JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The tumor-educated-macrophage increase of malignancy of human pancreatic cancer is prevented by zoledronic acid.
PLoS ONE
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
We previously defined macrophages harvested from the peritoneal cavity of nude mice with subcutaneous human pancreatic tumors as "tumor-educated-macrophages" (Edu) and macrophages harvested from mice without tumors as "naïve-macrophages" (Naïve), and demonstrated that Edu-macrophages promoted tumor growth and metastasis. In this study, Edu- and Naïve-macrophages were compared for their ability to enhance pancreatic cancer malignancy at the cellular level in vitro and in vivo. The inhibitory efficacy of Zoledronic acid (ZA) on Edu-macrophage-enhanced metastasis was also determined. XPA1 human pancreatic cancer cells in Gelfoam co-cultured with Edu-macrophages proliferated to a greater extent compared to XPA1 cells cultured with Naïve-macrophages (P = 0.014). XPA1 cells exposed to conditioned medium harvested from Edu culture significantly increased proliferation (P = 0.016) and had more migration stimulation capability (P<0.001) compared to cultured cancer cells treated with the conditioned medium from Naïve. The mitotic index of the XPA1 cells, expressing GFP in the nucleus and RFP in the cytoplasm, significantly increased in vivo in the presence of Edu- compared to Naïve-macrophages (P = 0.001). Zoledronic acid (ZA) killed both Edu and Naïve in vitro. Edu promoted tumor growth and metastasis in an orthotopic mouse model of the XPA1 human pancreatic cancer cell line. ZA reduced primary tumor growth (P = 0.006) and prevented metastasis (P = 0.025) promoted by Edu-macrophages. These results indicate that ZA inhibits enhanced primary tumor growth and metastasis of human pancreatic cancer induced by Edu-macrophages.
Related JoVE Video
A rapid imageable in vivo metastasis assay for circulating tumor cells.
Anticancer Res.
PUBLISHED: 10-04-2011
Show Abstract
Hide Abstract
Circulating tumor cells (CTCs) are of great importance for cancer diagnosis, prognosis and treatment. It is necessary to improve the ability to image and analyze them for their biological properties which determine their behavior in the patient. In the present study, using immunomagnetic beads, CTCs were rapidly isolated from the circulation of mice orthotopically implanted with human PC-3 prostate cancer cells stably expressing green fluorescent protein (GFP). The PC-3-GFP CTCs were then expanded in culture in parallel with the parental PC-3-GFP cell line. Both cell types were then inoculated onto the chorioallentoic membrane (CAM) of chick embryos. Eight days later, embryos were harvested and the brains were processed for frozen sections. The IV-100 intravital laser scanning microscope enabled rapid identification of fluorescent metastatic foci within the chick embryonic brain. Inoculation of embryos with PC-3-GFP CTCs resulted in a 3 to 10-fold increase in brain metastasis when compared to those with the parental PC-3-GFP cells (p<0.05 in all animals). Thus, PC-3-GFP CTCs have increased metastatic potential compared to their parental counterparts. Furthermore, the chick embryo represents a rapid, sensitive, imageable assay of metastatic potential for CTCs. The chick embryo assay has future clinical application for individualizing patient therapy based on the metastatic profile of their CTCs.
Related JoVE Video
Submillimeter-resolution fluorescence laparoscopy of pancreatic cancer in a carcinomatosis mouse model visualizes metastases not seen with standard laparoscopy.
J Laparoendosc Adv Surg Tech A
PUBLISHED: 06-23-2011
Show Abstract
Hide Abstract
Staging laparoscopy can visualize peritoneal and liver metastases in pancreatic cancer otherwise undetectable by preoperative imaging. However, false-negative rates may be as high as 18%-26%. The aim of the present study was to improve detection of metastatic pancreatic cancer with the use of fluorescence laparoscopy (FL) in a nude-mouse model with the tumors expressing green fluorescent protein (GFP).
Related JoVE Video
Related JoVE Video
Tumor-educated macrophages promote tumor growth and peritoneal metastasis in an orthotopic nude mouse model of human pancreatic cancer.
In Vivo
Show Abstract
Hide Abstract
Macrophages promote tumor growth by stimulating tumor-associated angiogenesis, cancer-cell invasion, migration, intravasation, and suppression of antitumor immune responses.
Related JoVE Video
Comparative chemosensitivity of circulating human prostate cancer cells and primary cancer cells.
Anticancer Res.
Show Abstract
Hide Abstract
The chemosensitivity of circulating PC-3 human prostate cancer cells, isolated from nude mice orthotopically implanted with PC-3, was compared to that of the parental PC-3 cells. PC-3 and circulating PC-3, both labeled with green fluorescent protein (GFP), were seeded in 96-well plates. The MTT assay was then performed at 24, 48, and 72 hours, comparing control cultures to cultures treated with cisplatin at 1, 2.5, 5 and 10 ?m/ml, and docetaxel at 10, 20, 25 and 50 ?m/ml at each time point. The circulating tumor cells (CTCs) exhibited a significantly increased sensitivity to both cisplatin and docetaxel when compared to PC-3 parental cells, with docetaxel having the greater efficacy. The future goal, based on these studies, is the culture of CTCs from cancer patients peripheral blood for chemosensitivity testing, for improved individualized therapy.
Related JoVE Video
Inhibition of metastasis of circulating human prostate cancer cells in the chick embryo by an extracellular matrix produced by foreskin fibroblasts in culture.
Anticancer Res.
Show Abstract
Hide Abstract
We have previously demonstrated the increased metastatic potential of human prostate cancer circulating tumor cells (CTC), compared to their parental cells, in both orthotopic mouse models and the chick embryo model. In the current study, we asked whether an extracellular matrix (ECM), produced by human foreskin fibroblasts in culture, could inhibit PC-3 human prostate cancer CTC metastasis in the chick embryo model. The chorioallantoic membranes (CAM) of 18 chicken embryos were inoculated with either PC-3 human prostate cancer cells or PC-3 CTCs, both stably expressing green fluorescent protein (GFP). Embryos were divided into six groups: PC-3 parental-cell control; PC-3 plus soluble ECM; PC-3 parental cells plus semi-solid ECM; PC-3 CTC control; PC-3 CTC plus soluble ECM, and PC-3 CTC plus semi-solid ECM. Twelve hours following inoculation of the cells, a single dose of 100 ?l of either soluble or semi-solid ECM was added to the appropriate group. Embryo brains were removed on day 8 post-inoculation, and were processed for cryosectioning. Imaging was performed on the cryosections using a scanning laser microscope in order to count metastatic foci. PC-3 controls had an average of 11.1 metastatic foci compared to 2.55 in the PC-3 plus soluble ECM group and 2.76 (p<0.0001) in the PC-3 plus semi-solid ECM group (p<0.0001). ECM treatment had even greater efficacy on the CTC cells, with an average of 30.9 metastatic foci in the CTC controls compared to 4.38 in the CTC plus soluble ECM group (p<0.0001) and 4.18 in the CTC plus semi-solid ECM group (p<0.0001). The results demonstrate that reduction of CTC metastatic potential is possible, in this case with an ECM produced by human foreskin fibroblasts in culture.
Related JoVE Video
Tumor-specific fluorescence antibody imaging enables accurate staging laparoscopy in an orthotopic model of pancreatic cancer.
Hepatogastroenterology
Show Abstract
Hide Abstract
Laparoscopy is important in staging pancreatic cancer, but false negatives remain problematic. Making tumors fluorescent has the potential to improve the accuracy of staging laparoscopy.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.