JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Phenotypic and Transcriptional Analysis of Divergently Selected Maize Populations Reveals the Role of Developmental Timing in Seed Size Determination.
Plant Physiol.
PUBLISHED: 04-07-2014
Show Abstract
Hide Abstract
Seed size is a component of grain yield and an important trait in crop domestication. To understand the mechanisms governing seed size in maize (Zea mays), we examined transcriptional and developmental changes during seed development in populations divergently selected for large and small seed size from Krug, a yellow dent maize cultivar. After 30 cycles of selection, seeds of the large seed population (KLS30) have a 4.7-fold greater weight and a 2.6-fold larger size compared with the small seed population (KSS30). Patterns of seed weight accumulation from the time of pollination through 30 d of grain filling showed an earlier onset, slower rate, and earlier termination of grain filling in KSS30 relative to KLS30. This was further supported by transcriptome patterns in seeds from the populations and derived inbreds. Although the onset of key genes was earlier in small seeds, similar maximum transcription levels were observed in large seeds at later stages, suggesting that functionally weaker alleles, rather than transcript abundance, may be the basis of the slow rate of seed filling in KSS30. Gene coexpression networks identified several known genes controlling cellularization and proliferation as well as novel genes that will be useful candidates for biotechnological approaches aimed at altering seed size in maize and other cereals.
Related JoVE Video
Insights into the maize pan-genome and pan-transcriptome.
Plant Cell
PUBLISHED: 01-31-2014
Show Abstract
Hide Abstract
Genomes at the species level are dynamic, with genes present in every individual (core) and genes in a subset of individuals (dispensable) that collectively constitute the pan-genome. Using transcriptome sequencing of seedling RNA from 503 maize (Zea mays) inbred lines to characterize the maize pan-genome, we identified 8681 representative transcript assemblies (RTAs) with 16.4% expressed in all lines and 82.7% expressed in subsets of the lines. Interestingly, with linkage disequilibrium mapping, 76.7% of the RTAs with at least one single nucleotide polymorphism (SNP) could be mapped to a single genetic position, distributed primarily throughout the nonpericentromeric portion of the genome. Stepwise iterative clustering of RTAs suggests, within the context of the genotypes used in this study, that the maize genome is restricted and further sampling of seedling RNA within this germplasm base will result in minimal discovery. Genome-wide association studies based on SNPs and transcript abundance in the pan-genome revealed loci associated with the timing of the juvenile-to-adult vegetative and vegetative-to-reproductive developmental transitions, two traits important for fitness and adaptation. This study revealed the dynamic nature of the maize pan-genome and demonstrated that a substantial portion of variation may lie outside the single reference genome for a species.
Related JoVE Video
Marker density and read depth for genotyping populations using genotyping-by-sequencing.
Genetics
PUBLISHED: 02-14-2013
Show Abstract
Hide Abstract
Genotyping-by-sequencing (GBS) approaches provide low-cost, high-density genotype information. However, GBS has unique technical considerations, including a substantial amount of missing data and a nonuniform distribution of sequence reads. The goal of this study was to characterize technical variation using this method and to develop methods to optimize read depth to obtain desired marker coverage. To empirically assess the distribution of fragments produced using GBS, ?8.69 Gb of GBS data were generated on the Zea mays reference inbred B73, utilizing ApeKI for genome reduction and single-end reads between 75 and 81 bp in length. We observed wide variation in sequence coverage across sites. Approximately 76% of potentially observable cut site-adjacent sequence fragments had no sequencing reads whereas a portion had substantially greater read depth than expected, up to 2369 times the expected mean. The methods described in this article facilitate determination of sequencing depth in the context of empirically defined read depth to achieve desired marker density for genetic mapping studies.
Related JoVE Video
Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize.
J Proteomics
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The maize pericarp color1 (p1) gene encodes a Myb transcription factor that regulates the accumulation of 3-deoxyflavonoid pigments called phlobaphenes. The Unstable factor for orange1 (Ufo1) is a dominant epigenetic modifier of the p1 that results in ectopic pigmentation in pericarp. Presence of Ufo1-1 correlates with pleiotropic growth and developmental defects. To investigate the Ufo1-1-induced changes in the proteome, we conducted comparative proteomics analysis of P1-wr; Ufo1-1 pericarps using the 2-D DIGE and iTRAQ techniques. Most of the identified proteins were found to be involved in glycolysis, protein synthesis and modification, flavonoid and lignin biosynthesis and defense responses. Further, immunoblot analysis of internode protein extracts demonstrated that caffeoyl CoA O-methyltransferase (COMT) is post-transcriptionally down regulated in P1-wr; Ufo1-1 plants. Consistent with the down regulation of COMT, the concentrations of p-coumaric acid, syringaldehydes, and lignin are reduced in P1-wr; Ufo1-1 internodes. The reductions in these phenylpropanoids correlate with the bent stalk and stunted growth of P1-wr; Ufo1-1 plants. Finally, over-expression of the p1 in transgenic plants is also correlated with a lodging phenotype and reduced COMT expression. We conclude that ectopic expression of p1 can result in developmental defects that are correlated with altered regulation and synthesis of phenylpropanoid compounds including lignin.
