JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Deletion of small ankyrin 1 (sAnk1) isoforms results in structural and functional alterations in aging skeletal muscles fibers.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 10-31-2014
Show Abstract
Hide Abstract
Muscle-specific ankyrins 1 (sAnk1) are a group of small ankyrin 1 isoforms, of which sAnk1.5 is the most abundant. sAnk1 are localized in the sarcoplasmic reticulum (SR) membrane from where they interact with obscurin, a myofibrillar protein. This interaction appears to contribute to stabilize the SR close to the myofibrils. Here we report the structural and functional characterization of skeletal muscles from sAnk1 knockout mice (KO). Deletion of sAnk1 did not change the expression and localization of SR proteins in 4-6 month old sAnk1 KO mice. Structurally, the main modification observed in skeletal muscles of adult sAnk1 KO mice (4-6 months of age) was the reduction of SR volume at the sarcomere A band level. With increasing age (at 12-15 months) EDL skeletal muscles of sAnk1 KO mice develop prematurely large tubular aggregates, whereas diaphragm undergoes significant structural damage. Parallel functional studies revealed specific changes in the contractile performance of muscles from sAnk1 KO mice and a reduced exercise tolerance in an endurance test on treadmill compared to control mice. Moreover, reduced Q? charge and L-type Ca(2+)current, that are indexes of affected e-c coupling, were observed in diaphragm fibers from 12-15 month old mice, but not in other skeletal muscles from sAnk1 KO mice. Altogether, these findings show that the ablation of sAnk1, by altering the organization of the SR, renders skeletal muscles susceptible to undergo structural and functional alterations more evident with age, and point to an important contribution of sAnk1 to the maintenance of the longitudinal SR architecture.
Related JoVE Video
SQSTM1 gene analysis and gene-environment interaction in Pagets disease of bone.
J. Bone Miner. Res.
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
Even though SQSTM1 gene mutations have been identified in a consistent number of patients, the etiology of Pagets disease of bone (PDB) remains in part unknown. In this study we analyzed SQSTM1 mutations in 533 of 608 consecutive PDB patients from several regions, including the high-prevalence area of Campania (also characterized by increased severity of PDB, higher number of familial cases, and peculiar phenotypic characteristics as giant cell tumor). Eleven different mutations (Y383X, P387L, P392L, E396X, M401V, M404V, G411S, D423X, G425E, G425R, and A427D) were observed in 34 of 92 (37%) and 43 of 441 (10%) of familial and sporadic PDB patients, respectively. All five patients with giant cell tumor complicating familial PDB were negative for SQSTM1 mutations. An increased heterogeneity and a different distribution of mutations were observed in southern Italy (showing 9 of the 11 mutations) than in central and northern Italy. Genotype-phenotype analysis showed only a modest reduction in age at diagnosis in patients with truncating versus missense mutations, whereas the number of affected skeletal sites did not differ significantly. Patients from Campania had the highest prevalence of animal contacts (i.e., working or living on a farm or pet ownership) without any difference between patients with or without mutation. However, when familial cases from Campania were considered, animal contacts were observed in 90% of families without mutations. Interestingly, a progressive age-related decrease in the prevalence of animal contacts, as well as a parallel increase in the prevalence of SQSTM1 mutations, was observed in most regions except in the subgroup of patients from Campania. Moreover, patients reporting animal contacts showed an increased number of affected sites (2.54 +/- 2.0 versus 2.19 +/- 1.9, p < .05) over patients without animal contacts. This difference also was evidenced in the subgroup of patients with SQSTM1 mutations (3.84 +/- 2.5 versus 2.76 +/- 2.2, p < .05). Overall, these data suggest that animal-related factors may be important in the etiology of PDB and may interact with SQSTM1 mutations in influencing disease severity.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.