. This finding is discussed in view of the relocation of RABL2A from its ancestral telomeric to its pericentromeric location in human.
Related JoVE Video
Haplotyping and copy number estimation of the highly polymorphic human beta-defensin locus on 8p23 by 454 amplicon sequencing.
BMC Genomics
PUBLISHED: 01-22-2010
Show Abstract
Hide Abstract
The beta-defensin gene cluster (DEFB) at chromosome 8p23.1 is one of the most copy number (CN) variable regions of the human genome. Whereas individual DEFB CNs have been suggested as independent genetic risk factors for several diseases (e.g. psoriasis and Crohns disease), the role of multisite sequence variations (MSV) is less well understood and to date has only been reported for prostate cancer. Simultaneous assessment of MSVs and CNs can be achieved by PCR, cloning and Sanger sequencing, however, these methods are labour and cost intensive as well as prone to methodological bias introduced by bacterial cloning. Here, we demonstrate that amplicon sequencing of pooled individual PCR products by the 454 technology allows in-depth determination of MSV haplotypes and estimation of DEFB CNs in parallel.
Related JoVE Video
The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses.
J. Immunol.
PUBLISHED: 01-08-2010
Show Abstract
Hide Abstract
Nucleotide-binding oligomerization domain-like receptors (NLRs) are a group of intracellular proteins that mediate recognition of pathogen-associated molecular patterns or other cytosolic danger signals. Mutations in NLR genes have been linked to a variety of inflammatory diseases, underscoring their pivotal role in host defense and immunity. This report describes the genomic organization and regulation of the human NLR family member NLRC5 and aspects of cellular function of the encoded protein. We have analyzed the tissue-specific expression of NLRC5 and have characterized regulatory elements in the NLRC5 promoter region that are responsive to IFN-gamma. We show that NLRC5 is upregulated in human fibroblasts postinfection with CMV and demonstrate the role of a JAK/STAT-mediated autocrine signaling loop involving IFN-gamma. We demonstrate that overexpression and enforced oligomerization of NLRC5 protein results in activation of the IFN-responsive regulatory promoter elements IFN-gamma activation sequence and IFN-specific response element and upregulation of antiviral target genes (e.g., IFN-alpha, OAS1, and PRKRIR). Finally, we demonstrate the effect of small interfering RNA-mediated knockdown of NLRC5 on a target gene level in the context of viral infection. We conclude that NLRC5 may represent a molecular switch of IFN-gamma activation sequence/IFN-specific response element signaling pathways contributing to antiviral defense mechanisms.
Related JoVE Video
Decreased sigmoidal ABCB1 (P-glycoprotein) expression in ulcerative colitis is associated with disease activity.
Pharmacogenomics
PUBLISHED: 12-05-2009
Show Abstract
Hide Abstract
The modulation of the intestinal expression of detoxifying proteins by relevant transcription factors, intracellular receptors and cytokines in ulcerative colitis (UC) is poorly understood. Here, we compared the intestinal expression of drug transporters, metabolizing enzymes and putative regulatory genes between inflamed and noninflamed tissue and studied their modulation by disease activity.
Related JoVE Video
G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation.
J. Immunol.
PUBLISHED: 11-16-2009
Show Abstract
Hide Abstract
Molecular danger signals attract neutrophilic granulocytes (polymorphonuclear leukocytes (PMNs)) to sites of infection. The G protein-coupled receptor (GPR) 43 recognizes propionate and butyrate and is abundantly expressed on PMNs. The functional role of GPR43 activation for in vivo orchestration of immune response is unclear. We examined dextrane sodium sulfate (DSS)-induced acute and chronic intestinal inflammatory response in wild-type and Gpr43-deficient mice. The severity of colonic inflammation was assessed by clinical signs, histological scoring, and cytokine production. Chemotaxis of wild-type and Gpr43-deficient PMNs was assessed through transwell cell chemotactic assay. A reduced invasion of PMNs and increased mortality due to septic complications were observed in acute DSS colitis. In chronic DSS colitis, Gpr43(-/-) animals showed diminished PMN intestinal migration, but protection against inflammatory tissue destruction. No significant difference in PMN migration and cytokine secretion was detected in a sterile inflammatory model. Ex vivo experiments show that GPR43-induced migration is dependent on activation of the protein kinase p38alpha, and that this signal acts in cooperation with the chemotactic cytokine keratinocyte chemoattractant. Interestingly, shedding of L-selectin in response to propionate and butyrate was compromised in Gpr43(-/-) mice. These results indicate a critical role for GPR43-mediated recruitment of PMNs in containing intestinal bacterial translocation, yet also emphasize the bipotential role of PMNs in mediating tissue destruction in chronic intestinal inflammation.