Related JoVE Video
Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Transcriptome analysis is a valuable tool for identification and characterization of genes and pathways underlying plant growth and development. We previously published a microarray-based maize gene atlas from the analysis of 60 unique spatially and temporally separated tissues from 11 maize organs [1]. To enhance the coverage and resolution of the maize gene atlas, we have analyzed 18 selected tissues representing five organs using RNA sequencing (RNA-Seq). For a direct comparison of the two methodologies, the same RNA samples originally used for our microarray-based atlas were evaluated using RNA-Seq. Both technologies produced similar transcriptome profiles as evident from high Pearsons correlation statistics ranging from 0.70 to 0.83, and from nearly identical clustering of the tissues. RNA-Seq provided enhanced coverage of the transcriptome, with 82.1% of the filtered maize genes detected as expressed in at least one tissue by RNA-Seq compared to only 56.5% detected by microarrays. Further, from the set of 465 maize genes that have been historically well characterized by mutant analysis, 427 show significant expression in at least one tissue by RNA-Seq compared to 390 by microarray analysis. RNA-Seq provided higher resolution for identifying tissue-specific expression as well as for distinguishing the expression profiles of closely related paralogs as compared to microarray-derived profiles. Co-expression analysis derived from the microarray and RNA-Seq data revealed that broadly similar networks result from both platforms, and that co-expression estimates are stable even when constructed from mixed data including both RNA-Seq and microarray expression data. The RNA-Seq information provides a useful complement to the microarray-based maize gene atlas and helps to further understand the dynamics of transcription during maize development.
Related JoVE Video
Genome-wide atlas of transcription during maize development.
Plant J.
PUBLISHED: 03-09-2011
Show Abstract
Hide Abstract
Maize is an important model species and a major constituent of human and animal diets. It has also emerged as a potential feedstock and model system for bioenergy research due to recent worldwide interest in developing plant biomass-based, carbon-neutral liquid fuels. To understand how the underlying genome sequence results in specific plant phenotypes, information on the temporal and spatial transcription patterns of genes is crucial. Here we present a comprehensive atlas of global transcription profiles across developmental stages and plant organs. We used a NimbleGen microarray containing 80,301 probe sets to profile transcription patterns in 60 distinct tissues representing 11 major organ systems of inbred line B73. Of the 30,892 probe sets representing the filtered B73 gene models, 91.4% were expressed in at least one tissue. Interestingly, 44.5% of the probe sets were expressed in all tissues, indicating a substantial overlap of gene expression among plant organs. Clustering of maize tissues based on global gene expression profiles resulted in formation of groups of biologically related tissues. We utilized this dataset to examine the expression of genes that encode enzymes in the lignin biosynthetic pathway, and found that expansion of distinct gene families was accompanied by divergent, tissue-specific transcription patterns of the paralogs. This comprehensive expression atlas represents a valuable resource for gene discovery and functional characterization in maize.
Related JoVE Video
Tissue culture-induced novel epialleles of a Myb transcription factor encoded by pericarp color1 in maize.
Genetics
PUBLISHED: 09-07-2010
Show Abstract
Hide Abstract
Plants regenerated from tissue culture often display somaclonal variation, that is, somatic and often meiotically heritable phenotypic variation that can result from both genetic and epigenetic modifications. To better understand the molecular basis of somaclonal variation, we have characterized four unique tissue culture-derived epialleles of the pericarp color1 (p1) gene of maize (Zea mays L.). The progenitor p1 allele, P1-wr, is composed of multiple head-to-tail tandemly arranged copies of the complete gene unit and specifies brick-red phlobaphene pigmentation in the cob glumes. The novel epialleles identified in progeny plants regenerated from tissue culture showed partial to complete loss of p1 function indicated by pink or colorless cob glumes. Loss of pigmentation was correlated with nearly complete loss of p1 steady-state transcripts. DNA gel-blot analysis and genomic bisulfite sequencing showed that silencing of the epialleles was associated with hypermethylation of a region in the second intron of P1-wr. Presence of Unstable factor for orange1 (Ufo1), an unlinked epigenetic modifier of p1, restored the cob glume pigmentation in the silenced alleles, and such reactivation was accompanied by hypomethylation of the p1 sequence. This observation confirmed that silencing of the epialleles is indeed due to epigenetic modifications and that the p1 epialleles were capable of functioning in the presence of the correct trans-acting factors. While the low-copy regions of the genome generally undergo hypomethylation during tissue culture, our study shows that the tandemly repeated genes are also prone to hypermethylation and epigenetic silencing.