Related JoVE Video
N-linked glycosylation is essential for the stability but not the signaling function of the interleukin-6 signal transducer glycoprotein 130.
J. Biol. Chem.
PUBLISHED: 11-13-2009
Show Abstract
Hide Abstract
N-Linked glycosylation is an important determinant of protein structure and function. The interleukin-6 signal transducer glycoprotein 130 (gp130) is a common co-receptor for cytokines of the interleukin (IL)-6 family and is N-glycosylated at 9 of 11 potential sites. Whereas N-glycosylation of the extracellular domains D1-D3 of gp130 has been shown to be dispensable for binding of the gp130 ligand IL-6 and its cognate receptor in vitro, the role of the N-linked glycans on domains D4 and D6 is still unclear. We have mutated the asparagines of all nine functional N-glycosylation sites of gp130 to glutamine and systematically analyzed the consequences of deleted N-glycosylation (dNG) in both cellular gp130 and in a soluble gp130-IgG1-Fc fusion protein (sgp130Fc). Our results show that sgp130Fc-dNG is inherently unstable and degrades rapidly under conditions that do not harm wild-type sgp130Fc. Consistently, the bulk of cellular gp130-dNG is not transported to the plasma membrane but is degraded in the proteasome. However, the small quantities of gp130-dNG, which do reach the cell surface, are still able to activate the key gp130 signaling target signal transducer and activator of transcription-3 (STAT3) upon binding of the agonistic complex of IL-6 and soluble IL-6 receptor. In conclusion, N-linked glycosylation is required for the stability but not the signal-transducing function of gp130.
Related JoVE Video
A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis.
Hum. Mol. Genet.
PUBLISHED: 11-06-2009
Show Abstract
Hide Abstract
Periodontitis is a widespread, complex inflammatory disease of the mouth, which results in a loss of gingival tissue and alveolar bone, with aggressive periodontitis (AgP) as its most severe form. To identify genetic risk factors for periodontitis, we conducted a genome-wide association study in German AgP patients. We found AgP to be strongly associated with the intronic SNP rs1537415, which is located in the glycosyltransferase gene GLT6D1. We replicated the association in a panel of Dutch generalized and localized AgP patients. In the combined analysis including 1758 subjects, rs1537415 reached a genome-wide significance level of P= 5.51 x 10(-9), OR = 1.59 (95% CI 1.36-1.86). The associated rare G allele of rs1537415 showed an enrichment of 10% in periodontitis cases (48.4% in comparison with 38.8% in controls). Fine-mapping and a haplotype analysis indicated that rs1537415 showed the strongest association signal. Sequencing identified no further associated variant. Tissue-specific expression analysis of GLT6D1 indicated high transcript levels in the leukocytes, the gingiva and testis. Analysis of potential transcription factor binding sites at this locus predicted a significant reduction of GATA-3 binding affinity, and an electrophoretic mobility assay indicated a T cell specific reduction of protein binding for the G allele. Overexpression of GATA-3 in HEK293 cells resulted in allele-specific binding of GATA-3, indicating the identity of GATA-3 as the binding protein. The identified association of GLT6D1 with AgP implicates this locus as an important susceptibility factor, and GATA-3 as a potential signaling component in the pathophysiology of periodontitis.
Related JoVE Video
NOD-like receptors--pivotal guardians of the immunological integrity of barrier organs.
Adv. Exp. Med. Biol.
PUBLISHED: 10-06-2009
Show Abstract
Hide Abstract
NOD-like receptors (NLRs) exert pivotal roles in innate immunity as sensors of exogenous or endogenous cellular danger signals. The NLR protein family has a characteristic domain architecture comprising a central nucleotide binding and oligomerization domain (NOD), an N-terminal effector binding domain and C-terminal leucine-rich repeats (LRRs). Mutations in NLR genes are genetically associated with a number of chronic inflammatory diseases of barrier organs. In this chapter, we focus on the influence of NLR regulation and function in the complex pathophysiology of mucosal homeostasis. The understanding of NLR biology may guide our future understanding of how the interaction between the human genome and the metagenome of transient and resident microbiota precipitates into chronic inflammatory disorders, such as Crohns disease or atopy.
Related JoVE Video
DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses.
J. Cell. Sci.
PUBLISHED: 09-18-2009
Show Abstract
Hide Abstract
Generation of microbicidal reactive oxygen species (ROS) is a pivotal protective component of the innate immune system in many eukaryotes. NOD (nucleotide oligomerisation domain containing protein)-like receptors (NLRs) have been implicated as phylogenetically ancient sensors of intracellular pathogens or endogenous danger signals. NOD2 recognizes the bacterial cell wall component muramyldipeptide leading to NFkappaB and MAPK activation via induced proximity signalling through the serine-threonine kinase RIP2. In addition to the subsequent induction of cytokines and antimicrobial peptides, NOD2 has been shown also to exert a direct antibacterial effect. Using a fluorescence-based ROS detection assay we demonstrate controlled ROS generation as an integral component of NOD2-induced signalling in epithelial cells. We demonstrate that the NAD(P)H oxidase family member DUOX2 is involved in NOD2-dependent ROS production. Coimmunoprecipitation and fluorescence microscopy were used to show that DUOX2 interacts and colocalizes with NOD2 at the plasma membrane. Moreover, simultaneous overexpression of NOD2 and DUOX2 was found to result in cooperative protection against bacterial cytoinvasion using the Listeria monocytogenes infection model. RNAi-based studies revealed that DUOX2 is required for the direct bactericidal properties of NOD2. Our results demonstrate a new role of ROS as effector molecules of protective cellular signalling in response to a defined danger signal carried out by a mammalian intracellular NLR system.
Related JoVE Video
Involvement of Phospholipase D 1 and 2 in the subcellular localization and activity of formyl-peptide-receptors in the human colonic cell line HT29.
Mol. Membr. Biol.
PUBLISHED: 08-21-2009
Show Abstract
Hide Abstract
Epithelial cells of the alimentary tract play a central role in the mucosal host defence against pathogens and in the recognition of agonists that interact with mucosal surfaces. In particular, the formyl peptide receptor (FPR) family and their three human subtypes: FPR, formyl-peptide-receptor-like-1 (FPRL1) and FPRL2, are involved in the host defence against pathogens that mediate epithelial responses thus upregulating inflammation. To elucidate the mechanisms by which FPR function, we examined the influence of phospholipase D (PLD) 1 and 2 on the activity and signal transduction of human enterocytes cell line HT29. PLD is a key enzyme involved in secretion, endocytosis and receptor signalling. We inhibited PLD1 and 2 by small interference RNA (siRNA) and determined the activity of formyl peptide receptors using Western blotting and cAMP level measurements. We then analyzed the distribution of formyl peptide receptors FPR, FPRL1 and FPRL2 compared to a control. In this study, we demonstrated that the depletion of PLD1 and 2 resulted in a marked reduction of formyl peptide receptor activity due to inhibited extracellular-signal regulated kinases 1/2 (ERK1/2), phosphorylation and cAMP level reduction. In addition, we observed an intracellular accumulation of FPR, FPRL1 and FPRL2 as a result of receptor recycling inhibition using fluorescence microscopy. The constitutive internalization rate was unaffected. Our results support the importance of PLD1 and 2 in formyl peptide receptor function and the role of endocytosis, receptor recycling and reactivation for receptor activity.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.