Related JoVE Video
Gene structure induced epigenetic modifications of pericarp color1 alleles of maize result in tissue-specific mosaicism.
PLoS ONE
PUBLISHED: 05-13-2009
Show Abstract
Hide Abstract
The pericarp color1 (p1) gene encodes for a myb-homologous protein that regulates the biosynthesis of brick-red flavonoid pigments called phlobahpenes. The pattern of pigmentation on the pericarp and cob glumes depends upon the allelic constitution at the p1 locus. p1 alleles have unique gene structure and copy number which have been proposed to influence the epigenetic regulation of tissue-specific gene expression. For example, the presence of tandem-repeats has been correlated with the suppression of pericarp pigmentation though a mechanism associated with increased DNA methylation.
Related JoVE Video
Progressive loss of DNA methylation releases epigenetic gene silencing from a tandemly repeated maize Myb gene.
Genetics
PUBLISHED: 03-07-2009
Show Abstract
Hide Abstract
Maize pericarp color1 (p1) gene, which regulates phlobaphene biosynthesis in kernel pericarp and cob glumes, offers an excellent genetic system to study tissue-specific gene regulation. A multicopy p1 allele, P1-wr (white pericarp/red cob) is epigenetically regulated. Hypomethylation of P1-wr in the presence of Unstable factor for orange1 (Ufo1), leads to ectopic pigmentation of pericarp and other organs. The Ufo1-induced phenotypes show incomplete penetrance and poor expressivity: gain of pigmentation is observed only in a subset of plants carrying Ufo1 mutation, and the extent of pigmentation is highly variable. We show that Ufo1 induces progressive hypomethylation of P1-wr repeats over generations. After five generations of exposure to Ufo1, a 30-40% decrease in CG and CNG methylation was observed in an upstream enhancer and an intron region of P1-wr. Interestingly, such hypomethylation correlated with an increase in penetrance of the Ufo1-induced pigmentation phenotype from approximately 27 to 61%. Expressivity of the Ufo1-induced phenotype also improved markedly as indicated by increased uniformity of pericarp pigmentation in the later generations. Furthermore, the poor expressivity of the Uo1 is associated with mosaic methylation patterns of the P1-wr upstream enhancer in individual cells and distinct P1-wr gene copies. Finally, comparison of methylation among different tissues indicated that Ufo1 induces rapid CG and CNG hypomethylation of P1-wr repeats during plant development. Together, these data indicate that the poor penetrance and expressivity of Ufo1-induced phenotypes is caused by mosaicism of methylation, and progressive mitotic hypomethylation leads to improved meiotic heritability of the mutant phenotype. In duplicated genomes like maize, loss of an epigenetic regulator may produce mosaic patterns due to redundancy of epigenetic regulators and their target sequences. We show here that multiple developmental cycles may be required for complete disruption of suppressed epigenetic states and appearance of heritable phenotypes.
Related JoVE Video
Maize Unstable factor for orange1 is required for maintaining silencing associated with paramutation at the pericarp color1 and booster1 loci.
PLoS Genet.
Show Abstract
Hide Abstract
To understand the molecular mechanisms underlying paramutation, we examined the role of Unstable factor for orange1 (Ufo1) in maintaining paramutation at the maize pericarp color1 (p1) and booster1 (b1) loci. Genetic tests revealed that the Ufo1-1 mutation disrupted silencing associated with paramutation at both p1 and b1. The level of up regulation achieved at b1 was lower than that at p1, suggesting differences in the role Ufo1-1 plays at these loci. We characterized the interaction of Ufo1-1 with two silenced p1 epialleles, P1-rr and P1-pr(TP), that were derived from a common P1-rr ancestor. Both alleles are phenotypically indistinguishable, but differ in their paramutagenic activity; P1-rr is paramutagenic to P1-rr, while P1-pr(TP) is non-paramutagenic. Analysis of cytosine methylation revealed striking differences within an enhancer fragment that is required for paramutation; P1-rr exhibited increased methylation at symmetric (CG and CHG) and asymmetric (CHH) sites, while P1-pr(TP) was methylated only at symmetric sites. Both silenced alleles had higher levels of dimethylation of lysine 9 on histone 3 (H3K9me2), an epigenetic mark of silent chromatin, in the enhancer region. Both epialleles were reactivated in the Ufo1-1 background; however, reactivation of P1-rr was associated with dramatic loss of symmetric and asymmetric cytosine methylation in the enhancer, while methylation of up-regulated P1-pr(TP) was not affected. Interestingly, Ufo1-1-mediated reactivation of both alleles was accompanied with loss of H3K9me2 mark from the enhancer region. Therefore, while earlier studies have shown correlation between H3K9me2 and DNA methylation, our study shows that these two epigenetic marks are uncoupled in the Ufo1-1-reactivated p1 alleles. Furthermore, while CHH methylation at the enhancer region appears to be the major distinguishing mark between paramutagenic and non-paramutagenic p1 alleles, H3K9me2 mark appears to be important for maintaining epigenetic silencing.
Related JoVE Video
Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize.
Plant Physiol.
Show Abstract
Hide Abstract
Transcriptional and metabolic changes were evaluated during senescence induced by preventing pollination in the B73 genotype of maize (Zea mays). Accumulation of free glucose and starch and loss of chlorophyll in leaf was manifested early at 12 d after anthesis (DAA), while global transcriptional and phenotypic changes were evident only at 24 DAA. Internodes exhibited major transcriptomic changes only at 30 DAA. Overlaying expression data onto metabolic pathways revealed involvement of many novel pathways, including those involved in cell wall biosynthesis. To investigate the overlap between induced and natural senescence, transcriptional data from induced senescence in maize was compared with that reported for Arabidopsis (Arabidopsis thaliana) undergoing natural and sugar-induced senescence. Notable similarities with natural senescence in Arabidopsis included up-regulation of senescence-associated genes (SAGs), ethylene and jasmonic acid biosynthetic genes, APETALA2, ethylene-responsive element binding protein, and no apical meristem transcription factors. However, differences from natural senescence were highlighted by unaltered expression of a subset of the SAGs, and cytokinin, abscisic acid, and salicylic acid biosynthesis genes. Key genes up-regulated during sugar-induced senescence in Arabidopsis, including a cysteine protease (SAG12) and three flavonoid biosynthesis genes (PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1), PAP2, and LEUCOANTHOCYANIDIN DIOXYGENASE), were also induced, suggesting similarities in senescence induced by pollination prevention and sugar application. Coexpression analysis revealed networks involving known senescence-related genes and novel candidates; 82 of these were shared between leaf and internode networks, highlighting similarities in induced senescence in these tissues. Insights from this study will be valuable in systems biology of senescence in maize and other grasses.
Related JoVE Video
Maize HapMap2 identifies extant variation from a genome in flux.
Nat. Genet.
Show Abstract
Hide Abstract
Whereas breeders have exploited diversity in maize for yield improvements, there has been limited progress in using beneficial alleles in undomesticated varieties. Characterizing standing variation in this complex genome has been challenging, with only a small fraction of it described to date. Using a population genetics scoring model, we identified 55 million SNPs in 103 lines across pre-domestication and domesticated Zea mays varieties, including a representative from the sister genus Tripsacum. We find that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits. By investigating the drivers of genome size variation, we find that the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin. In contrast, intraspecies genome size variation seems to be controlled by chromosomal knob content. There is tremendous overlap in key gene content in maize and Tripsacum, suggesting that adaptations from Tripsacum (for example, perennialism and frost and drought tolerance) can likely be integrated into maize.
Related JoVE Video
Maize (Zea mays L.) genome diversity as revealed by RNA-sequencing.
PLoS ONE
Show Abstract
Hide Abstract
Maize is rich in genetic and phenotypic diversity. Understanding the sequence, structural, and expression variation that contributes to phenotypic diversity would facilitate more efficient varietal improvement. RNA based sequencing (RNA-seq) is a powerful approach for transcriptional analysis, assessing sequence variation, and identifying novel transcript sequences, particularly in large, complex, repetitive genomes such as maize. In this study, we sequenced RNA from whole seedlings of 21 maize inbred lines representing diverse North American and exotic germplasm. Single nucleotide polymorphism (SNP) detection identified 351,710 polymorphic loci distributed throughout the genome covering 22,830 annotated genes. Tight clustering of two distinct heterotic groups and exotic lines was evident using these SNPs as genetic markers. Transcript abundance analysis revealed minimal variation in the total number of genes expressed across these 21 lines (57.1% to 66.0%). However, the transcribed gene set among the 21 lines varied, with 48.7% expressed in all of the lines, 27.9% expressed in one to 20 lines, and 23.4% expressed in none of the lines. De novo assembly of RNA-seq reads that did not map to the reference B73 genome sequence revealed 1,321 high confidence novel transcripts, of which, 564 loci were present in all 21 lines, including B73, and 757 loci were restricted to a subset of the lines. RT-PCR validation demonstrated 87.5% concordance with the computational prediction of these expressed novel transcripts. Intriguingly, 145 of the novel de novo assembled loci were present in lines from only one of the two heterotic groups consistent with the hypothesis that, in addition to sequence polymorphisms and transcript abundance, transcript presence/absence variation is present and, thereby, may be a mechanism contributing to the genetic basis of heterosis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.